blob: bd2fddad0b55166caa1c7c26f8bdc63a29af472b [file] [log] [blame]
Georgios Pinitas529b5a22021-07-27 15:55:30 +01001/*
2 * Copyright (c) 2017-2021 Arm Limited.
3 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
Georgios Pinitas7891a732021-08-20 21:39:25 +010024#include "src/gpu/cl/operators/ClFullyConnected.h"
Georgios Pinitas529b5a22021-07-27 15:55:30 +010025
26#include "arm_compute/core/Size2D.h"
27#include "arm_compute/core/Validate.h"
28#include "arm_compute/core/utils/misc/ShapeCalculator.h"
29#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
30#include "arm_compute/runtime/CL/CLScheduler.h"
31#include "src/core/CL/kernels/CLFillBorderKernel.h"
32
33#include "src/core/helpers/MemoryHelpers.h"
Georgios Pinitas7891a732021-08-20 21:39:25 +010034#include "src/gpu/cl/operators/ClConvertFullyConnectedWeights.h"
35#include "src/gpu/cl/operators/ClFlatten.h"
36#include "src/gpu/cl/operators/ClGemm.h"
37#include "src/gpu/cl/operators/ClGemmLowpMatrixMultiplyCore.h"
38#include "src/gpu/cl/operators/ClTranspose.h"
39#include "src/gpu/cl/utils/ClAuxTensorHandler.h"
Georgios Pinitas529b5a22021-07-27 15:55:30 +010040
41#include "support/Cast.h"
42
43#include <algorithm>
44
45namespace arm_compute
46{
47namespace opencl
48{
49using namespace arm_compute::experimental;
50using namespace arm_compute::misc::shape_calculator;
51
52namespace
53{
54Status construct_gemmlowp_output_stage(const ITensorInfo &src, const ITensorInfo &weights, const ITensorInfo &dst,
55 GEMMLowpOutputStageInfo &gemmlowp_output_stage, ActivationLayerInfo activation_info)
56{
57 gemmlowp_output_stage.type = GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT;
58 gemmlowp_output_stage.gemmlowp_offset = 0;
59 gemmlowp_output_stage.gemmlowp_multiplier = 0;
60 gemmlowp_output_stage.gemmlowp_shift = 0;
61
62 const auto data_type = src.data_type();
63
64 // Configure output stage for quantized case
65 if(is_data_type_quantized_asymmetric(data_type))
66 {
67 const QuantizationInfo oq_info = dst.quantization_info();
68 const UniformQuantizationInfo iq_unif = src.quantization_info().uniform();
69 const UniformQuantizationInfo wq_unif = weights.quantization_info().uniform();
70 const UniformQuantizationInfo oq_unif = oq_info.uniform();
71
72 const auto output_quant_info = (dst.total_size() == 0) ? iq_unif : oq_unif;
73
74 const float multiplier = (iq_unif.scale * wq_unif.scale) / output_quant_info.scale;
75 int output_multiplier = 0;
76 int output_shift = 0;
77 ARM_COMPUTE_RETURN_ON_ERROR(quantization::calculate_quantized_multiplier(multiplier, &output_multiplier, &output_shift));
78
79 PixelValue type_min{};
80 PixelValue type_max{};
81 std::tie(type_min, type_max) = get_min_max(data_type);
82
83 if(activation_info.enabled())
84 {
85 std::tie(type_min, type_max) = get_quantized_activation_min_max(activation_info, data_type, output_quant_info);
86 }
87
88 // Set the GEMMLowp output stage info
89 gemmlowp_output_stage.gemmlowp_offset = output_quant_info.offset;
90 gemmlowp_output_stage.gemmlowp_multiplier = output_multiplier;
91 gemmlowp_output_stage.gemmlowp_shift = output_shift;
92 gemmlowp_output_stage.gemmlowp_multipliers.push_back(output_multiplier);
93 gemmlowp_output_stage.gemmlowp_shifts.push_back(output_shift);
94 type_min.get(gemmlowp_output_stage.gemmlowp_min_bound);
95 type_max.get(gemmlowp_output_stage.gemmlowp_max_bound);
96 }
97
98 return Status{};
99}
100
