blob: ad95207fb34c4c24eb7b9861ded0f27de4431821 [file] [log] [blame]
Michele Di Giorgiod556d7b2020-10-27 10:56:31 +00001/*
2 * Copyright (c) 2021 Arm Limited.
3 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24
25#pragma once
26
27#include "pool_common.hpp"
28#include "utils.hpp"
29
30#include "arm_compute/core/Types.h"
31#include <limits>
32
33namespace arm_conv {
34namespace pooling {
35
36template <class strategy>
37class PoolingDepthfirst : public PoolingCommon<typename strategy::operand_type, typename strategy::return_type>
38{
39 using TInput = typename strategy::operand_type;
40 using TOutput = typename strategy::return_type;
41
42 const PoolingArgs m_args; // Copy of arguments
43
44 constexpr static unsigned int input_rows(void)
45 {
46 return (strategy::out_rows() - 1)*strategy::stride_rows() + strategy::pool_rows();
47 }
48
49 constexpr static unsigned int input_cols(void)
50 {
51 return (strategy::out_cols() - 1)*strategy::stride_cols() + strategy::pool_cols();
52 }
53
54 size_t sizeof_input_buffer(void) const
55 {
56 return sizeof(TInput) * m_args.n_channels;
57 }
58
59 size_t sizeof_output_buffer(void) const
60 {
61 return sizeof(TOutput) * m_args.n_channels;
62 }
63
64 public:
65 PoolingDepthfirst(const PoolingArgs &args) : m_args(args)
66 {
67 }
68
69 PoolingDepthfirst(PoolingDepthfirst &) = delete;
70 PoolingDepthfirst &operator=(PoolingDepthfirst &) = delete;
71
72 size_t get_working_size(unsigned int num_threads) const override
73 {
74 // We require a channel-length vector of input padding values
75 // (to be shared amongst all threads) and (for each thread) a
76 // channel-length vector in which to dump surplus output.
77 return sizeof_input_buffer() + num_threads * sizeof_output_buffer();
78 }
79
80 void execute(
81 const void *const input,
82 void *const output,
83 void *const working_space,
84 unsigned int thread_id,
85 unsigned int num_threads
86 ) const override
87 {
88 const size_t ld_input_col = m_args.n_channels;
89 const size_t ld_input_row = ld_input_col * m_args.input_cols;
90 const size_t ld_input_batch = ld_input_row * m_args.input_rows;
91 const size_t ld_output_col = ld_input_col;
92 const size_t ld_output_row = ld_output_col * m_args.output_cols;
93 const size_t ld_output_batch = ld_output_row * m_args.output_rows;
94
95 execute(
96 input, ld_input_col, ld_input_row, ld_input_batch,
97 output, ld_output_col, ld_output_row, ld_output_batch,
98 working_space,
99 thread_id, num_threads
100 );
101 }
102
103 void execute(
104 const void *const input,
105 size_t ld_input_col,
106 size_t ld_input_row,
107 size_t ld_input_batch,
108 void *const output,
109 size_t ld_output_col,
110 size_t ld_output_row,
111 size_t ld_output_batch,
112 void *const working_space,
113 unsigned int thread_id,
114 unsigned int num_threads
115 ) const override
116 {
117 execute(
118 m_args.n_batches, m_args.input_rows, m_args.input_cols,
119 m_args.n_channels,
120 input, ld_input_col, ld_input_row, ld_input_batch,
121 m_args.padding,
122 m_args.output_rows, m_args.output_cols,
123 output, ld_output_col, ld_output_row, ld_output_batch,
124 working_space,
125 thread_id, num_threads
126 );
127 }
128
129 void execute(
130 unsigned int batches,
131 unsigned int height,
132 unsigned int width,
133 unsigned int channels,
134 const void *const _input,
135 size_t ld_input_col,
136 size_t ld_input_row,
137 size_t ld_input_batch,
138 const PaddingValues &padding,
139 unsigned int output_height,
140 unsigned int output_width,
141 void *const _output,
142 size_t ld_output_col,
143 size_t ld_output_row,
144 size_t ld_output_batch,
145 void *const _working_space,
146 unsigned int thread_id,
147 unsigned int num_threads
148 ) const override
149 {
150 ARM_COMPUTE_UNUSED(batches, ld_input_batch, ld_output_batch);
151 strategy strat(m_args.cpu_info);
152#ifdef CYCLE_PROFILING
153 arm_gemm::profiler prof;
154#endif // CYCLE_PROFILING
155
156 // Cast input and output pointers into the right types
157 const TInput *const inptr = static_cast<const TInput *>(_input);
158 TOutput *const outptr = static_cast<TOutput *>(_output);
159
160 const unsigned int roundup_output_rows = roundup(output_height, num_threads);
161 const unsigned int rows_per_thread = roundup_output_rows / num_threads;
162 const int start_out_height = static_cast<int>(thread_id * rows_per_thread);
163 const int end_out_height = std::min<int>(output_height, static_cast<int>((thread_id + 1) * rows_per_thread));
164
165 // Create an array for the input pointers
166 const TInput * _inptr_array[input_rows() * input_cols()];
167 const TInput **const inptr_array = _inptr_array;
168
169 // Create an array for the output pointers
170 TOutput * _outptr_array[strategy::out_rows() * strategy::out_cols()];
171 TOutput **const outptr_array = _outptr_array;
172
173 // Allocate portions of the working space
174 uint8_t *const working_space = static_cast<uint8_t *>(_working_space);
175 TOutput *const output_buffer = reinterpret_cast<TOutput *>(working_space + thread_id * sizeof_output_buffer());
176 TInput *const input_buffer = reinterpret_cast<TInput *>(working_space + num_threads * sizeof_output_buffer());
177
178 // Initialise the input buffer
179 for (unsigned int c = 0; c < channels; c++)
180 {
181 TInput &val = input_buffer[c];
182
183 if (strategy::pooling_type() == PoolingType::AVERAGE)
184 {
185 val = static_cast<TInput>(0);
186 }
187 else if (strategy::pooling_type() == PoolingType::MAX)
188 {
189#if defined(__aarch64__)
190 using InputType = typename std::conditional<std::is_same<TInput, __fp16>::value, arm_compute::half, TInput>::type;
191 using limits = std::numeric_limits<InputType>;
192#else // defined(__aarch64__)
193 using limits = std::numeric_limits<TInput>;
194#endif // defined(__aarch64__)
195 if (limits::has_infinity)
196 {
197 val = -limits::infinity();
198 }
199 else
200 {
201 val = limits::min();
202 }
203 }
204 }
205
206 // For each output tile, construct the requisite set of pointers and call
207 // into the kernel.
