blob: 6079644935cfd1bcd57620d3349dc345e0de5662 [file] [log] [blame]
Georgios Pinitas856f66e2021-04-22 21:13:21 +01001/*
2 * Copyright (c) 2017-2021 Arm Limited.
3 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24#include "src/core/gpu/cl/kernels/ClGemmMatrixMultiplyKernel.h"
25
26#include "arm_compute/core/CL/CLHelpers.h"
27#include "arm_compute/core/CL/CLKernelLibrary.h"
28#include "arm_compute/core/CL/ICLTensor.h"
29#include "arm_compute/core/CL/OpenCL.h"
30#include "arm_compute/core/Helpers.h"
31#include "arm_compute/core/TensorInfo.h"
32#include "arm_compute/core/Utils.h"
33#include "arm_compute/core/utils/misc/ShapeCalculator.h"
34#include "src/core/AccessWindowStatic.h"
35#include "src/core/CL/CLValidate.h"
36#include "src/core/helpers/AutoConfiguration.h"
37#include "src/core/helpers/WindowHelpers.h"
38#include "src/core/utils/helpers/float_ops.h"
39#include "support/Cast.h"
40#include "support/StringSupport.h"
41
42namespace arm_compute
43{
44namespace opencl
45{
46namespace kernels
47{
48namespace
49{
50using ElementsProcessed = Steps;
51
52inline Status validate_arguments(const ITensorInfo *src0, const ITensorInfo *src1, const ITensorInfo *src2, const ITensorInfo *dst, float beta,
53 bool is_interleaved_transposed, const GEMMReshapeInfo &reshape_info, bool fp_mixed_precision)
54{
55 ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src0, src1, dst);
56 ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(src0);
57 ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src0, 1, DataType::F16, DataType::F32);
58 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src0, src1);
59 ARM_COMPUTE_RETURN_ERROR_ON_MSG((fp_mixed_precision && (src0->data_type() != DataType::F16)), "Mixed precision floating point is supported only for F16 data");
60 ARM_COMPUTE_RETURN_ERROR_ON_MSG(src0->num_dimensions() > 4, "The number of dimensions for the matrix A must be <= 4");
61 ARM_COMPUTE_RETURN_ERROR_ON_MSG(src1->num_dimensions() > 3, "The number of dimensions for the matrix B must be <= 3");
62 ARM_COMPUTE_RETURN_ERROR_ON_MSG(is_interleaved_transposed && reshape_info.reinterpret_input_as_3d(), "The input tensor cannot be reinterpreted as 3D if is_interleaved_transposed is true");
63 ARM_COMPUTE_RETURN_ERROR_ON_MSG(src1->num_dimensions() > 2 && reshape_info.reinterpret_input_as_3d(), "The src1 tensor cannot have more than 2 dimensions if src0 has to be reinterpreted as 3D");
64 ARM_COMPUTE_RETURN_ERROR_ON_MSG((reshape_info.reinterpret_input_as_3d() || reshape_info.depth_output_gemm3d() != 0) && (src2 != nullptr)
65 && (!reshape_info.broadcast_bias()),
66 "Bias addition only supported with broadcast mode in case the input or dst has to be reinterpreted as 3D");
67
68 if(!is_interleaved_transposed)
69 {
70 ARM_COMPUTE_RETURN_ERROR_ON(src0->dimension(0) != src1->dimension(1));
71
72 if(src2 != nullptr && !(helpers::float_ops::is_zero(beta)))
73 {
74 const unsigned int m = reshape_info.reinterpret_input_as_3d() ? src0->dimension(1) * src0->dimension(2) : src0->dimension(1);
75 const unsigned int n = src1->dimension(0);
76 const unsigned int src2_dim0 = src2->dimension(0);
77 const unsigned int src2_dim1 = src2->dimension(1);
78
79 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src2, src1);
80 if(reshape_info.broadcast_bias())
81 {
82 ARM_COMPUTE_RETURN_ERROR_ON_MSG((src2_dim1 != 1 || src2_dim0 != n), "Incorrect dimension of bias matrix which is to be broadcasted");
83 }
84 else
85 {
86 ARM_COMPUTE_RETURN_ERROR_ON_MSG((src2_dim0 != n || src2_dim1 != m), "Incorrect dimension of bias matrix");
87 }
88 }