101Status validate_mm(const ITensorInfo &src, const ITensorInfo &weights, const ITensorInfo *bias, const ITensorInfo &dst, const FullyConnectedLayerInfo &fc_info)
102{
103 GEMMLowpOutputStageInfo gemmlowp_output_stage;
104 ARM_COMPUTE_RETURN_ON_ERROR(construct_gemmlowp_output_stage(src, weights, dst, gemmlowp_output_stage, fc_info.activation_info));
105
106 const GEMMInfo &gemm_info = GEMMInfo(false, // is_a_reshaped
107 false, // is_b_reshaped
108 true, // reshape_b_only_on_first_run
109 0, // depth_output_gemm3d
110 false, // reinterpret_input_as_3d
111 fc_info.retain_internal_weights, // retain_internal_weights
112 gemmlowp_output_stage, // gemmlowp_output_stage
113 fc_info.fp_mixed_precision, // fp_mixed_precision
114 false, // fast_math
115 true, // broadcast_bias
116 ActivationLayerInfo()); // activation_info
117
118 if(is_data_type_quantized_asymmetric(src.data_type()))
119 {
120 const UniformQuantizationInfo iq_info = src.quantization_info().uniform();
121 const UniformQuantizationInfo wq_info = weights.quantization_info().uniform();
122
123 // Since we need negative offsets for computing convolution, we need to change QuantizationInfo()
124 // Extract and negate src and weights offset
125 const QuantizationInfo src_quantization_info(iq_info.scale, -iq_info.offset);
126 const QuantizationInfo weights_quantization_info(wq_info.scale, -wq_info.offset);
127
128 // Validate gemmlowp function
129 ARM_COMPUTE_RETURN_ON_ERROR(ClGemmLowpMatrixMultiplyCore::validate(&src.clone()->set_quantization_info(src_quantization_info),
130 &weights.clone()->set_quantization_info(weights_quantization_info),
131 bias,
132 &dst,
133 gemm_info));
134 }
135 else
136 {
137 ARM_COMPUTE_RETURN_ON_ERROR(ClGemm::validate(&src, &weights, bias, &dst, 1.f, 1.f, gemm_info));
138 }
139
140 return Status{};
141}
142} // namespace
143
144ClFullyConnected::ClFullyConnected()
145 : _convert_weights(nullptr),
146 _flatten(nullptr),
147 _reshape_weights(nullptr),
148 _mm_gemm(nullptr),
149 _mm_gemmlowp(nullptr),
150 _aux_mem(Count)
151{
152}
153
154ClFullyConnected::~ClFullyConnected() = default;
155
156void ClFullyConnected::configure_mm(const CLCompileContext &compile_context, ITensorInfo *src, ITensorInfo *weights, ITensorInfo *bias, ITensorInfo *dst,
157 const FullyConnectedLayerInfo &fc_info)
158{
159 GEMMLowpOutputStageInfo gemmlowp_output_stage;
160 construct_gemmlowp_output_stage(*src, *weights, *dst, gemmlowp_output_stage, fc_info.activation_info);
161
162 const GEMMInfo &gemm_info = GEMMInfo(false, // is_a_reshaped
163 false, // is_b_reshaped
164 true, // reshape_b_only_on_first_run
165 0, // depth_output_gemm3d
166 false, // reinterpret_input_as_3d
167 fc_info.retain_internal_weights, // retain_internal_weights
168 gemmlowp_output_stage, // gemmlowp_output_stage
169 fc_info.fp_mixed_precision, // fp_mixed_precision
170 false, // fast_math
171 true, // broadcast_bias
Michele Di Giorgioaed63ee2021-07-26 13:18:50 +0100172 fc_info.activation_info); // activation_info
Georgios Pinitas529b5a22021-07-27 15:55:30 +0100173
174 if(_is_quantized)
175 {
176 // Since we need negative offsets for computing convolution, we need to change QuantizationInfo()
177 // Extract and negate input and weights offset
178 const QuantizationInfo src_quantization_info = src->quantization_info();
179 const QuantizationInfo weights_quantization_info = weights->quantization_info();
180
