blob: ec6719213ca109a4edd5314de0e6be31beb0b319 [file] [log] [blame]
Anthony Barbier6ff3b192017-09-04 18:44:23 +01001/*
2 * Copyright (c) 2017 ARM Limited.
3 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24#include "helpers.h"
25
26/** Calculate the magnitude and phase from horizontal and vertical result of sobel result.
27 *
28 * @note The calculation of gradient uses level 1 normalisation.
29 * @attention The input and output data types need to be passed at compile time using -DDATA_TYPE_IN and -DDATA_TYPE_OUT:
30 * e.g. -DDATA_TYPE_IN=uchar -DDATA_TYPE_OUT=short
31 *
32 * @param[in] src1_ptr Pointer to the source image (Vertical result of Sobel). Supported data types: S16, S32
33 * @param[in] src1_stride_x Stride of the source image in X dimension (in bytes)
34 * @param[in] src1_step_x src1_stride_x * number of elements along X processed per workitem(in bytes)
35 * @param[in] src1_stride_y Stride of the source image in Y dimension (in bytes)
36 * @param[in] src1_step_y src1_stride_y * number of elements along Y processed per workitem(in bytes)
37 * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source image
38 * @param[in] src2_ptr Pointer to the source image (Vertical result of Sobel). Supported data types: S16, S32
39 * @param[in] src2_stride_x Stride of the source image in X dimension (in bytes)
40 * @param[in] src2_step_x src2_stride_x * number of elements along X processed per workitem(in bytes)
41 * @param[in] src2_stride_y Stride of the source image in Y dimension (in bytes)
42 * @param[in] src2_step_y src2_stride_y * number of elements along Y processed per workitem(in bytes)
43 * @param[in] src2_offset_first_element_in_bytes The offset of the first element in the source image
44 * @param[out] grad_ptr Pointer to the gradient output. Supported data types: U16, U32
45 * @param[in] grad_stride_x Stride of the source image in X dimension (in bytes)
46 * @param[in] grad_step_x grad_stride_x * number of elements along X processed per workitem(in bytes)
47 * @param[in] grad_stride_y Stride of the source image in Y dimension (in bytes)
48 * @param[in] grad_step_y grad_stride_y * number of elements along Y processed per workitem(in bytes)
49 * @param[in] grad_offset_first_element_in_bytes The offset of the first element of the output
50 * @param[out] angle_ptr Pointer to the angle output. Supported data types: U8
51 * @param[in] angle_stride_x Stride of the source image in X dimension (in bytes)
52 * @param[in] angle_step_x angle_stride_x * number of elements along X processed per workitem(in bytes)
53 * @param[in] angle_stride_y Stride of the source image in Y dimension (in bytes)
54 * @param[in] angle_step_y angle_stride_y * number of elements along Y processed per workitem(in bytes)
55 * @param[in] angle_offset_first_element_in_bytes The offset of the first element of the output
56 */
57__kernel void combine_gradients_L1(
58 IMAGE_DECLARATION(src1),
59 IMAGE_DECLARATION(src2),
60 IMAGE_DECLARATION(grad),
61 IMAGE_DECLARATION(angle))
62{
63 // Construct images
64 Image src1 = CONVERT_TO_IMAGE_STRUCT(src1);
65 Image src2 = CONVERT_TO_IMAGE_STRUCT(src2);
66 Image grad = CONVERT_TO_IMAGE_STRUCT(grad);
67 Image angle = CONVERT_TO_IMAGE_STRUCT(angle);
68
69 // Load sobel horizontal and vertical values
70 VEC_DATA_TYPE(DATA_TYPE_IN, 4)
71 h = vload4(0, (__global DATA_TYPE_IN *)src1.ptr);
72 VEC_DATA_TYPE(DATA_TYPE_IN, 4)
73 v = vload4(0, (__global DATA_TYPE_IN *)src2.ptr);
74
75 /* Calculate the gradient, using level 1 normalisation method */
76 VEC_DATA_TYPE(DATA_TYPE_OUT, 4)
77 m = CONVERT_SAT((abs(h) + abs(v)), VEC_DATA_TYPE(DATA_TYPE_OUT, 4));
78
79 /* Calculate the angle */
80 float4 p = atan2pi(convert_float4(v), convert_float4(h));
81
82 /* Remap angle to range [0, 256) */
83 p = select(p, p + 2, p < 0.0f) * 128.0f;
84
85 /* Store results */
86 vstore4(m, 0, (__global DATA_TYPE_OUT *)grad.ptr);
87 vstore4(convert_uchar4_sat_rte(p), 0, angle.ptr);
88}
89
90/** Calculate the gradient and angle from horizontal and vertical result of sobel result.