89 }
90 else
91 {
92 GEMMRHSMatrixInfo rhs_info;
93 GEMMLHSMatrixInfo lhs_info;
94 const auto m = static_cast<unsigned int>(reshape_info.m());
95 const auto n = static_cast<unsigned int>(reshape_info.n());
96 const int k = reshape_info.k();
97 const int mult_transpose1xW_width = reshape_info.mult_transpose1xW_width();
98 const int mult_interleave4x4_height = reshape_info.mult_interleave4x4_height();
99 rhs_info.n0 = max_cl_vector_width / src1->element_size();
100 rhs_info.k0 = 1;
101 rhs_info.h0 = mult_transpose1xW_width;
102 rhs_info.interleave = false;
103 rhs_info.transpose = false;
104 lhs_info.m0 = 4;
105 lhs_info.k0 = 4;
106 lhs_info.v0 = mult_interleave4x4_height;
107 lhs_info.interleave = true;
108 lhs_info.transpose = true;
109
110 TensorShape tensor_shape0{ src0->tensor_shape() };
111 tensor_shape0.set(0, k);
112 tensor_shape0.set(1, m);
113
114 TensorShape tensor_shape1{ src1->tensor_shape() };
115 tensor_shape1.set(0, n);
116 tensor_shape1.set(1, k);
117
118 const TensorInfo tensor_info0 = src0->clone()->set_tensor_shape(tensor_shape0);
119 const TensorInfo tensor_info1 = src1->clone()->set_tensor_shape(tensor_shape1);
120
121 const TensorInfo tensor_info_reshaped0 = src0->clone()->set_tensor_shape(misc::shape_calculator::compute_lhs_reshaped_shape(tensor_info0, lhs_info));
122 const TensorInfo tensor_info_reshaped1 = src1->clone()->set_tensor_shape(misc::shape_calculator::compute_rhs_reshaped_shape(tensor_info1, rhs_info));
123
124 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(src0, &tensor_info_reshaped0);
125 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(src1, &tensor_info_reshaped1);
126
127 if(src2 != nullptr && !(helpers::float_ops::is_zero(beta)))
128 {
129 const unsigned int src2_dim0 = src2->dimension(0);
130 const unsigned int src2_dim1 = src2->dimension(1);
131
132 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src2, src1);
133 if(reshape_info.broadcast_bias())
134 {
135 ARM_COMPUTE_RETURN_ERROR_ON_MSG((src2_dim1 != 1 || src2_dim0 != n), "Incorrect dimension of bias matrix which is to be broadcasted");
136 }
137 else
138 {
139 ARM_COMPUTE_RETURN_ERROR_ON_MSG((src2_dim0 != n || src2_dim1 != m), "Incorrect dimension of bias matrix");
140 }
141 }
142 }
143
144 if(dst->total_size() != 0)
145 {
146 const TensorInfo tensor_info_dst = dst->clone()->set_tensor_shape(misc::shape_calculator::compute_mm_shape(*src0, *src1, is_interleaved_transposed, reshape_info));
147 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(dst, &tensor_info_dst);
148 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src0, dst);
149 }
150
151 return Status{};
152}
153
154inline std::pair<Status, Window> validate_and_configure_window(ITensorInfo *src0, ITensorInfo *src1, ITensorInfo *src2, ITensorInfo *dst,
155 float beta, bool is_interleaved_transposed, const GEMMReshapeInfo &reshape_info, GPUTarget gpu_target,
156 ElementsProcessed &num_elements_processed)
157{
158 ARM_COMPUTE_UNUSED(beta);
159 bool window_changed = false;
160 Window win{};
161 Window win_out{};
162
163 const DataType data_type = src0->data_type();
164 unsigned int &num_elems_processed_per_iteration_x = num_elements_processed[0];
165 unsigned int &num_elems_processed_per_iteration_y = num_elements_processed[1];
166 bool reinterpret_input_as_3d = reshape_info.reinterpret_input_as_3d();
167 bool reinterpret_output_as_3d = (reshape_info.depth_output_gemm3d() != 0);
168
169 // In case both input and dst have to be reinterpreted as 3D tensors,
170 // force reinterpret_input_as_3d and reinterpret_output_as_3d to be false.