181 TensorInfo src_info = src->clone()->set_quantization_info(src_quantization_info);
182 TensorInfo weights_info = weights->clone()->set_quantization_info(weights_quantization_info);
183
184 src_info.set_quantization_info(QuantizationInfo(src_quantization_info.uniform().scale, -src_quantization_info.uniform().offset));
185 weights_info.set_quantization_info(QuantizationInfo(weights_quantization_info.uniform().scale, -weights_quantization_info.uniform().offset));
186
187 // Configure gemmlowp function
188 _mm_gemmlowp = std::make_unique<ClGemmLowpMatrixMultiplyCore>();
189 _mm_gemmlowp->configure(compile_context, &src_info, &weights_info, bias, dst, gemm_info);
190 }
191 else
192 {
193 // Configure matrix multiply kernel
194 _mm_gemm = std::make_unique<ClGemm>();
195 _mm_gemm->configure(compile_context, src, weights, bias, dst, 1.f, 1.f, gemm_info);
196 }
197}
198
199void ClFullyConnected::configure_conv_fc(const CLCompileContext &compile_context, ITensorInfo *src, ITensorInfo *weights, ITensorInfo *bias, ITensorInfo *dst,
200 const FullyConnectedLayerInfo &fc_info)
201{
202 ARM_COMPUTE_ERROR_ON((weights->dimension(1) != (src->dimension(0) * src->dimension(1) * src->dimension(2))));
203
204 // If the fully connected layer is called after a convolution layer, the input tensor must be linearized
205
206 // Initialize output tensor for flatten
207 _flattened_src = src->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(compute_flatten_shape(src)).set_data_layout(DataLayout::NCHW);
208
209 // Configure flatten kernel
210 _flatten = std::make_unique<ClFlatten>();
211 _flatten->configure(compile_context, src, &_flattened_src);
212
213 // Configure matrix multiply kernel
214 configure_mm(compile_context, &_flattened_src, weights, bias, dst, fc_info);
215}
216
217void ClFullyConnected::configure_fc_fc(const CLCompileContext &compile_context, ITensorInfo *src, ITensorInfo *weights, ITensorInfo *bias, ITensorInfo *dst,
218 const FullyConnectedLayerInfo &fc_info)
219{
220 ARM_COMPUTE_ERROR_ON(src->dimension(0) != weights->dimension(1));
221
222 // Configure matrix multiply kernel
223 configure_mm(compile_context, src, weights, bias, dst, fc_info);
224}
225
226void ClFullyConnected::configure(const CLCompileContext &compile_context, ITensorInfo *src, ITensorInfo *weights, ITensorInfo *biases, ITensorInfo *dst,
227 FullyConnectedLayerInfo fc_info)
228{
229 ARM_COMPUTE_ERROR_ON_NULLPTR(src, weights, dst);
230
231 // Perform validate step
232 ARM_COMPUTE_ERROR_THROW_ON(ClFullyConnected::validate(src, weights, biases, dst, fc_info));
233
234 _are_weights_converted = true;
235 _are_weights_reshaped = fc_info.transpose_weights ? fc_info.are_weights_reshaped : true;
236 _is_fc_after_conv = true;
237 _is_quantized = is_data_type_quantized_asymmetric(src->data_type());
238 _is_prepared = fc_info.retain_internal_weights;
239 _weights_to_use = TensorInfo(*weights);
240 _weights_to_use_idx = ACL_SRC_1;
241
242 // With the Fully Connected layer we can have 4 different cases:
243 // 1) Convolution layer -> Fully Connected layer without batches
244 // 2) Fully Connected layer -> Fully Connected layer without batches
245 // 3) Convolution layer -> Fully Connected layer with batches
246 // 4) Fully Connected layer -> Fully Connected layer with batches
247
248 // Check if we have a fully connected layer with batches
249 const bool is_batched_fc_layer = dst->dimension(1) > 1;
