blob: 81e813caffbec1a22def7806a8c94724c7dea1bb [file] [log] [blame]
Chunosovd621bca2017-11-03 17:33:15 +07001/*
Michele Di Giorgiod02d5ed2021-01-22 09:47:04 +00002 * Copyright (c) 2017-2021 Arm Limited.
Chunosovd621bca2017-11-03 17:33:15 +07003 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
Michele Di Giorgiodf4cf572019-10-09 15:32:39 +010025#include "arm_compute/core/Helpers.h"
Matthew Bentham758b5ba2020-03-05 23:37:48 +000026#include "support/ToolchainSupport.h"
Chunosovd621bca2017-11-03 17:33:15 +070027
28#include <cmath>
29#include <limits>
30#include <numeric>
31
Michele Di Giorgiod87a7b22019-09-10 10:42:27 +010032namespace arm_compute
33{
34namespace quantization
35{
Michalis Spyrou299fdd32019-05-01 13:03:59 +010036constexpr int64_t fixed_point_one_Q0 = (1LL << 31);
Gian Marco Iodice3139f032018-11-05 14:26:32 +000037constexpr float epsilon = 0.00001f;
Chunosovf450caa2017-11-08 16:09:35 +070038
Sang-Hoon Park30b46a62020-04-18 01:40:57 +010039Status calculate_quantized_multiplier(float multiplier, int32_t *quant_multiplier, int32_t *shift, bool ignore_epsilon)
Manuel Bottini07263982019-10-17 18:37:26 +010040{
Michele Di Giorgio35c37942019-12-03 19:34:30 +000041 if(multiplier >= 1.f)
Manuel Bottini07263982019-10-17 18:37:26 +010042 {
43 Status status = calculate_quantized_multiplier_greater_than_one(multiplier, quant_multiplier, shift);
44 *shift *= -1;
45 return status;
46 }
47 else
48 {
Sang-Hoon Park30b46a62020-04-18 01:40:57 +010049 return calculate_quantized_multiplier_less_than_one(multiplier, quant_multiplier, shift, ignore_epsilon);
Manuel Bottini07263982019-10-17 18:37:26 +010050 }
51}
52
Michalis Spyroue7be8a02019-12-12 16:16:09 +000053Status calculate_quantized_multiplier_less_than_one(float multiplier,
54 int32_t *quant_multiplier,
Sang-Hoon Park30b46a62020-04-18 01:40:57 +010055 int32_t *right_shift,
56 bool ignore_epsilon)
Chunosovd621bca2017-11-03 17:33:15 +070057{
Sang-Hoon Park30b46a62020-04-18 01:40:57 +010058 const float internal_epsilon = ignore_epsilon ? 0.0f : epsilon;
59
Chunosovd621bca2017-11-03 17:33:15 +070060 ARM_COMPUTE_RETURN_ERROR_ON(quant_multiplier == nullptr);
61 ARM_COMPUTE_RETURN_ERROR_ON(right_shift == nullptr);
Sang-Hoon Park30b46a62020-04-18 01:40:57 +010062 ARM_COMPUTE_RETURN_ERROR_ON(multiplier < -internal_epsilon);
63 ARM_COMPUTE_RETURN_ERROR_ON(multiplier > 1.0f + internal_epsilon);
64 if(std::fabs(0.0f - multiplier) < internal_epsilon)
Chunosovd621bca2017-11-03 17:33:15 +070065 {
66 *quant_multiplier = 0;
67 *right_shift = 0;
Michele Di Giorgiod87a7b22019-09-10 10:42:27 +010068 return Status{};
Chunosovd621bca2017-11-03 17:33:15 +070069 }
Gian Marco Iodice3139f032018-11-05 14:26:32 +000070
Michalis Spyroue7be8a02019-12-12 16:16:09 +000071 int shift_exp = 0;
72 const double q = std::frexp(multiplier, &shift_exp);
73 *right_shift = -1 * shift_exp;
74 auto q_fixed = static_cast<int64_t>(support::cpp11::round(q * fixed_point_one_Q0));
Chunosovf450caa2017-11-08 16:09:35 +070075 ARM_COMPUTE_RETURN_ERROR_ON(q_fixed > fixed_point_one_Q0);
76 if(q_fixed == fixed_point_one_Q0)
Chunosovd621bca2017-11-03 17:33:15 +070077 {
78 q_fixed /= 2;
79 --*right_shift;
80 }
Sang-Hoon Park30b46a62020-04-18 01:40:57 +010081
82 if(ignore_epsilon && *right_shift > 31)
83 {
84 *right_shift = 0;
85 q_fixed = 0;
86 }
87
Chunosovd621bca2017-11-03 17:33:15 +070088 ARM_COMPUTE_RETURN_ERROR_ON(*right_shift < 0);
89 ARM_COMPUTE_RETURN_ERROR_ON(q_fixed > std::numeric_limits<int32_t>::max());
Chunosovf450caa2017-11-08 16:09:35 +070090 *quant_multiplier = static_cast<int32_t>(q_fixed);