171 if(reinterpret_input_as_3d == reinterpret_output_as_3d)
172 {
173 reinterpret_input_as_3d = false;
174 reinterpret_output_as_3d = false;
175 }
176
177 // dst tensor auto inizialitation if not yet initialized
178 auto_init_if_empty(*dst, src0->clone()->set_tensor_shape(misc::shape_calculator::compute_mm_shape(*src0, *src1, is_interleaved_transposed, reshape_info)));
179
180 TensorInfo tmp_info(*dst);
181
182 if(reinterpret_output_as_3d)
183 {
184 // Since the dst tensor has to be reinterpreted as 3D and the execute window is based on a 2D GEMM,
185 // the window needs to be constructed on the 2D collapsed version of the tensor
186 TensorShape tmp_shape(dst->tensor_shape());
187 tmp_shape.collapse(2U, 1U);
188 tmp_info.set_tensor_shape(tmp_shape);
189 }
190
191 if(is_interleaved_transposed)
192 {
193 // reinterpret_input_as_3d is not supported if is_interleaved_transposed is set
194 ARM_COMPUTE_ERROR_ON(reshape_info.reinterpret_input_as_3d());
195
196 // Configure kernel window
197 num_elems_processed_per_iteration_x = max_cl_vector_width / data_size_from_type(data_type);
198 num_elems_processed_per_iteration_y = 4;
199
200 win = calculate_max_window(tmp_info, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y));
201 if(src2 != nullptr)
202 {
203 const int bias_processed_per_iteration_x = num_elems_processed_per_iteration_x;
204
205 const int bias_processed_per_iteration_y = reshape_info.broadcast_bias() ? 1 : num_elems_processed_per_iteration_y;
206
207 AccessWindowStatic src2_access(src2, 0, 0,
208 ceil_to_multiple(src2->dimension(0), bias_processed_per_iteration_x),
209 ceil_to_multiple(src2->dimension(1), bias_processed_per_iteration_y));
210
211 window_changed = update_window_and_padding(win, src2_access); // window used by the execute_window_loop
212 }
213 }
214 else // The input tensors have not been reshaped
215 {
216 // Special case for 1xN, 2xN, 3xN and 4xN src0 tensor. num_elems_processed_per_iteration_x is set up for the default case.
217 num_elems_processed_per_iteration_x = max_cl_vector_width / data_size_from_type(data_type);
218 num_elems_processed_per_iteration_y = std::min(static_cast<int>(dst->dimension(1)), 4);
219
220 // Create kernels according to the architecture, data type and input size.
221 GPUTarget arch_target = get_arch_from_target(gpu_target);
222 if(arch_target == GPUTarget::BIFROST && data_type == DataType::F32)
223 {
224 num_elems_processed_per_iteration_x = (src1->dimension(0) <= 1000 && src0->num_dimensions() == 1) ? 2 : 4;
225 }
226
227 // Configure window
228 win = calculate_max_window(tmp_info, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y));
229 win_out = calculate_max_window(*dst, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y));
230 AccessWindowStatic src0_access(src0, 0, 0, src0->dimension(0), src0->dimension(1));
231 AccessWindowStatic src1_access(src1, 0, 0, ceil_to_multiple(src1->dimension(0), num_elems_processed_per_iteration_x), src1->dimension(1));
232 AccessWindowStatic dst_access(dst, 0, 0,
233 dst->dimension(0),
234 dst->dimension(1));
235
236 if(src2 != nullptr)
237 {
238 const int bias_processed_per_iteration_x = num_elems_processed_per_iteration_x;
239
240 AccessWindowStatic src2_access(src2, 0, 0,
241 ceil_to_multiple(src2->dimension(0), bias_processed_per_iteration_x),
242 src2->dimension(1));
243
244 window_changed = update_window_and_padding(win, src0_access, src1_access, src2_access) || // window used by the execute_window_loop
245 update_window_and_padding(win_out, dst_access); // window used to update the padding requirements of dst tensor
246 }
247 else
248 {
249 window_changed = update_window_and_padding(win, src0_access, src1_access) || // window used by the execute_window_loop