250 if(is_batched_fc_layer)
251 {
252 _is_fc_after_conv = (TensorShape::num_max_dimensions >= 4) && (std::equal(src->tensor_shape().cbegin() + 3,
253 src->tensor_shape().cend(),
254 dst->tensor_shape().cbegin() + 1));
255 }
256 else
257 {
258 _is_fc_after_conv = src->num_dimensions() > 1;
259 }
260
261 ITensorInfo *weights_used = weights;
262
263 // Reshape weights if needed
264 if(!_are_weights_reshaped)
265 {
266 // Reshape the weights
267 _reshape_weights = std::make_unique<ClTranspose>();
268 _reshape_weights->configure(compile_context, weights, &_reshaped_weights);
269 weights_used = &_reshaped_weights;
270 _weights_to_use_idx = offset_int_vec(TransposedWeights);
271 }
272
273 // Convert weights if needed
274 if(_is_fc_after_conv && (src->data_layout() != fc_info.weights_trained_layout))
275 {
276 // Convert weights
277 _convert_weights = std::make_unique<ClConvertFullyConnectedWeights>();
278 _convert_weights->configure(compile_context,
279 weights_used,
280 &_converted_weights,
281 src->tensor_shape(),
282 fc_info.weights_trained_layout);
283
284 weights_used = &_converted_weights;
285 _weights_to_use_idx = offset_int_vec(ConvertedWeights);
286 _are_weights_converted = false;
287 }
288
289 if(_is_fc_after_conv)
290 {
291 // Fully Connected layer after a Convolution Layer without batches
292 configure_conv_fc(compile_context, src, weights_used, biases, dst, fc_info);
293 }
294 else
295 {
296 // Fully Connected layer after a Fully Connected Layer without batches
297 configure_fc_fc(compile_context, src, weights_used, biases, dst, fc_info);
298 }
299 // Update TensorInfo of final weights used (Need to be done in the end due to padding expansion)
300 _weights_to_use = *weights_used;
301
302 // Set auxiliary memory requirements
303 auto gemm_mem_req = (_is_quantized) ? _mm_gemmlowp->workspace() : _mm_gemm->workspace();
304 for(unsigned int i = 0; i < gemm_mem_req.size(); ++i)
305 {
306 _aux_mem[i] = gemm_mem_req[i];
307 }
308 if(_aux_mem[1].size > 0 || _aux_mem[2].size > 0) // Persistent weights memory on GEMMs
309 {
310 // Release permuted weights at the of prepare as they are further transposed by the assembly dispatch
311 _aux_mem[TransposedWeights] = MemoryInfo(offset_int_vec(TransposedWeights), MemoryLifetime::Prepare, _reshaped_weights.total_size());
312 _aux_mem[ConvertedWeights] = MemoryInfo(offset_int_vec(ConvertedWeights), MemoryLifetime::Prepare, _converted_weights.total_size());
313 }
314 else
315 {
316 // Release permuted weights at the of prepare as they are further transposed by the assembly dispatch
317 const auto transposed_wei_lft = (_weights_to_use_idx == offset_int_vec(TransposedWeights)) ? MemoryLifetime::Persistent : MemoryLifetime::Prepare;
318 const auto converted_wei_lft = (_weights_to_use_idx == offset_int_vec(ConvertedWeights)) ? MemoryLifetime::Persistent : MemoryLifetime::Prepare;
319
320 _aux_mem[TransposedWeights] = MemoryInfo(offset_int_vec(TransposedWeights), transposed_wei_lft, _reshaped_weights.total_size());
321 _aux_mem[ConvertedWeights] = MemoryInfo(offset_int_vec(ConvertedWeights), converted_wei_lft, _converted_weights.total_size());
322 }
323 _aux_mem[FlattenedSrc] = MemoryInfo(offset_int_vec(FlattenedSrc), MemoryLifetime::Temporary, _flattened_src.total_size());
324}
325
326Status ClFullyConnected::validate(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *dst,
327 FullyConnectedLayerInfo fc_info)
