blob: 458b94b93c13c174cfbb1fdf66ccdf8c03e45b3f [file] [log] [blame]
Luca Foschiani4b869532020-02-13 15:07:36 +00001/*
Michele Di Giorgiod9eaf612020-07-08 11:12:57 +01002 * Copyright (c) 2020 Arm Limited.
Luca Foschiani4b869532020-02-13 15:07:36 +00003 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24#include "arm_compute/core/NEON/kernels/NEGEMMLowpQuantizeDownInt32ScaleKernel.h"
25
26#include "arm_compute/core/AccessWindowStatic.h"
27#include "arm_compute/core/Error.h"
28#include "arm_compute/core/Helpers.h"
29#include "arm_compute/core/ITensor.h"
30#include "arm_compute/core/NEON/wrapper/wrapper.h"
31#include "arm_compute/core/Types.h"
32#include "arm_compute/core/Utils.h"
33#include "arm_compute/core/Validate.h"
34#include "arm_compute/core/Window.h"
35#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
36
37#include <arm_neon.h>
38#include <cstddef>
39#include <cstdint>
40
41namespace arm_compute
42{
43Status validate_arguments(const ITensorInfo *input, const ITensorInfo *bias, const ITensorInfo *output, const GEMMLowpOutputStageInfo *output_stage)
44{
45 ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::S32);
46
47 ARM_COMPUTE_RETURN_ERROR_ON(output_stage->gemmlowp_max_bound > std::get<1>(quantization::get_min_max_values_from_quantized_data_type(output_stage->output_data_type)));
48 ARM_COMPUTE_RETURN_ERROR_ON(output_stage->gemmlowp_min_bound < std::get<0>(quantization::get_min_max_values_from_quantized_data_type(output_stage->output_data_type))
49 || output_stage->gemmlowp_min_bound > output_stage->gemmlowp_max_bound);
50
51 // Check biases if exist
52 if(bias != nullptr)
53 {
54 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, bias);
55 ARM_COMPUTE_RETURN_ERROR_ON(bias->num_dimensions() > 1);
56 ARM_COMPUTE_RETURN_ERROR_ON(input->dimension(0) != bias->dimension(0));
57 }
58
59 if(output->total_size() != 0)
60 {
61 if(output->data_type() != output_stage->output_data_type && (output_stage->output_data_type == DataType::QASYMM8 || output_stage->output_data_type == DataType::QASYMM8_SIGNED))
62 {
63 ARM_COMPUTE_RETURN_ERROR_MSG("Mismatching data types");
64 }
65
66 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, output);
67 }
68
69 return Status{};
70}
71
72inline void scale_input(int32x4x4_t &in_s32, int32x4_t result_offset_s32, int32_t result_mult_int)
73{
74 // Add the offset terms to GEMM's result
75 in_s32.val[0] = vaddq_s32(in_s32.val[0], result_offset_s32);
76 in_s32.val[1] = vaddq_s32(in_s32.val[1], result_offset_s32);
77 in_s32.val[2] = vaddq_s32(in_s32.val[2], result_offset_s32);
78 in_s32.val[3] = vaddq_s32(in_s32.val[3], result_offset_s32);
79
80 // Multiply by result_mult_int
81 in_s32.val[0] = vmulq_n_s32(in_s32.val[0], result_mult_int);
82 in_s32.val[1] = vmulq_n_s32(in_s32.val[1], result_mult_int);
83 in_s32.val[2] = vmulq_n_s32(in_s32.val[2], result_mult_int);
84 in_s32.val[3] = vmulq_n_s32(in_s32.val[3], result_mult_int);
85}
86
87template <typename T>
88inline typename std::enable_if<std::is_same<T, uint8_t>::value,
89 typename wrapper::traits::neon_vector<T, 16>::type>::type
90 convert_to_8bit(const int16x8x2_t in_s16)
91{
92 return wrapper::vcombine(wrapper::vqmovun(in_s16.val[0]), wrapper::vqmovun(in_s16.val[1]));
93}
94
95template <typename T>
96inline typename std::enable_if<std::is_same<T, int8_t>::value,
97 typename wrapper::traits::neon_vector<T, 16>::type>::type
98 convert_to_8bit(const int16x8x2_t in_s16)
99{
100 return wrapper::vcombine(wrapper::vqmovn(in_s16.val[0]), wrapper::vqmovn(in_s16.val[1]));
101}
102
103template <typename T>
104inline typename wrapper::traits::neon_vector<T, 16>::type finalize_quantization(int32x4x4_t &in_s32, int32x4_t result_shift_s32, typename wrapper::traits::neon_vector<T, 16>::type min,
105 typename wrapper::traits::neon_vector<T, 16>::type max)
106{
107 // Shift final result (negative value shift right)
108 in_s32.val[0] = vshlq_s32(in_s32.val[0], result_shift_s32);
109 in_s32.val[1] = vshlq_s32(in_s32.val[1], result_shift_s32);