208 for (unsigned int batch = 0; batch < batches; batch++)
209 {
210 // Get batch pointers
211 const auto inptr_batch = inptr + batch * ld_input_batch;
212 const auto outptr_batch = outptr + batch * ld_output_batch;
213
214 for (int start_out_i = start_out_height;
215 start_out_i < end_out_height;
216 start_out_i += static_cast<int>(strategy::out_rows()))
217 {
218 const int end_out_i = start_out_i + strategy::out_rows();
219 const int start_in_i = start_out_i * strategy::stride_rows() - padding.top;
220 const int end_in_i = start_in_i + input_rows();
221
222 // Compute top/bottom padding - TODO Is this right for average pooling?
223 const auto pad_top = static_cast<unsigned int>(-std::min(start_in_i, 0));
224 const auto pad_bottom = static_cast<unsigned int>(-std::min(static_cast<int>(height) - end_in_i, 0));
225 const unsigned int valid_output_rows = std::min(
226 end_out_i - start_out_i,
227 static_cast<int>(end_out_height) - start_out_i
228 );
229
230 // Fill the input pointer array with padding values
231 for (auto index = 0u; index < input_rows() * input_cols(); index++)
232 {
233 inptr_array[index] = input_buffer;
234 }
235
236 for (int start_out_j = 0, start_in_j = -padding.left;
237 start_out_j < static_cast<int>(output_width);
238 start_out_j += static_cast<int>(strategy::out_cols()),
239 start_in_j += static_cast<int>(strategy::out_cols()) * strategy::stride_cols())
240 {
241 const int end_out_j = start_out_j + strategy::out_cols();
242 const int end_in_j = start_in_j + input_cols();
243
244 // Compute left/right padding - TODO Is this right for average pooling?
245 const auto pad_left = static_cast<unsigned int>(-std::min(start_in_j, 0));
246 const auto pad_right = static_cast<unsigned int>(-std::min(static_cast<int>(width) - end_in_j, 0));
247
248 const unsigned int valid_output_cols = std::min(
249 end_out_j - start_out_j,
250 static_cast<int>(output_width) - start_out_j
251 );
252
253 // Construct the input pointer array - fill the array with pointers to
254 // the input buffer and then fill in the required values.
255 for (auto i = pad_top; i < input_rows() - pad_bottom; i++)
256 {
257 // Can skip over the left padding because we will have either the
258 // same or less than the previous tile.
259 unsigned int j = pad_left;
260 const TInput *colptr = inptr_batch + (start_in_i + i) * ld_input_row + (start_in_j + j) * ld_input_col;
261 const TInput **ptrs = inptr_array + i * input_cols() + j;
262 for (; j < input_cols() - pad_right; j++)
263 {
264 *(ptrs++) = colptr;
265 colptr += ld_input_col;
266 }
267 for (; j < input_cols(); j++)
268 {
269 *(ptrs++) = input_buffer;
270 }
271 }
272
273 // Construct the output pointer array.
274 TOutput **outptr_pos = outptr_array;
275 for (auto i = 0u; i < valid_output_rows; i++)
276 {
277 unsigned int j = 0u;
278 TOutput *colptr = outptr_batch + (start_out_i + i) * ld_output_row + start_out_j * ld_output_col;
279 for (; j < valid_output_cols; j++)
280 {
281 *(outptr_pos++) = colptr;
282 colptr += ld_output_col;
283 }
284 for (; j < strategy::out_cols(); j++)
285 {
286 *(outptr_pos++) = output_buffer;
287 }
288 }
289 for (auto i = valid_output_rows; i < strategy::out_rows(); i++)
290 {
291 for (auto j = 0u; j < strategy::out_cols(); j++)
292 {
293 *(outptr_pos++) = output_buffer;
294 }
295 }
296
297#ifdef CYCLE_PROFILING
298 // TODO Work number
299 auto p = prof.ScopedProfiler(PROFILE_KERNEL, (unsigned long)(strategy::out_rows() * strategy::out_cols() * strategy::pool_rows() * strategy::pool_cols()));
300#endif
301 strat.kernel(
302 channels, inptr_array, outptr_array,
303 m_args.exclude_padding, pad_left, pad_top, pad_right, pad_bottom
304 );
305 }
306 }
307 }
308 }
309};
310
311} // namespace pooling
312} // namespace arm_conv