blob: 076b0d8909461fbfc6112ab0fd6f5aee0c6ef602 [file] [log] [blame]
Anthony Barbier6ff3b192017-09-04 18:44:23 +01001/*
2 * Copyright (c) 2017 ARM Limited.
3 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24#include "helpers.h"
25
26/** Apply cross map normalization.
27 *
28 * @note Datatype should be given as a preprocessor argument using -DDATA_TYPE=type. e.g. -DDATA_TYPE=short
29 *
30 * @param[in] input_ptr Pointer to the first source tensor. Supported data types: F16, F32
31 * @param[in] input_stride_x Stride of the first source tensor in X dimension (in bytes)
32 * @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
33 * @param[in] input_stride_y Stride of the first source tensor in Y dimension (in bytes)
34 * @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
35 * @param[in] input_stride_z Stride of the first source tensor in Z dimension (in bytes)
36 * @param[in] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes)
37 * @param[in] input_offset_first_element_in_bytes The offset of the first element in the first source tensor
38 * @param[in] squared_input_ptr Pointer to the second source tensor. Supported data types: F16, F32
39 * @param[in] squared_input_stride_x Stride of the second source tensor in X dimension (in bytes)
40 * @param[in] squared_input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
41 * @param[in] squared_input_stride_y Stride of the second source tensor in Y dimension (in bytes)
42 * @param[in] squared_input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
43 * @param[in] squared_input_stride_z Stride of the second source tensor in Z dimension (in bytes)
44 * @param[in] squared_input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes)
45 * @param[in] squared_input_offset_first_element_in_bytes The offset of the second element in the second source tensor
46 * @param[out] output_ptr Pointer to the destination tensor. Supported data types: F16, F32
47 * @param[in] output_stride_x Stride of the destination tensor in X dimension (in bytes)
48 * @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes)
49 * @param[in] output_stride_y Stride of the destination tensor in Y dimension (in bytes)
50 * @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes)
51 * @param[in] output_stride_z Stride of the destination tensor in Z dimension (in bytes)
52 * @param[in] output_step_z output_stride_z * number of elements along Z processed per workitem(in bytes)
53 * @param[in] output_offset_first_element_in_bytes The offset of the first element in the destination tensor
54 * @param[in] coeff Alpha parameter / norm_size
55 * @param[in] beta Beta parameter in the normalization equation
56 * @param[in] kappa Kappa parameter in the normalization equation
57 * @param[in] radius Number of elements on the right or left side to normalize across
58 */
59__kernel void normalization_layer_cross_map(TENSOR3D_DECLARATION(input),
60 TENSOR3D_DECLARATION(squared_input),
61 TENSOR3D_DECLARATION(output),
62 float coeff,
63 float beta,
64 float kappa,
65 uint radius)
66{
67 Tensor3D in = CONVERT_TO_TENSOR3D_STRUCT(input);
68 Tensor3D squared_in = CONVERT_TO_TENSOR3D_STRUCT(squared_input);
69 Tensor3D out = CONVERT_TO_TENSOR3D_STRUCT(output);
70
71 DATA_TYPE acc = 0;
72
73 const int num_of_slices = get_global_size(2);
74 const int current_slice = get_global_id(2);
75
76 const int left_slice = max(current_slice - (int)radius, (int)0);
77 const int right_slice = min(current_slice + (int)radius, (int)(num_of_slices - 1));
78
79 for(int i = left_slice; i <= right_slice; i++)
80 {
81 acc += *(__global DATA_TYPE *)tensor3D_offset(&squared_in, 0, 0, i - current_slice);
82 }
83
84 const float normalized = pow(kappa + coeff * (float)acc, beta);
85
86 const float normalized_pixel = (float) * ((__global DATA_TYPE *)in.ptr) / normalized;
87
88 *(__global DATA_TYPE *)out.ptr = CONVERT(normalized_pixel, DATA_TYPE);
89}
90
91/** Apply in map normalization.
92 *
93 * @note Datatype should be given as a preprocessor argument using -DDATA_TYPE=type. e.g. -DDATA_TYPE=short
94 *
95 * @param[in] input_ptr Pointer to the first source tensor. Supported data types: F16, F32
96 * @param[in] input_stride_x Stride of the first source tensor in X dimension (in bytes)
97 * @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
98 * @param[in] input_stride_y Stride of the first source tensor in Y dimension (in bytes)
99 * @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
100 * @param[in] input_stride_z Stride of the first source tensor in Z dimension (in bytes)
101 * @param[in] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes)
102 * @param[in] input_offset_first_element_in_bytes The offset of the first element in the first source tensor
103 * @param[in] squared_input_ptr Pointer to the second source tensor. Supported data types: F16, F32
104 * @param[in] squared_input_stride_x Stride of the second source tensor in X dimension (in bytes)
105 * @param[in] squared_input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
106 * @param[in] squared_input_stride_y Stride of the second source tensor in Y dimension (in bytes)
107 * @param[in] squared_input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
108 * @param[in] squared_input_stride_z Stride of the second source tensor in Z dimension (in bytes)
109 * @param[in] squared_input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes)
110 * @param[in] squared_input_offset_first_element_in_bytes The offset of the second element in the second source tensor
111 * @param[out] output_ptr Pointer to the destination tensor. Supported data types: F16, F32
112 * @param[in] output_stride_x Stride of the destination tensor in X dimension (in bytes)
113 * @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes)
114 * @param[in] output_stride_y Stride of the first destination tensor in Y dimension (in bytes)
115 * @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes)
116 * @param[in] output_stride_z Stride of the first source tensor in Z dimension (in bytes)
117 * @param[in] output_step_z output_stride_z * number of elements along Z processed per workitem(in bytes)
118 * @param[in] output_offset_first_element_in_bytes The offset of the first element in the destination tensor
119 * @param[in] coeff Alpha parameter / norm_size
120 * @param[in] beta Beta parameter in the normalization equation
121 * @param[in] kappa Kappa parameter in the normalization equation
122 * @param[in] radius Number of elements on the right or left side to normalize across
123 */
124__kernel void normalization_layer_in_map_1D(TENSOR3D_DECLARATION(input),
125 TENSOR3D_DECLARATION(squared_input),
126 TENSOR3D_DECLARATION(output),
127 float coeff,
128 float beta,
129 float kappa,
130 uint radius)
131{
132 Tensor3D in = CONVERT_TO_TENSOR3D_STRUCT(input);
133 Tensor3D squared_in = CONVERT_TO_TENSOR3D_STRUCT(squared_input);
134 Tensor3D out = CONVERT_TO_TENSOR3D_STRUCT(output);
135
136 VEC_DATA_TYPE(DATA_TYPE, 4)
137 acc_vec = 0;
138
139 const int current_pos = get_global_id(0) << 2;
140
141 const int left_pos = max(current_pos - (int)radius, -3);
142 const int right_pos = min(current_pos + (int)radius, (int)((get_global_size(0) << 2) + 3 - 1));
143
144 for(int i = left_pos; i <= right_pos; i += 1)
145 {
146 acc_vec += vload4(0, (__global DATA_TYPE *)tensor3D_offset(&squared_in, i - current_pos, 0, 0));
147 }
148
149 const float4 normalized = pow((float4)kappa + coeff * (float4)acc_vec, beta);
150
151 const float4 normalized_pixel = CONVERT(vload4(0, (__global DATA_TYPE *)in.ptr), float4) / normalized;
152
153 vstore4(CONVERT(normalized_pixel, VEC_DATA_TYPE(DATA_TYPE, 4)), 0, (__global DATA_TYPE *)out.ptr);
154}