250 update_window_and_padding(win_out, dst_access); // window used to update the padding requirements of dst tensor
251 }
252 }
253
254 // Collapse along the Z direction
255 // This collapse needs to be here in order to tune the Z dimension of LWS
256 Window collapsed = win;
257 const unsigned int dimension_to_collapse = std::min(static_cast<unsigned int>(dst->num_dimensions()), 2u);
258 collapsed = win.collapse(win, dimension_to_collapse);
259
260 Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
261 return std::make_pair(err, collapsed);
262}
263} // namespace
264
Giorgio Arena4a95bba2021-06-28 11:00:27 +0100265ClGemmMatrixMultiplyKernel::ClGemmMatrixMultiplyKernel()
266{
267 _type = CLKernelType::GEMM;
268}
269
Georgios Pinitas856f66e2021-04-22 21:13:21 +0100270void ClGemmMatrixMultiplyKernel::configure(const CLCompileContext &compile_context, ITensorInfo *src0, ITensorInfo *src1, ITensorInfo *src2, ITensorInfo *dst, float alpha,
271 float beta,
272 bool is_interleaved_transposed, const GEMMReshapeInfo &reshape_info, bool fp_mixed_precision, const ActivationLayerInfo &activation_info)
273{
274 ARM_COMPUTE_ERROR_ON_NULLPTR(src0, src1, dst);
275
276 // Perform validate step
277 ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(src0, src1, src2, dst, beta,
278 is_interleaved_transposed, reshape_info, fp_mixed_precision));
279
280 auto padding_info = is_interleaved_transposed ? get_padding_info({ src0, src1, dst }) : get_padding_info({ src0, dst });
281
282 _reinterpret_input_as_3d = reshape_info.reinterpret_input_as_3d();
283 _reinterpret_output_as_3d = (reshape_info.depth_output_gemm3d() != 0);
284 _add_bias = src2 != nullptr;
285
286 // In case both input and dst have to be reinterpreted as 3D tensors,
287 // force reinterpret_input_as_3d and reinterpret_output_as_3d to be false.
288 if(_reinterpret_input_as_3d == _reinterpret_output_as_3d)
289 {
290 _reinterpret_input_as_3d = false;
291 _reinterpret_output_as_3d = false;
292 }
293
294 // Check if we need to slide the matrix B
295 const unsigned int num_dimensions_src0 = _reinterpret_input_as_3d ? src0->num_dimensions() - 1 : src0->num_dimensions();
296
297 _slide_matrix_b = (src1->num_dimensions() >= num_dimensions_src0);
298
299 const DataType data_type = src0->data_type();
300
301 // Get target architecture
302 GPUTarget gpu_target = get_target();
303
304 ElementsProcessed num_elements_processed{};
305
306 // Configure kernel window
307 auto win_config = validate_and_configure_window(src0, src1, src2, dst, beta, is_interleaved_transposed, reshape_info,
308 gpu_target, num_elements_processed);
309 ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
310 ICLKernel::configure_internal(win_config.second);
311
312 // If _reinterpret_input_as_3d = _reinterpret_output_as_3d = true, both will be turned off (false)
313 // in which case we will dispatch a batched-GEMM to reduce the complexity of the address calculation within the OpenCL kernel.
314 // This means that the actual m used by the kernel is given by dst->dimension(1)
315 const unsigned int internal_m = _reinterpret_output_as_3d ? dst->dimension(1) * dst->dimension(2) : dst->dimension(1);
316 const unsigned int n = dst->dimension(0);
317
318 const unsigned int h_gemm_3d = _reinterpret_output_as_3d ? dst->dimension(1) : src0->dimension(1);
319 const unsigned int d_gemm_3d = _reinterpret_output_as_3d ? dst->dimension(2) : src0->dimension(2);
320
321 const unsigned int m0 = num_elements_processed.y();
322 const unsigned int n0 = num_elements_processed.x();
323
324 // Calculate partial (store instead of load) M0 and partial N0 for the partial blocks at the end of a row/column if any. This is to avoid padding.