328{
329 ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src, weights, dst);
330 ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::F16, DataType::F32);
331 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, weights, dst);
332 ARM_COMPUTE_RETURN_ERROR_ON(weights->num_dimensions() > 2);
333 ARM_COMPUTE_RETURN_ERROR_ON(fc_info.activation_info.enabled() && is_data_type_quantized(src->data_type()) && fc_info.activation_info.activation() != ActivationLayerInfo::ActivationFunction::RELU
334 && fc_info.activation_info.activation() != ActivationLayerInfo::ActivationFunction::BOUNDED_RELU && fc_info.activation_info.activation() != ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU);
Michele Di Giorgioaed63ee2021-07-26 13:18:50 +0100335 ARM_COMPUTE_RETURN_ERROR_ON(!weights->are_values_constant() && (!fc_info.are_weights_reshaped || fc_info.transpose_weights));
Georgios Pinitas529b5a22021-07-27 15:55:30 +0100336
337 bool weights_reshaped = fc_info.transpose_weights ? fc_info.are_weights_reshaped : true;
338 bool is_fc_after_conv = true;
339
340 const ITensorInfo &flatten_src = TensorInfo(src->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(compute_flatten_shape(src)).set_data_layout(DataLayout::NCHW));
341 const ITensorInfo &reshaped_weights = TensorInfo(weights->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(compute_transposed_shape(*weights)));
342 const ITensorInfo &converted_weights = weights_reshaped ? TensorInfo(weights->clone()->set_is_resizable(true).reset_padding()) : TensorInfo(*reshaped_weights.clone());
343
344 // With the Fully Connected layer we can have 4 different cases:
345 // 1) Convolution layer -> Fully Connected layer without batches
346 // 2) Fully Connected layer -> Fully Connected layer without batches
347 // 3) Convolution layer -> Fully Connected layer with batches
348 // 4) Fully Connected layer -> Fully Connected layer with batches
349
350 const ITensorInfo *src_to_use = src;
351 const ITensorInfo *weights_to_use = weights;
352
Michele Di Giorgioaed63ee2021-07-26 13:18:50 +0100353 if(biases != nullptr)
354 {
355 ARM_COMPUTE_RETURN_ERROR_ON(biases->num_dimensions() > 1);
356 if(is_data_type_quantized(src->data_type()))
357 {
358 ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(biases, 1, DataType::S32);
359 }
360 else
361 {
362 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, biases);
363 }
364 }
365
Georgios Pinitas529b5a22021-07-27 15:55:30 +0100366 // Check if we have a fully connected layer with batches
367 const bool is_batched_fc_layer = dst->dimension(1) > 1;
368 if(is_batched_fc_layer)
369 {
370 is_fc_after_conv = (TensorShape::num_max_dimensions >= 4) && (std::equal(src->tensor_shape().cbegin() + 3,
371 src->tensor_shape().cend(),
372 dst->tensor_shape().cbegin() + 1));
373 }
374 else
375 {
376 is_fc_after_conv = src->num_dimensions() > 1;
377 }
378
379 if(!weights_reshaped)
380 {
381 // Validate reshape weights kernel
382 ARM_COMPUTE_RETURN_ON_ERROR(ClTranspose::validate(weights, &reshaped_weights));
383 weights_to_use = &reshaped_weights;
384 }
385
386 if(is_fc_after_conv && (src->data_layout() != fc_info.weights_trained_layout))
387 {
388 // Validate convert weights kernel
389 ARM_COMPUTE_RETURN_ON_ERROR(ClConvertFullyConnectedWeights::validate(weights_to_use,
390 &converted_weights,
391 src->tensor_shape(),
392 fc_info.weights_trained_layout));