Chunosovd621bca2017-11-03 17:33:15 +070091
Michele Di Giorgiod87a7b22019-09-10 10:42:27 +010092 return Status{};
Chunosovf450caa2017-11-08 16:09:35 +070093}
94
Michalis Spyroue7be8a02019-12-12 16:16:09 +000095Status calculate_quantized_multiplier_greater_than_one(float multiplier,
96 int32_t *quantized_multiplier,
97 int32_t *left_shift)
Chunosovf450caa2017-11-08 16:09:35 +070098{
99 ARM_COMPUTE_RETURN_ERROR_ON(quantized_multiplier == nullptr);
100 ARM_COMPUTE_RETURN_ERROR_ON(left_shift == nullptr);
101 ARM_COMPUTE_RETURN_ERROR_ON(multiplier < 1.f);
Michalis Spyroue7be8a02019-12-12 16:16:09 +0000102
103 int shift_exp = 0;
104 const double q = std::frexp(multiplier, &shift_exp);
105 *left_shift = shift_exp;
106 auto q_fixed = static_cast<int64_t>(support::cpp11::round(q * fixed_point_one_Q0));
Chunosovf450caa2017-11-08 16:09:35 +0700107 ARM_COMPUTE_RETURN_ERROR_ON(q_fixed > fixed_point_one_Q0);
108 if(q_fixed == fixed_point_one_Q0)
109 {
110 q_fixed /= 2;
111 ++*left_shift;
112 }
113 ARM_COMPUTE_RETURN_ERROR_ON(*left_shift < 0);
114 ARM_COMPUTE_RETURN_ERROR_ON(q_fixed > std::numeric_limits<int32_t>::max());
115 *quantized_multiplier = static_cast<int32_t>(q_fixed);
116
Michele Di Giorgiod87a7b22019-09-10 10:42:27 +0100117 return Status{};
Chunosovf450caa2017-11-08 16:09:35 +0700118}
Georgios Pinitasdbdea0d2019-10-16 19:21:40 +0100119
Michele Di Giorgiof29d1b72019-10-29 10:58:13 +0000120arm_compute::Status calculate_quantized_multipliers(const QuantizationInfo &iq_info,
121 const QuantizationInfo &wq_info,
122 const QuantizationInfo &oq_info,
123 GEMMLowpOutputStageInfo &stage_info)
Georgios Pinitasdbdea0d2019-10-16 19:21:40 +0100124{
125 ARM_COMPUTE_RETURN_ERROR_ON(iq_info.scale().empty());
126 ARM_COMPUTE_RETURN_ERROR_ON(wq_info.scale().empty());
127 ARM_COMPUTE_RETURN_ERROR_ON(oq_info.scale().empty());
128
129 const unsigned int size = wq_info.scale().size();
130
131 auto &quant_multipliers = stage_info.gemmlowp_multipliers;
132 auto &quant_shifts = stage_info.gemmlowp_shifts;
133 quant_multipliers.resize(size);
134 quant_shifts.resize(size);
135
136 const auto &w_scales = wq_info.scale();
137 const float i_scale = iq_info.scale().at(0);
138 const float o_scale = oq_info.scale().at(0);
139
140 for(unsigned int i = 0; i < size; ++i)
141 {
142 const float multiplier = i_scale * w_scales[i] / o_scale;
Michalis Spyroue7be8a02019-12-12 16:16:09 +0000143 int32_t quant_multiplier = 0;
144 int32_t quant_shift = 0;
Michele Di Giorgiof29d1b72019-10-29 10:58:13 +0000145 ARM_COMPUTE_RETURN_ON_ERROR(calculate_quantized_multiplier(multiplier, &quant_multiplier, &quant_shift));
Georgios Pinitasdbdea0d2019-10-16 19:21:40 +0100146 quant_multipliers[i] = quant_multiplier;
147 quant_shifts[i] = quant_shift;
148 }
149
150 // Legacy part
151 stage_info.gemmlowp_shift = quant_shifts[0];
152 stage_info.gemmlowp_multiplier = quant_multipliers[0];
153
154 return Status{};
155}
156
Michele Di Giorgiod87a7b22019-09-10 10:42:27 +0100157std::pair<int, int> get_min_max_values_from_quantized_data_type(DataType data_type)
158{
159 int min_quant_val = 0;
160 int max_quant_val = 0;
161 switch(data_type)
162 {
163 case DataType::QASYMM8:
164 min_quant_val = std::numeric_limits<uint8_t>::min();
165 max_quant_val = std::numeric_limits<uint8_t>::max();
166 break;
167 case DataType::QSYMM8:
Manuel Bottini8481d832019-12-10 15:28:40 +0000168 case DataType::QASYMM8_SIGNED:
Michele Di Giorgiod87a7b22019-09-10 10:42:27 +0100169 min_quant_val = std::numeric_limits<int8_t>::min();
170 max_quant_val = std::numeric_limits<int8_t>::max();
171 break;
172 case DataType::QASYMM16:
173 min_quant_val = std::numeric_limits<uint16_t>::min();
174 max_quant_val = std::numeric_limits<uint16_t>::max();
175 break;
176 case DataType::QSYMM16:
177 min_quant_val = std::numeric_limits<int16_t>::min();
178 max_quant_val = std::numeric_limits<int16_t>::max();
179 break;
180 default:
181 ARM_COMPUTE_ERROR("Unsupported data type");
182 }
183 return std::make_pair(min_quant_val, max_quant_val);
184}
Vidhya Sudhan Loganathan951b8a42019-11-04 14:42:08 +0000185void compute_quantized_multipliers_and_shifts(const ITensorInfo *input,
186 const ITensorInfo *weights,
187 const ITensorInfo *output,
Vidhya Sudhan Loganathan951b8a42019-11-04 14:42:08 +0000188 int32_t *output_multipliers_ptr,
189 int32_t *output_shifts_ptr)
Michele Di Giorgiodf4cf572019-10-09 15:32:39 +0100190{
Vidhya Sudhan Loganathan951b8a42019-11-04 14:42:08 +0000191 const UniformQuantizationInfo iq_info = input->quantization_info().uniform();
192 const QuantizationInfo wq_info = weights->quantization_info();
193 const UniformQuantizationInfo oq_info = output->quantization_info().uniform();
Michele Di Giorgiodf4cf572019-10-09 15:32:39 +0100194
Michele Di Giorgiod02d5ed2021-01-22 09:47:04 +0000195 const unsigned int num_filters = wq_info.scale().size();
196
Michele Di Giorgiodf4cf572019-10-09 15:32:39 +0100197 for(unsigned int i = 0; i < num_filters; ++i)
198 {
Michalis Spyroue7be8a02019-12-12 16:16:09 +0000199 int32_t output_multiplier = 0;
200 int32_t output_shift = 0;
Michele Di Giorgiodf4cf572019-10-09 15:32:39 +0100201 const float multiplier = iq_info.scale * wq_info.scale()[i] / oq_info.scale;
Michele Di Giorgio14cbfb22019-10-23 10:53:10 +0100202 calculate_quantized_multiplier(multiplier, &output_multiplier, &output_shift);
Michele Di Giorgiodf4cf572019-10-09 15:32:39 +0100203
204 output_multipliers_ptr[i] = output_multiplier;
205 output_shifts_ptr[i] = output_shift;
206 }
207}
Sang-Hoon Park396cb952020-03-26 14:02:37 +0000208
209int32_t saturating_rounding_doubling_highmul(int32_t a, int32_t b)
210{
211 bool overflow = a == b && a == std::numeric_limits<int32_t>::min();
212 int64_t a_64(a);
213 int64_t b_64(b);
Sang-Hoon Park0d008f72020-03-13 14:56:05 +0000214 int64_t ab_64 = a_64 * b_64;
215 bool is_positive_or_zero = a == 0 || b == 0 || (std::signbit(a) == std::signbit(b));
216 int32_t nudge = is_positive_or_zero ? (1 << 30) : (1 - (1 << 30));
217 int32_t ab_x2_high32 = static_cast<int32_t>((ab_64 + nudge) / (1ll << 31));
Sang-Hoon Park396cb952020-03-26 14:02:37 +0000218 return overflow ? std::numeric_limits<int32_t>::max() : ab_x2_high32;
219}
220
221inline int32_t rounding_divide_by_pow2(int32_t x, int exponent)
222{
223 const int32_t mask = (1 << exponent) - 1;
224 const int32_t threshold = (mask >> 1) + (x < 0 ? 1 : 0);
225 return (x >> exponent) + ((x & mask) > threshold ? 1 : 0);
226}
227
Sang-Hoon Park0d008f72020-03-13 14:56:05 +0000228int32_t multiply_by_quantized_multiplier(int32_t input, int32_t qmul, int32_t shift)
Sang-Hoon Park396cb952020-03-26 14:02:37 +0000229{
230 const auto left_shift = shift > 0 ? shift : 0;
231 const auto right_shift = shift > 0 ? 0 : -shift;
232 return rounding_divide_by_pow2(saturating_rounding_doubling_highmul(input * (1 << left_shift), qmul), right_shift);
233}
234
235int32_t saturating_rounding_multiply_by_pow2(int32_t exponent, int32_t v)
236{
237 if(exponent == 0)
238 {
239 return v;
240 }
241 else if(exponent < 0)
242 {
243 return rounding_divide_by_pow2(v, -exponent);
244 }
245 else
246 {
247 constexpr auto min = std::numeric_limits<int32_t>::min();