91 *
92 * @note The calculation of gradient uses level 2 normalisation
93 * @attention The input and output data types need to be passed at compile time using -DDATA_TYPE_IN and -DDATA_TYPE_OUT:
94 * e.g. -DDATA_TYPE_IN=uchar -DDATA_TYPE_OUT=short
95 *
96 * @param[in] src1_ptr Pointer to the source image (Vertical result of Sobel). Supported data types: S16, S32
97 * @param[in] src1_stride_x Stride of the source image in X dimension (in bytes)
98 * @param[in] src1_step_x src1_stride_x * number of elements along X processed per workitem(in bytes)
99 * @param[in] src1_stride_y Stride of the source image in Y dimension (in bytes)
100 * @param[in] src1_step_y src1_stride_y * number of elements along Y processed per workitem(in bytes)
101 * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source image
102 * @param[in] src2_ptr Pointer to the source image (Vertical result of Sobel). Supported data types: S16, S32
103 * @param[in] src2_stride_x Stride of the source image in X dimension (in bytes)
104 * @param[in] src2_step_x src2_stride_x * number of elements along X processed per workitem(in bytes)
105 * @param[in] src2_stride_y Stride of the source image in Y dimension (in bytes)
106 * @param[in] src2_step_y src2_stride_y * number of elements along Y processed per workitem(in bytes)
107 * @param[in] src2_offset_first_element_in_bytes The offset of the first element in the source image
108 * @param[out] grad_ptr Pointer to the gradient output. Supported data types: U16, U32
109 * @param[in] grad_stride_x Stride of the source image in X dimension (in bytes)
110 * @param[in] grad_step_x grad_stride_x * number of elements along X processed per workitem(in bytes)
111 * @param[in] grad_stride_y Stride of the source image in Y dimension (in bytes)
112 * @param[in] grad_step_y grad_stride_y * number of elements along Y processed per workitem(in bytes)
113 * @param[in] grad_offset_first_element_in_bytes The offset of the first element of the output
114 * @param[out] angle_ptr Pointer to the angle output. Supported data types: U8
115 * @param[in] angle_stride_x Stride of the source image in X dimension (in bytes)
116 * @param[in] angle_step_x angle_stride_x * number of elements along X processed per workitem(in bytes)
117 * @param[in] angle_stride_y Stride of the source image in Y dimension (in bytes)
118 * @param[in] angle_step_y angle_stride_y * number of elements along Y processed per workitem(in bytes)
119 * @param[in] angle_offset_first_element_in_bytes The offset of the first element of the output
120 */
121__kernel void combine_gradients_L2(
122 IMAGE_DECLARATION(src1),
123 IMAGE_DECLARATION(src2),
124 IMAGE_DECLARATION(grad),
125 IMAGE_DECLARATION(angle))
126{
127 // Construct images
128 Image src1 = CONVERT_TO_IMAGE_STRUCT(src1);
129 Image src2 = CONVERT_TO_IMAGE_STRUCT(src2);
130 Image grad = CONVERT_TO_IMAGE_STRUCT(grad);
131 Image angle = CONVERT_TO_IMAGE_STRUCT(angle);
132
133 // Load sobel horizontal and vertical values
134 float4 h = convert_float4(vload4(0, (__global DATA_TYPE_IN *)src1.ptr));
135 float4 v = convert_float4(vload4(0, (__global DATA_TYPE_IN *)src2.ptr));
136
137 /* Calculate the gradient, using level 2 normalisation method */
138 float4 m = sqrt(h * h + v * v);
139
140 /* Calculate the angle */
141 float4 p = atan2pi(v, h);
142
143 /* Remap angle to range [0, 256) */
144 p = select(p, p + 2, p < 0.0f) * 128.0f;
145
146 /* Store results */
147 vstore4(CONVERT_SAT_ROUND(m, VEC_DATA_TYPE(DATA_TYPE_OUT, 4), rte), 0, (__global DATA_TYPE_OUT *)grad.ptr);
148 vstore4(convert_uchar4_sat_rte(p), 0, angle.ptr);
149}
150
151/** Array that holds the relative coordinates offset for the neighbouring pixels.