325 const unsigned int partial_store_m0 = internal_m % m0;
326 const unsigned int partial_store_n0 = n % n0;
327
328 // Create build options
329 CLBuildOptions build_opts;
330
331 build_opts.add_option_if(!(helpers::float_ops::is_one(alpha)), "-DALPHA=" + float_to_string_with_full_precision(alpha));
332 build_opts.add_option_if(src2 != nullptr, "-DBETA=" + float_to_string_with_full_precision(beta));
333 build_opts.add_option_if(helpers::float_ops::is_one(beta), "-DUNIT_BETA");
334 build_opts.add_option_if(reshape_info.broadcast_bias(), "-DBROADCAST_BIAS");
335 build_opts.add_option_if(_reinterpret_input_as_3d, "-DREINTERPRET_INPUT_AS_3D");
336 build_opts.add_option_if(_reinterpret_output_as_3d, "-DREINTERPRET_OUTPUT_AS_3D");
337 build_opts.add_option_if(_reinterpret_input_as_3d || _reinterpret_output_as_3d, "-DHEIGHT_GEMM3D=" + support::cpp11::to_string(h_gemm_3d));
338 build_opts.add_option_if(_reinterpret_input_as_3d || _reinterpret_output_as_3d, "-DDEPTH_GEMM3D=" + support::cpp11::to_string(d_gemm_3d));
339 build_opts.add_option_if(!_slide_matrix_b, "-DMATRIX_B_DEPTH=" + support::cpp11::to_string(src1->dimension(2)));
340 build_opts.add_option_if(activation_info.enabled(), "-DACTIVATION_TYPE=" + lower_string(string_from_activation_func(activation_info.activation())));
341 build_opts.add_option_if(activation_info.enabled(), "-DA_VAL=" + float_to_string_with_full_precision(activation_info.a()));
342 build_opts.add_option_if(activation_info.enabled(), "-DB_VAL=" + float_to_string_with_full_precision(activation_info.b()));
343 build_opts.add_option("-DIN1_DIM_X=" + support::cpp11::to_string(src1->dimension(0)));
344
345 const bool is_bifrost = get_arch_from_target(gpu_target) == GPUTarget::BIFROST;
346
347 std::string kernel_name;
348 if(is_interleaved_transposed)
349 {
350 const int mult_transpose1xW_width = reshape_info.mult_transpose1xW_width();
351 const int mult_interleave4x4_height = reshape_info.mult_interleave4x4_height();
352
353 build_opts.add_option("-DM=" + support::cpp11::to_string(internal_m));
354 build_opts.add_option("-DN=" + support::cpp11::to_string(n));
355 build_opts.add_option("-DK=" + support::cpp11::to_string(src1->dimension(0) / (n0 * mult_transpose1xW_width)));
356 build_opts.add_option("-DH0=" + support::cpp11::to_string(mult_transpose1xW_width));
357 build_opts.add_option("-DV0=" + support::cpp11::to_string(mult_interleave4x4_height));
358 build_opts.add_option("-DPARTIAL_STORE_M0=" + support::cpp11::to_string(partial_store_m0));
359 build_opts.add_option("-DPARTIAL_STORE_N0=" + support::cpp11::to_string(partial_store_n0));
360
361 if(is_data_type_float(data_type) && is_bifrost)
362 {
363 kernel_name = "gemm_mm_interleaved_transposed_" + lower_string(string_from_data_type(data_type)) + "_bifrost";
364 }
365 else
366 {
367 kernel_name = "gemm_mm_interleaved_transposed_" + lower_string(string_from_data_type(data_type));
368 if(fp_mixed_precision && data_type == DataType::F16)
369 {
370 // currently wider accumulator is only supported for fp16 kernels.