110 in_s32.val[2] = vshlq_s32(in_s32.val[2], result_shift_s32);
111 in_s32.val[3] = vshlq_s32(in_s32.val[3], result_shift_s32);
112
113 // Convert S32 to S16
114 const int16x8x2_t in_s16 =
115 {
116 {
117 vcombine_s16(vqmovn_s32(in_s32.val[0]), vqmovn_s32(in_s32.val[1])),
118 vcombine_s16(vqmovn_s32(in_s32.val[2]), vqmovn_s32(in_s32.val[3]))
119 }
120 };
121
122 // Convert S16 to S8 or U8
123 typename wrapper::traits::neon_vector<T, 16>::type out = convert_to_8bit<T>(in_s16);
124
125 out = wrapper::vmax(out, min);
126 out = wrapper::vmin(out, max);
127
128 return out;
129}
130
131class Coordinates;
132
133template <typename T>
134void NEGEMMLowpQuantizeDownInt32ScaleKernel::run(const Window &window)
135{
136 using VectorType = typename wrapper::traits::neon_vector<T, 16>::type;
137
138 const int32x4_t result_offset_s32 = vdupq_n_s32(_output_stage->gemmlowp_offset);
139 const int32x4_t result_shift_s32 = vdupq_n_s32(-_output_stage->gemmlowp_shift);
140 const int window_step_x = 16;
141 const auto window_start_x = static_cast<int>(window.x().start());
142 const auto window_end_x = static_cast<int>(window.x().end());
143
144 const int clamp_min = (_is_bounded_relu) ? _output_stage->gemmlowp_min_bound : std::numeric_limits<T>::lowest();
145 const int clamp_max = (_is_bounded_relu) ? _output_stage->gemmlowp_max_bound : std::numeric_limits<T>::max();
146
147 VectorType min = wrapper::vdup_n(static_cast<T>(clamp_min), wrapper::traits::vector_128_tag{});
148 VectorType max = wrapper::vdup_n(static_cast<T>(clamp_max), wrapper::traits::vector_128_tag{});
149
150 Window win(window);
151 win.set(Window::DimX, Window::Dimension(0, 1, 1));
152
153 Iterator in(_input, win);
154 Iterator out(_output, win);
155
156 if(_bias != nullptr)
157 {
158 Window win_biases;
159 win_biases.set(Window::DimX, Window::Dimension(0, 1, 1));
160 win_biases.set(Window::DimY, Window::Dimension(0, 1, 1));
161
162 Iterator bias(_bias, win_biases);
163 execute_window_loop(win, [&](const Coordinates &)
164 {
165 // Compute 16 elements per iteration
166 int x = window_start_x;
167 for(; x <= (window_end_x - window_step_x); x += window_step_x)
168 {
169 int32x4x4_t in_s32 =
170 {
171 {
172 vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 0),
173 vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 4),
174 vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 8),
175 vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 12)
176 }
177 };
178
179 const int32x4x4_t bias_s32 =
180 {
181 {
182 vld1q_s32(reinterpret_cast<const int32_t *>(bias.ptr()) + x + 0),
183 vld1q_s32(reinterpret_cast<const int32_t *>(bias.ptr()) + x + 4),
184 vld1q_s32(reinterpret_cast<const int32_t *>(bias.ptr()) + x + 8),
185 vld1q_s32(reinterpret_cast<const int32_t *>(bias.ptr()) + x + 12)
186 }
187 };
188
189 // Add the bias to GEMM's result
190 in_s32.val[0] = vaddq_s32(in_s32.val[0], bias_s32.val[0]);
191 in_s32.val[1] = vaddq_s32(in_s32.val[1], bias_s32.val[1]);
192 in_s32.val[2] = vaddq_s32(in_s32.val[2], bias_s32.val[2]);
193 in_s32.val[3] = vaddq_s32(in_s32.val[3], bias_s32.val[3]);
194
195 // Add the offset terms to GEMM's result and multiply by result_mult_int
196 scale_input(in_s32, result_offset_s32, _output_stage->gemmlowp_multiplier);
197
198 wrapper::vstore(reinterpret_cast<T *>(out.ptr() + x), finalize_quantization<T>(in_s32, result_shift_s32, min, max));
199 }
200
201 // Compute left-over elements
202 for(; x < window_end_x; ++x)
203 {
204 const int bias_value = *(reinterpret_cast<const int *>(bias.ptr()) + x);
205 int in_value = *(reinterpret_cast<const int *>(in.ptr()) + x);
206
207 // Quantize
208 in_value = ((in_value + bias_value + _output_stage->gemmlowp_offset) * _output_stage->gemmlowp_multiplier) >> _output_stage->gemmlowp_shift;
209
210 // Store the result
211 *(out.ptr() + x) = static_cast<T>(utility::clamp<int>(in_value, clamp_min, clamp_max));
212 }
213 },
214 in, bias, out);
215 }
216 else
217 {