152 */
153__constant short4 neighbours_coords[] =
154{
155 { -1, 0, 1, 0 }, // 0
156 { -1, 1, 1, -1 }, // 45
157 { 0, 1, 0, -1 }, // 90
158 { 1, 1, -1, -1 }, // 135
159 { 1, 0, -1, 0 }, // 180
160 { 1, -1, -1, 1 }, // 225
161 { 0, 1, 0, -1 }, // 270
162 { -1, -1, 1, 1 }, // 315
163 { -1, 0, 1, 0 }, // 360
164};
165
166/** Perform non maximum suppression.
167 *
168 * @attention The input and output data types need to be passed at compile time using -DDATA_TYPE_IN and -DDATA_TYPE_OUT:
169 * e.g. -DDATA_TYPE_IN=uchar -DDATA_TYPE_OUT=short
170 *
171 * @param[in] grad_ptr Pointer to the gradient output. Supported data types: S16, S32
172 * @param[in] grad_stride_x Stride of the source image in X dimension (in bytes)
173 * @param[in] grad_step_x grad_stride_x * number of elements along X processed per workitem(in bytes)
174 * @param[in] grad_stride_y Stride of the source image in Y dimension (in bytes)
175 * @param[in] grad_step_y grad_stride_y * number of elements along Y processed per workitem(in bytes)
176 * @param[in] grad_offset_first_element_in_bytes The offset of the first element of the output
177 * @param[in] angle_ptr Pointer to the angle output. Supported data types: U8
178 * @param[in] angle_stride_x Stride of the source image in X dimension (in bytes)
179 * @param[in] angle_step_x angle_stride_x * number of elements along X processed per workitem(in bytes)
180 * @param[in] angle_stride_y Stride of the source image in Y dimension (in bytes)
181 * @param[in] angle_step_y angle_stride_y * number of elements along Y processed per workitem(in bytes)
182 * @param[in] angle_offset_first_element_in_bytes TThe offset of the first element of the output
183 * @param[out] non_max_ptr Pointer to the non maximum suppressed output. Supported data types: U16, U32
184 * @param[in] non_max_stride_x Stride of the source image in X dimension (in bytes)
185 * @param[in] non_max_step_x non_max_stride_x * number of elements along X processed per workitem(in bytes)
186 * @param[in] non_max_stride_y Stride of the source image in Y dimension (in bytes)
187 * @param[in] non_max_step_y non_max_stride_y * number of elements along Y processed per workitem(in bytes)
188 * @param[in] non_max_offset_first_element_in_bytes The offset of the first element of the output
189 * @param[in] lower_thr The low threshold
190 */
191__kernel void suppress_non_maximum(
192 IMAGE_DECLARATION(grad),
193 IMAGE_DECLARATION(angle),
194 IMAGE_DECLARATION(non_max),
195 uint lower_thr)
196{
197 // Construct images
198 Image grad = CONVERT_TO_IMAGE_STRUCT(grad);
199 Image angle = CONVERT_TO_IMAGE_STRUCT(angle);
200 Image non_max = CONVERT_TO_IMAGE_STRUCT(non_max);
201
202 // Get gradient and angle
203 DATA_TYPE_IN gradient = *((__global DATA_TYPE_IN *)grad.ptr);
204 uchar an = convert_ushort(*angle.ptr);
205
206 if(gradient <= lower_thr)
207 {
208 return;
209 }
210
211 // Divide the whole round into 8 directions
212 uchar ang = 127 - an;
213 DATA_TYPE_OUT q_an = (ang + 16) >> 5;
214
215 // Find the two pixels in the perpendicular direction
216 short2 x_p = neighbours_coords[q_an].s02;
217 short2 y_p = neighbours_coords[q_an].s13;
218 DATA_TYPE_IN g1 = *((global DATA_TYPE_IN *)offset(&grad, x_p.x, y_p.x));