371 kernel_name += "_acc32";
372 }
373 }
374 }
375 else // The input tensors have not been reshaped
376 {
377 build_opts.add_option("-DN=" + support::cpp11::to_string(n));
378 build_opts.add_option("-DK=" + support::cpp11::to_string(src0->dimension(0)));
379 build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(data_type));
380 build_opts.add_option("-DM0=" + support::cpp11::to_string(m0));
381 build_opts.add_option("-DN0=" + support::cpp11::to_string(n0));
382 build_opts.add_option("-DPARTIAL_STORE_M0=" + support::cpp11::to_string(partial_store_m0));
383 build_opts.add_option("-DPARTIAL_STORE_N0=" + support::cpp11::to_string(partial_store_n0));
384
385 // Create kernels according to the architecture, data type and input size.
386 if(is_data_type_float(data_type) && is_bifrost)
387 {
388 kernel_name = "gemm_mm_floating_point";
389
390 if(src0->num_dimensions() != 1)
391 {
392 kernel_name += "_" + lower_string(string_from_data_type(data_type)) + "_bifrost";
393 if(fp_mixed_precision && data_type == DataType::F16)
394 {
395 // currently wider accumulator is only supported for fp16 kernels.
396 kernel_name += "_acc32";
397 }
398 }
399 else if(src1->dimension(0) <= 1000 && data_type == DataType::F32)
400 {
401 // The first kernel is optimized for the case of 1000 or less dst elements (e.g. FC8 of AlexNet and VGG-16, and
402 // FC1 of Inception v3). The second kernel is optimized for the case of greater than 1000 dst elements (e.g.
403 // FC6 and FC7 of AlexNet and VGG-16).
404 kernel_name += "_" + lower_string(string_from_data_type(data_type)) + "_bifrost_1000";
405 }
406
407 // The work-group size equal to the Bifrost quad size has been proved to be optimal for these kernels
408 // via exhaustive autotuning over a range of representative layer configurations.
409 set_lws_hint(cl::NDRange(4));
410 }
411 else // (MIDGARD and F32) or (F16)
412 {
413 kernel_name = "gemm_mm_floating_point";
414 }
415 }
416 // Create kernel
417 _kernel = create_kernel(compile_context, kernel_name, build_opts.options());
418
419 // Set config_id for enabling LWS tuning
420 _config_id = "gemm_";
421 _config_id += (is_interleaved_transposed ? "reshaped_" : "");
422 _config_id += (_add_bias ? "add_bias_" : "");
423 _config_id += (reshape_info.broadcast_bias() ? "broadcast_bias_" : "");
424 _config_id += (fp_mixed_precision ? "fp_mixed_" : "");
425 _config_id += (_reinterpret_input_as_3d ? "3di_" : "");
426 _config_id += (_reinterpret_output_as_3d ? "3do_" : "");
427 _config_id += lower_string(string_from_data_type(src0->data_type()));
428 _config_id += "_";
429 _config_id += support::cpp11::to_string(dst->dimension(1));
430 _config_id += "_";
431 _config_id += support::cpp11::to_string(dst->dimension(0));
432 _config_id += "_";
433 _config_id += support::cpp11::to_string(dst->dimension(2));
434 _config_id += "_";
435 _config_id += support::cpp11::to_string(dst->dimension(3));
436 _config_id += "_";
437 _config_id += (is_interleaved_transposed ? support::cpp11::to_string(src1->dimension(0)) : support::cpp11::to_string(src1->dimension(1)));
438
439 ARM_COMPUTE_ERROR_ON(has_padding_changed(padding_info));
440}
441
442Status ClGemmMatrixMultiplyKernel::validate(const ITensorInfo *src0, const ITensorInfo *src1, const ITensorInfo *src2, const ITensorInfo *dst, float alpha, float beta,
443 bool is_interleaved_transposed, const GEMMReshapeInfo &reshape_info, GPUTarget gpu_target, bool fp_mixed_precision, const ActivationLayerInfo &activation_info)
444{
445 // Note: num_elements_processed will be set in validate_and_configure_window()
446 ElementsProcessed num_elements_processed{};
447 ARM_COMPUTE_UNUSED(alpha);
448 ARM_COMPUTE_UNUSED(activation_info);