248 constexpr auto max = std::numeric_limits<int32_t>::max();
249 const auto width = sizeof(int32_t) * 8;
250
251 const int32_t threshold = ((1 << (width - 1 - exponent)) - 1);
252 bool pos_mask = v > threshold;
253 bool neg_mask = v < -threshold;
254 int32_t result = v << exponent;
255 result = pos_mask ? max : result;
256 result = neg_mask ? min : result;
257 return result;
258 }
259}
Sang-Hoon Park0d008f72020-03-13 14:56:05 +0000260
261void get_invsqrt_quantized_multiplier_exp(int32_t input, int32_t reverse_shift, int32_t &output_inv_sqrt, int32_t &output_shift)
262{
263 ARM_COMPUTE_ERROR_ON(input < 0);
264
265 if(input <= 1)
266 {
267 // dealing the inputs (0 and 1) separately to avoid overflow
268 output_inv_sqrt = std::numeric_limits<std::int32_t>::max();
269 output_shift = 0;
270 return;
271 }
272
273 // prepare input for fixed point operation and compute shift value
274 output_shift = 11;
275 while(input >= (1 << 29))
276 {
277 input /= 4;
278 ++output_shift;
279 }
280
281 const uint32_t max_left_shift_bits = __builtin_clz(static_cast<uint32_t>(input)) - 1;
282 const uint32_t max_left_shift_bits_pairs = max_left_shift_bits / 2;
283 const uint32_t left_shift_bit_pairs = max_left_shift_bits_pairs - 1;
284 output_shift -= left_shift_bit_pairs;
285 input <<= 2 * left_shift_bit_pairs;
286
287 // Calculation in fixed point domain with 3 integer bits.
288 using FixedPointRawType = int32_t;
289 constexpr uint32_t fixedpoint_position = 3;
290 constexpr uint32_t fixedpoint_int_position = sizeof(FixedPointRawType) * 8 - 1 - fixedpoint_position;
291 using FixedPoint3 = FixedPointRawType;
292 using FixedPoint0 = FixedPointRawType;
293
294 // fixed point representation of input divided by 2 and 1.5 for Newton-Raphson iteration
295 const FixedPoint3 fixedpoint_input = (input >> 1);
296 const FixedPoint3 fixedpoint_half_input = rounding_divide_by_pow2(fixedpoint_input, 1);
297 const FixedPoint3 fixedpoint_half_three = (0x1 << fixedpoint_int_position) + (0x1 << (fixedpoint_int_position - 1));
298
299 // initial guess (1) in fixed point representation
300 FixedPoint3 x = 0x1 << fixedpoint_int_position;
301
302 // multiplication of two fixed point numbers, defined for readability
303 auto fixed_point_mul = [](FixedPointRawType a, FixedPointRawType b) -> FixedPointRawType
304 {
305 return saturating_rounding_doubling_highmul(a, b);
306 };
307
308 // rescaling of fixed point to have dst_bit integer bits, defined for readability
309 auto fixed_point_rescale = [](FixedPointRawType a, uint32_t src_bit, uint32_t dst_bit) -> FixedPointRawType
310 {
311 const uint32_t exponent = src_bit - dst_bit;
312 return saturating_rounding_multiply_by_pow2(exponent, a);
313 };
314
315 // 5 iterations of Newton-Raphson method for inverse square root - 1.5 * x_n = input/2 * (x_n)^3
316 constexpr int32_t num_iteration = 5;
317 for(int32_t i = 0; i < num_iteration; ++i)
318 {
319 const auto x3 = fixed_point_rescale(fixed_point_mul(fixed_point_mul(x, x), x), 9, fixedpoint_position);
320 x = fixed_point_rescale(fixed_point_mul(fixedpoint_half_three, x) - fixed_point_mul(fixedpoint_half_input, x3), 6, fixedpoint_position);
321 }
322
323 // fixed point representation of sqrt(1/2)
324 const FixedPoint0 fixedpoint_half_sqrt_2 = 1518500250;
325 x = fixed_point_mul(fixedpoint_half_sqrt_2, x);
326 output_inv_sqrt = x;
327 if(output_shift < 0)
328 {
329 output_inv_sqrt <<= -output_shift;
330 output_shift = 0;
331 }
332 // convert right shift to left shift
333 output_shift *= reverse_shift;
334}
Michele Di Giorgiod87a7b22019-09-10 10:42:27 +0100335} // quantization
336} // arm_compute