219 DATA_TYPE_IN g2 = *((global DATA_TYPE_IN *)offset(&grad, x_p.y, y_p.y));
220
221 if((gradient > g1) && (gradient > g2))
222 {
223 *((global DATA_TYPE_OUT *)non_max.ptr) = gradient;
224 }
225}
226
227#define EDGE 255
228#define hysteresis_local_stack_L1 8 // The size of level 1 stack. This has to agree with the host side
229#define hysteresis_local_stack_L2 16 // The size of level 2 stack, adjust this can impact the match rate with VX implementation
230
231/** Check whether pixel is valid
232*
233* Skip the pixel if the early_test fails.
234* Otherwise, it tries to add the pixel coordinate to the stack, and proceed to popping the stack instead if the stack is full
235*
236* @param[in] early_test Boolean condition based on the minv check and visited buffer check
237* @param[in] x_pos X-coordinate of pixel that is going to be recorded, has to be within the boundary
238* @param[in] y_pos Y-coordinate of pixel that is going to be recorded, has to be within the boundary
239* @param[in] x_cur X-coordinate of current central pixel
240* @param[in] y_cur Y-coordinate of current central pixel
241*/
242#define check_pixel(early_test, x_pos, y_pos, x_cur, y_cur) \
243 { \
244 if(!early_test) \
245 { \
246 /* Number of elements in the local stack 1, points to next available entry */ \
247 c = *((__global char *)offset(&l1_stack_counter, x_cur, y_cur)); \
248 \
249 if(c > (hysteresis_local_stack_L1 - 1)) /* Stack level 1 is full */ \
250 goto pop_stack; \
251 \
252 /* The pixel that has already been recorded is ignored */ \
253 if(!atomic_or((__global uint *)offset(&recorded, x_pos, y_pos), 1)) \
254 { \
255 l1_ptr[c] = (short2)(x_pos, y_pos); \
256 *((__global char *)offset(&l1_stack_counter, x_cur, y_cur)) += 1; \
257 } \
258 } \
259 }
260
261/** Perform hysteresis.
262 *
263 * @attention The input data_type needs to be passed at compile time using -DDATA_TYPE_IN: e.g. -DDATA_TYPE_IN=short
264 *
265 * @param[in] src_ptr Pointer to the input image. Supported data types: U8
266 * @param[in] src_stride_x Stride of the source image in X dimension (in bytes)
267 * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
268 * @param[in] src_stride_y Stride of the source image in Y dimension (in bytes)
269 * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
270 * @param[in] src_offset_first_element_in_bytes The offset of the first element of the output
271 * @param[out] out_ptr Pointer to the output image. Supported data types: U8
272 * @param[in] out_stride_x Stride of the source image in X dimension (in bytes)
273 * @param[in] out_step_x out_stride_x * number of elements along X processed per workitem(in bytes)
274 * @param[in] out_stride_y Stride of the source image in Y dimension (in bytes)
275 * @param[in] out_step_y out_stride_y * number of elements along Y processed per workitem(in bytes)
276 * @param[in] out_offset_first_element_in_bytes The offset of the first element of the output
277 * @param[out] visited_ptr Pointer to the visited buffer, where pixels are marked as visited. Supported data types: U32
278 * @param[in] visited_stride_x Stride of the source image in X dimension (in bytes)