393 weights_to_use = &converted_weights;
394 }
395
396 if(is_fc_after_conv)
397 {
398 // Fully Connected layer after a Convolution Layer without batches
399 ARM_COMPUTE_RETURN_ERROR_ON((weights_to_use->dimension(1) != (src->dimension(0) * src->dimension(1) * src->dimension(2))));
400
401 // Validate flatten kernel
402 ARM_COMPUTE_RETURN_ON_ERROR(ClFlatten::validate(src, &flatten_src));
403 src_to_use = &flatten_src;
404 }
405 else
406 {
407 // Fully Connected layer after a Fully Connected Layer without batches
408 ARM_COMPUTE_RETURN_ERROR_ON(src->dimension(0) != weights_to_use->dimension(1));
409 }
410
411 // Validate matrix multiply kernel
412 ARM_COMPUTE_RETURN_ON_ERROR(validate_mm(*src_to_use, *weights_to_use, biases, *dst, fc_info));
413
414 return Status{};
415}
416
417void ClFullyConnected::run(ITensorPack &tensors)
418{
419 prepare(tensors);
420
421 auto src = tensors.get_const_tensor(ACL_SRC_0);
422
423 CLAuxTensorHandler flattened_src(offset_int_vec(FlattenedSrc), _flattened_src, tensors, false);
424 CLAuxTensorHandler weights(_weights_to_use_idx, _weights_to_use, tensors, false);
425
426 // Linearize input if it comes from a convolutional layer
427 if(_is_fc_after_conv)
428 {
429 ITensorPack flatten_pack{ { ACL_SRC, src }, { ACL_DST, flattened_src.get() } };
430 _flatten->run(flatten_pack);
431 }
432
433 ITensorPack gemm_pack = tensors;
434 gemm_pack.add_const_tensor(ACL_SRC_0, (_is_fc_after_conv) ? flattened_src.get() : src);
435 if(_weights_to_use_idx != ACL_SRC_1)
436 {
437 gemm_pack.add_const_tensor(ACL_SRC_1, weights.get());
438 }
439
440 // Run matrix multiply
441 if(_is_quantized)
442 {
443 _mm_gemmlowp->run(gemm_pack);
444 }
445 else
446 {
447 _mm_gemm->run(gemm_pack);
448 }
449}
450
451void ClFullyConnected::prepare(ITensorPack &tensors)
452{
453 if(!_is_prepared)
454 {
455 auto weights = tensors.get_const_tensor(ACL_SRC_1);
456
457 CLAuxTensorHandler reshaped_weights(offset_int_vec(TransposedWeights), _reshaped_weights, tensors, false);
458 CLAuxTensorHandler converted_weights(offset_int_vec(ConvertedWeights), _converted_weights, tensors, false);
459
460 // Pointer to current weights
461 const ITensor *cur_weights = weights;
462
463 // Reshape of the weights if needed (happens only once)
464 if(!_are_weights_reshaped)
465 {
466 // Run reshape weights kernel and mark weights as unused
467 ITensorPack transpose_pack{ { ACL_SRC, weights }, { ACL_DST, reshaped_weights.get() } };
468 _reshape_weights->run(transpose_pack);
469
470 cur_weights->mark_as_unused();
471 cur_weights = reshaped_weights.get();
472
473 _are_weights_reshaped = true;
474 }
475
476 // Convert weights if needed (happens only once)
477 if(!_are_weights_converted)
478 {
479 ITensorPack convert_pack{ { ACL_SRC, cur_weights }, { ACL_DST, converted_weights.get() } };
480 _convert_weights->run(convert_pack);
481
482 cur_weights->mark_as_unused();
483 cur_weights = converted_weights.get();
484
485 _are_weights_converted = true;
486 }
487
488 tensors.add_const_tensor(ACL_SRC_1, cur_weights);
489
490 // Prepare GEMM prepare and release unused weights
491 if(!_is_quantized)
492 {
493 _mm_gemm->prepare(tensors);
494 }
495 else
496 {
497 _mm_gemmlowp->prepare(tensors);
498 }
499 _is_prepared = true;
500 }
501}
502
503experimental::MemoryRequirements ClFullyConnected::workspace() const
504{
505 return _aux_mem;
506}
507} // namespace opencl
508} // namespace arm_compute