blob: 2b304b802278283cd079fe06a36ef72160e88f71 [file] [log] [blame]
Pablo Telloeb82fd22018-02-23 13:43:50 +00001/*
2 * Copyright (c) 2018 ARM Limited.
3 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24#ifndef __ARM_ASSEMBLY_HELPER_H__
25#define __ARM_ASSEMBLY_HELPER_H__
26
27#include "arm_compute/core/ITensor.h"
28#include "support/ToolchainSupport.h"
29
30#include "arm_compute/core/Helpers.h"
31#include "arm_compute/core/IAccessWindow.h"
32#include "arm_compute/core/Log.h"
33#include "arm_compute/core/NEON/kernels/assembly/NEGEMMAssemblyWrapper.h"
34#include "arm_compute/core/NEON/kernels/assembly/arm_gemm.hpp"
35#include "arm_compute/core/TensorInfo.h"
36#include "arm_compute/core/Types.h"
37#include "arm_compute/core/Validate.h"
38#include "arm_compute/core/Window.h"
39#include "arm_compute/runtime/NEON/NEScheduler.h"
40
41namespace arm_compute
42{
43template <typename TypeInput, typename TypeOutput>
44class AssemblyKernelGlue final
45{
46public:
47 using TypeOperator = TypeInput;
48 using TypeResult = TypeOutput;
49 AssemblyKernelGlue()
50 : _gemm_kernel_asm(nullptr), _optimised_kernel(nullptr), _a(nullptr), _b(nullptr), _d(nullptr)
51 {
52 }
53 using AssemblyGemm = arm_gemm::GemmCommon<TypeInput, TypeOutput>;
54
55 const AssemblyKernelGlue<TypeInput, TypeOutput> &operator=(const AssemblyKernelGlue<TypeInput, TypeOutput> &) = delete;
56 AssemblyKernelGlue(const AssemblyKernelGlue<TypeInput, TypeOutput> &) = delete;
57
58 std::unique_ptr<AssemblyGemm> _gemm_kernel_asm;
59 std::unique_ptr<INEKernel> _optimised_kernel;
60 const ITensor *_a;
61 const ITensor *_b;
62 ITensor *_d;
63
64 /** Configures the arrays pointers and strides in the assembly kernel and executes the assembly kernel.
65 * The call to set_arrays is needed to deal with the input sizes containing batches (dims > 2)
66 */
67 inline void run()
68 {
69 const int lda = _a->info()->strides_in_bytes().y() / sizeof(TypeInput);
70 const int ldb = _b->info()->strides_in_bytes().y() / sizeof(TypeInput);
71 const int ldd = _d->info()->strides_in_bytes().y() / sizeof(TypeOutput);
72
73 // Configure kernel window
74 Window window = calculate_max_window(*_d->info());
75 const auto in1_ptr = reinterpret_cast<const TypeInput *>(_b->buffer());
76
77 // Only iterate over batches
78 Window win(window);
79 win.set(0, Window::Dimension(0, 1, 1));
80 win.set(1, Window::Dimension(0, 1, 1));
81 Iterator in0(_a, window);
82 Iterator out(_d, window);
83 execute_window_loop(win, [&](const Coordinates &)
84 {
85 const auto in0_ptr = reinterpret_cast<const TypeInput *>(in0.ptr());
86 auto out_ptr = reinterpret_cast<TypeOutput *>(out.ptr());
87 _gemm_kernel_asm->set_arrays(in0_ptr, lda, in1_ptr, ldb, out_ptr, ldd);
88 NEScheduler::get().schedule(_optimised_kernel.get(), Window::DimX);
89 },
90 in0, out);
91 }
92};
93
94using AssemblyKernelGlueF32 = AssemblyKernelGlue<float, float>;
95using AssemblyKernelGlueU8U32 = AssemblyKernelGlue<uint8_t, uint32_t>;
96using AssemblyKernelGlueS8S32 = AssemblyKernelGlue<int8_t, int32_t>;
97
98inline void allocate_workspace(size_t workspace_size, Tensor &workspace, MemoryGroup &memory_group, size_t alignment, unsigned int num_threads)
99{
100 ARM_COMPUTE_ERROR_ON_MSG(workspace_size == 0, "size cannot be 0");
101 workspace.allocator()->init(TensorInfo(TensorShape{ (workspace_size + alignment - 1) * num_threads }, 1, DataType::S8));
102 workspace.allocator()->allocate();
103}
104
105template <typename T>
106std::unique_ptr<NEGEMMAssemblyWrapper<T>> create_wrapper_kernel(const ITensor *a, const ITensor *b, const ITensor *c, ITensor *d, float alpha, float beta)
107{
108 // rework this function, why are we checking data type and other things here ? should we create another function can_run_optimised_kernel() ?