279 * @param[in] visited_step_x visited_stride_x * number of elements along X processed per workitem(in bytes)
280 * @param[in] visited_stride_y Stride of the source image in Y dimension (in bytes)
281 * @param[in] visited_step_y visited_stride_y * number of elements along Y processed per workitem(in bytes)
282 * @param[in] visited_offset_first_element_in_bytes The offset of the first element of the output
283 * @param[out] recorded_ptr Pointer to the recorded buffer, where pixels are marked as recorded. Supported data types: U32
284 * @param[in] recorded_stride_x Stride of the source image in X dimension (in bytes)
285 * @param[in] recorded_step_x recorded_stride_x * number of elements along X processed per workitem(in bytes)
286 * @param[in] recorded_stride_y Stride of the source image in Y dimension (in bytes)
287 * @param[in] recorded_step_y recorded_stride_y * number of elements along Y processed per workitem(in bytes)
288 * @param[in] recorded_offset_first_element_in_bytes The offset of the first element of the output
289 * @param[out] l1_stack_ptr Pointer to the l1 stack of a pixel. Supported data types: S32
290 * @param[in] l1_stack_stride_x Stride of the source image in X dimension (in bytes)
291 * @param[in] l1_stack_step_x l1_stack_stride_x * number of elements along X processed per workitem(in bytes)
292 * @param[in] l1_stack_stride_y Stride of the source image in Y dimension (in bytes)
293 * @param[in] l1_stack_step_y l1_stack_stride_y * number of elements along Y processed per workitem(in bytes)
294 * @param[in] l1_stack_offset_first_element_in_bytes The offset of the first element of the output
295 * @param[out] l1_stack_counter_ptr Pointer to the l1 stack counters of an image. Supported data types: U8
296 * @param[in] l1_stack_counter_stride_x Stride of the source image in X dimension (in bytes)
297 * @param[in] l1_stack_counter_step_x l1_stack_counter_stride_x * number of elements along X processed per workitem(in bytes)
298 * @param[in] l1_stack_counter_stride_y Stride of the source image in Y dimension (in bytes)
299 * @param[in] l1_stack_counter_step_y l1_stack_counter_stride_y * number of elements along Y processed per workitem(in bytes)
300 * @param[in] l1_stack_counter_offset_first_element_in_bytes The offset of the first element of the output
301 * @param[in] low_thr The lower threshold
302 * @param[in] up_thr The upper threshold
303 * @param[in] width The width of the image.
304 * @param[in] height The height of the image
305 */
306kernel void hysteresis(
307 IMAGE_DECLARATION(src),
308 IMAGE_DECLARATION(out),
309 IMAGE_DECLARATION(visited),
310 IMAGE_DECLARATION(recorded),
311 IMAGE_DECLARATION(l1_stack),
312 IMAGE_DECLARATION(l1_stack_counter),
313 uint low_thr,
314 uint up_thr,
315 int width,
316 int height)
317{
318 // Create images
319 Image src = CONVERT_TO_IMAGE_STRUCT_NO_STEP(src);
320 Image out = CONVERT_TO_IMAGE_STRUCT_NO_STEP(out);
321 Image visited = CONVERT_TO_IMAGE_STRUCT_NO_STEP(visited);
322 Image recorded = CONVERT_TO_IMAGE_STRUCT_NO_STEP(recorded);
323 Image l1_stack = CONVERT_TO_IMAGE_STRUCT_NO_STEP(l1_stack);
324 Image l1_stack_counter = CONVERT_TO_IMAGE_STRUCT_NO_STEP(l1_stack_counter);
325
326 // Index