449 ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(src0, src1, src2, dst, beta, is_interleaved_transposed, reshape_info, fp_mixed_precision));
450 ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(src0->clone().get(),
451 src1->clone().get(),
452 (src2 != nullptr) ? src2->clone().get() : nullptr,
453 dst->clone().get(),
454 beta,
455 is_interleaved_transposed,
456 reshape_info,
457 gpu_target,
458 num_elements_processed)
459 .first);
460
461 return Status{};
462}
463
464void ClGemmMatrixMultiplyKernel::run_op(ITensorPack &tensors, const Window &window, cl::CommandQueue &queue)
465{
466 ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
467 ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICLKernel::window(), window);
468
469 const auto src0 = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_SRC_0));
470 const auto src1 = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_SRC_1));
471 const auto src2 = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_SRC_2));
472 auto dst = utils::cast::polymorphic_downcast<ICLTensor *>(tensors.get_tensor(TensorType::ACL_DST));
473
474 ARM_COMPUTE_ERROR_ON_NULLPTR(src0, src1, dst);
475 ARM_COMPUTE_ERROR_ON(_add_bias && src2 == nullptr);
476
477 if(src1->info()->num_dimensions() < 3)
478 {
479 // The stride_z for matrix B must be zero if we do not slice
480 ARM_COMPUTE_ERROR_ON(src1->info()->strides_in_bytes()[3] != 0);
481 }
482
483 Window slice = window.first_slice_window_3D();
484 Window slice_matrix_b = slice;
485
486 slice_matrix_b.set(Window::DimX, Window::Dimension(0, 1, 1));
487 slice_matrix_b.set(Window::DimY, Window::Dimension(0, 1, 1));
488
489 const unsigned int num_arguments_bias = _add_bias ? num_arguments_per_2D_tensor() + 1 : 0;
490
491 if(_reinterpret_input_as_3d)
492 {
493 // Pass bottom paddings to the kernel if the input has to be reinterpreted as 3D tensor
494 const unsigned int idx0 = 3 * num_arguments_per_2D_tensor() + 3 + num_arguments_bias;
495 const unsigned int total_cross_plane_pad = src0->info()->padding().top + src0->info()->padding().bottom;
496 _kernel.setArg<cl_uint>(idx0, static_cast<unsigned int>(total_cross_plane_pad));
497 }
498
499 if(_reinterpret_output_as_3d)
500 {
501 // Pass bottom paddings to the kernel if the dst has to be reinterpreted as 3D tensor
502 const unsigned int idx0 = 3 * num_arguments_per_2D_tensor() + 3 + (_reinterpret_input_as_3d ? 1 : 0) + num_arguments_bias;
503 const unsigned int total_cross_plane_pad = dst->info()->padding().top + dst->info()->padding().bottom;
504 _kernel.setArg<cl_uint>(idx0, static_cast<unsigned int>(total_cross_plane_pad));
505 }
506
507 do
508 {
509 Window slice_b = slice;
510 // Don't slice matrix B along the z dimension if matrix B has just 2 dimensions and matrix A more than 2
511 // This scenario can happen when the matrix multiplication is used to perform a convolution operation
512 if(!_slide_matrix_b)
513 {
514 slice_b = slice_matrix_b;
515 }
516
517 unsigned int idx = 0;
518 add_2D_tensor_argument(idx, src0, slice);
519 add_2D_tensor_argument(idx, src1, slice_b);
520 if(_add_bias)
521 {
522 add_2D_tensor_argument(idx, src2, slice);
523 }
524 add_2D_tensor_argument(idx, dst, slice);
525 _kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(src0->info()->strides_in_bytes()[2]));
526 _kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(src1->info()->strides_in_bytes()[2]));
527 if(_add_bias)
528 {
529 _kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(src2->info()->strides_in_bytes()[2]));
530 }
531 _kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(dst->info()->strides_in_bytes()[2]));
532 enqueue(queue, *this, slice, lws_hint());
533 }
534 while(window.slide_window_slice_3D(slice));
535}
536} // namespace kernels
537} // namespace opencl
538} // namespace arm_compute