109#if defined(__arm__)
110 if(NEScheduler::get().cpu_info().CPU == CPUTarget::ARMV7 && a->info()->data_type() == DataType::F32 && (c == nullptr || beta == 0.f))
111 {
112 return support::cpp14::make_unique<NEGEMMAssemblyWrapper<T>>();
113 }
114#elif defined(__aarch64__)
115 if(NEScheduler::get().cpu_info().CPU >= CPUTarget::ARMV8 && a->info()->data_type() == DataType::F32 && (c == nullptr || beta == 0.f))
116 {
117 return support::cpp14::make_unique<NEGEMMAssemblyWrapper<T>>();
118 }
119 else if(a->info()->data_type() == DataType::F16 && (c == nullptr || beta == 0.f))
120 {
121#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
122 return support::cpp14::make_unique<NEGEMMAssemblyWrapper<T>>();
123#else /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
124 ARM_COMPUTE_ERROR("Recompile the library with arch=arm64-v8.2-a to enable support for FP16.");
125#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
126 }
127#endif /* defined(__arm__) || defined(__aarch64__) */
128 return nullptr;
129}
130
131template <typename T>
132inline bool setup_assembly_kernel(const ITensor *a, const ITensor *b, const ITensor *c, ITensor *d, float alpha, float beta,
133 Tensor &workspace, MemoryGroup &memory_group, T &asm_glue)
134{
135 const ::CPUInfo *ci = get_CPUInfo();
136 const int M = d->info()->tensor_shape().y();
137 const int N = d->info()->tensor_shape().x();
138 const int K = a->info()->tensor_shape().x();
139 unsigned int num_threads = NEScheduler::get().num_threads();
140 // unique_ptr to a Gemm object
141 std::unique_ptr<typename T::AssemblyGemm> asm_gemm(arm_gemm::gemm<typename T::TypeOperator, typename T::TypeResult>(*ci, M, N, K, false, false, alpha, beta, num_threads,
142 false));
143
144 // arm_compute wrapper for the Gemm object (see above)
145 std::unique_ptr<NEGEMMAssemblyWrapper<typename T::AssemblyGemm>> acl_gemm_wrapper = create_wrapper_kernel<typename T::AssemblyGemm>(a, b, c, d, alpha, beta);
146 if(acl_gemm_wrapper != nullptr && asm_gemm != nullptr)
147 {
148 acl_gemm_wrapper->configure(asm_gemm.get());
149 const size_t workspace_size = asm_gemm->get_working_size();
150 if(workspace_size)
151 {
152 // Allocate workspace
153 allocate_workspace(workspace_size, workspace, memory_group, 4096, num_threads);
154 asm_gemm->set_working_space(reinterpret_cast<typename T::TypeResult *>(workspace.buffer()));
155 }
156 const unsigned int window_size = asm_gemm->get_window_size();
157 if(window_size < num_threads)
158 {
159 num_threads = window_size;
160 asm_gemm->set_nthreads(num_threads);
161 }
162 asm_glue._gemm_kernel_asm = std::move(asm_gemm);
163 asm_glue._optimised_kernel = std::move(acl_gemm_wrapper);
164 // We need to setup the ptrs in the run() method
165 asm_glue._a = a;
166 asm_glue._b = b;
167 asm_glue._d = d;
168 return true;
169 }
170 return false;
171}
172}
173#endif /* __ARM_ASSEMBLY_HELPER_H__ */