327 int x = get_global_id(0);
328 int y = get_global_id(1);
329
330 // Load value
331 DATA_TYPE_IN val = *((__global DATA_TYPE_IN *)offset(&src, x, y));
332
333 // If less than upper threshold set to NO_EDGE and return
334 if(val <= up_thr)
335 {
336 *offset(&out, x, y) = 0;
337 return;
338 }
339
340 // Init local stack 2
341 short2 stack_L2[hysteresis_local_stack_L2] = { 0 };
342 int L2_counter = 0;
343
344 // Perform recursive hysteresis
345 while(true)
346 {
347 // Get L1 stack pointer
348 __global short2 *l1_ptr = (__global short2 *)(l1_stack.ptr + y * l1_stack.stride_y + x * hysteresis_local_stack_L1 * l1_stack.stride_x);
349
350 // If the pixel has already been visited, proceed with the items in the stack instead
351 if(atomic_or((__global uint *)offset(&visited, x, y), 1) != 0)
352 {
353 goto pop_stack;
354 }
355
356 // Set strong edge
357 *offset(&out, x, y) = EDGE;
358
359 // If it is the top of stack l2, we don't need check the surrounding pixels
360 if(L2_counter > (hysteresis_local_stack_L2 - 1))
361 {
362 goto pop_stack2;
363 }
364
365 // Points to the start of the local stack;
366 char c;
367
368 VEC_DATA_TYPE(DATA_TYPE_IN, 4)
369 x_tmp;
370 uint4 v_tmp;
371
372 // Get direction pixel indices
373 int N = max(y - 1, 0), S = min(y + 1, height - 2), W = max(x - 1, 0), E = min(x + 1, width - 2);
374
375 // Check 8 pixels around for week edges where low_thr < val <= up_thr
376 x_tmp = vload4(0, (__global DATA_TYPE_IN *)offset(&src, W, N));
377 v_tmp = vload4(0, (__global uint *)offset(&visited, W, N));
378 check_pixel(((x_tmp.s0 <= low_thr) || v_tmp.s0 || (x_tmp.s0 > up_thr)), W, N, x, y); // NW
379 check_pixel(((x_tmp.s1 <= low_thr) || v_tmp.s1 || (x_tmp.s1 > up_thr)), x, N, x, y); // N
380 check_pixel(((x_tmp.s2 <= low_thr) || v_tmp.s2 || (x_tmp.s2 > up_thr)), E, N, x, y); // NE
381
382 x_tmp = vload4(0, (__global DATA_TYPE_IN *)offset(&src, W, y));
383 v_tmp = vload4(0, (__global uint *)offset(&visited, W, y));
384 check_pixel(((x_tmp.s0 <= low_thr) || v_tmp.s0 || (x_tmp.s0 > up_thr)), W, y, x, y); // W
385 check_pixel(((x_tmp.s2 <= low_thr) || v_tmp.s2 || (x_tmp.s2 > up_thr)), E, y, x, y); // E
386
387 x_tmp = vload4(0, (__global DATA_TYPE_IN *)offset(&src, W, S));
388 v_tmp = vload4(0, (__global uint *)offset(&visited, W, S));
389 check_pixel(((x_tmp.s0 <= low_thr) || v_tmp.s0 || (x_tmp.s0 > up_thr)), W, S, x, y); // SW
390 check_pixel(((x_tmp.s1 <= low_thr) || v_tmp.s1 || (x_tmp.s1 > up_thr)), x, S, x, y); // S
391 check_pixel(((x_tmp.s2 <= low_thr) || v_tmp.s2 || (x_tmp.s2 > up_thr)), E, S, x, y); // SE
392
393#undef check_pixel
394
395pop_stack:
396 c = *((__global char *)offset(&l1_stack_counter, x, y));
397
398 if(c >= 1)
399 {
400 *((__global char *)offset(&l1_stack_counter, x, y)) -= 1;
401 int2 l_c = convert_int2(l1_ptr[c - 1]);
402
403 // Push the current position into level 2 stack
404 stack_L2[L2_counter].x = x;
405 stack_L2[L2_counter].y = y;
406
407 x = l_c.x;
408 y = l_c.y;
409
410 L2_counter++;
411
412 continue;
413 }
414
415 if(L2_counter > 0)
416 {
417 goto pop_stack2;
418 }
419 else
420 {
421 return;
422 }
423
424pop_stack2:
425 L2_counter--;
426 x = stack_L2[L2_counter].x;
427 y = stack_L2[L2_counter].y;
428 };
429}