218 execute_window_loop(win, [&](const Coordinates &)
219 {
220 // Compute 16 elements per iteration
221 int x = window_start_x;
222 for(; x <= (window_end_x - window_step_x); x += window_step_x)
223 {
224 int32x4x4_t in_s32 =
225 {
226 {
227 vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 0),
228 vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 4),
229 vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 8),
230 vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 12)
231 }
232 };
233
234 // Add the offset terms to GEMM's result and multiply by result_mult_int
235 scale_input(in_s32, result_offset_s32, _output_stage->gemmlowp_multiplier);
236
237 wrapper::vstore(reinterpret_cast<T *>(out.ptr() + x), finalize_quantization<T>(in_s32, result_shift_s32, min, max));
238 }
239
240 // Compute left-over elements
241 for(; x < window_end_x; ++x)
242 {
243 int in_value = *(reinterpret_cast<const int *>(in.ptr()) + x);
244
245 // Quantize
246 in_value = ((in_value + _output_stage->gemmlowp_offset) * _output_stage->gemmlowp_multiplier) >> _output_stage->gemmlowp_shift;
247
248 // Store the result
249 *(out.ptr() + x) = static_cast<T>(utility::clamp<int>(in_value, clamp_min, clamp_max));
250 }
251 },
252 in, out);
253 }
254}
255
256NEGEMMLowpQuantizeDownInt32ScaleKernel::NEGEMMLowpQuantizeDownInt32ScaleKernel()
257 : _func(nullptr), _input(nullptr), _bias(nullptr), _output(nullptr), _output_stage(nullptr), _is_bounded_relu(false)
258{
259}
260
261void NEGEMMLowpQuantizeDownInt32ScaleKernel::configure(const ITensor *input, const ITensor *bias, ITensor *output, const GEMMLowpOutputStageInfo *output_stage)
262{
263 // Perform validate step
264 ARM_COMPUTE_ERROR_ON_NULLPTR(input, output, output_stage);
265
266 // Output auto inizialitation if not yet initialized
267 auto_init_if_empty(*output->info(), input->info()->clone()->set_data_type(output_stage->output_data_type));
268
269 ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(),
270 (bias != nullptr) ? bias->info() : nullptr,
271 output->info(),
272 output_stage));
273
274 _input = input;
275 _bias = bias;
276 _output = output;
277 _output_stage = output_stage;
278
279 // Configure kernel window
280 Window win = calculate_max_window(*input->info(), Steps());
281 Coordinates coord;
282 coord.set_num_dimensions(output->info()->num_dimensions());
283 output->info()->set_valid_region(ValidRegion(coord, output->info()->tensor_shape()));
284
285 INEKernel::configure(win);
286
287 // Check if we need to clamp the result using min and max
288 _is_bounded_relu = ((_output_stage->gemmlowp_min_bound != _output_stage->gemmlowp_max_bound)
289 && !(_output_stage->gemmlowp_min_bound == std::get<0>(quantization::get_min_max_values_from_quantized_data_type(output_stage->output_data_type))
290 && _output_stage->gemmlowp_max_bound == std::get<1>(quantization::get_min_max_values_from_quantized_data_type(output_stage->output_data_type))));
291 if(_output_stage->output_data_type == DataType::QASYMM8)
292 {
293 _func = &NEGEMMLowpQuantizeDownInt32ScaleKernel::run<uint8_t>;
294 }
295 else if(_output_stage->output_data_type == DataType::QASYMM8_SIGNED)
296 {
297 _func = &NEGEMMLowpQuantizeDownInt32ScaleKernel::run<int8_t>;
298 }
299 else
300 {
301 ARM_COMPUTE_ERROR("Data type not supported");
302 }
303}
304
305Status NEGEMMLowpQuantizeDownInt32ScaleKernel::validate(const ITensorInfo *input, const ITensorInfo *bias, const ITensorInfo *output, const GEMMLowpOutputStageInfo *output_stage)
306{
307 ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
308 ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, bias, output, output_stage));
309
310 return Status{};
311}
312
313void NEGEMMLowpQuantizeDownInt32ScaleKernel::run(const Window &window, const ThreadInfo &info)
314{
315 ARM_COMPUTE_UNUSED(info);
316 ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
317 ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
318
319 (this->*_func)(window);
320}
321} // namespace arm_compute