blob: 4494dd8cecbd5e5bb208de5c66a7116218c9b827 [file] [log] [blame]
Sheri Zhangb18252d2020-04-07 11:04:57 +01001/*
Adnan AlSinan7075fe22021-07-05 13:12:52 +01002 * Copyright (c) 2020-2021 Arm Limited.
Sheri Zhangb18252d2020-04-07 11:04:57 +01003 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24#include "helpers_asymm.h"
25
26#if VEC_SIZE == 2
27#define multiply_by_quantized_multiplier(input, qmul, shift) MULTIPLY_BY_QUANTIZED_MULTIPLIER(input, qmul, shift, 2)
28#define PERFORM_REDUCTION_IMPL(type) \
29 inline VEC_DATA_TYPE(type, 1) perform_reduction_##type(VEC_DATA_TYPE(type, 2) sum) \
30 { \
31 sum.s0 += sum.s1; \
32 return sum.s0; \
33 }
34#elif VEC_SIZE == 4
35#define multiply_by_quantized_multiplier(input, qmul, shift) MULTIPLY_BY_QUANTIZED_MULTIPLIER(input, qmul, shift, 4)
36#define PERFORM_REDUCTION_IMPL(type) \
37 inline VEC_DATA_TYPE(type, 1) perform_reduction_##type(VEC_DATA_TYPE(type, 4) sum) \
38 { \
39 sum.s01 += sum.s23; \
40 sum.s0 += sum.s1; \
41 return sum.s0; \
42 }
43#elif VEC_SIZE == 8
44#define multiply_by_quantized_multiplier(input, qmul, shift) MULTIPLY_BY_QUANTIZED_MULTIPLIER(input, qmul, shift, 8)
45#define PERFORM_REDUCTION_IMPL(type) \
46 inline VEC_DATA_TYPE(type, 1) perform_reduction_##type(VEC_DATA_TYPE(type, 8) sum) \
47 { \
48 sum.s0123 += sum.s4567; \
49 sum.s01 += sum.s23; \
50 sum.s0 += sum.s1; \
51 return sum.s0; \
52 }
53#else /* VEC_SIZE DEFAULT */
54#define VEC_SIZE 16
55#define multiply_by_quantized_multiplier(input, qmul, shift) MULTIPLY_BY_QUANTIZED_MULTIPLIER(input, qmul, shift, 16)
56#define PERFORM_REDUCTION_IMPL(type) \
57 inline VEC_DATA_TYPE(type, 1) perform_reduction_##type(VEC_DATA_TYPE(type, 16) sum) \
58 { \
59 sum.s01234567 += sum.s89abcdef; \
60 sum.s0123 += sum.s4567; \
61 sum.s01 += sum.s23; \
62 sum.s0 += sum.s1; \
63 return sum.s0; \
64 }
65#endif /* VEC_SIZE END */
66
67#define PERFORM_REDUCTION_STR(input, type) perform_reduction_##type(input)
68#define PERFORM_REDUCTION(input, type) PERFORM_REDUCTION_STR(input, type)
69
70PERFORM_REDUCTION_IMPL(int)
71PERFORM_REDUCTION_IMPL(long)
72
73/** Compute quantized multiplier and shift for the inverse square root of input.
74 * Using 3-bit fixed point and 5 iteration of Newton-Raphson method.
75 *
76 * @param[in] in Input to use
77 * @param[in] reverse_shift -1 to reverse the shift direction
78 *
79 * @return:
80 * .s0 Quantized multiplier for inverse square root
81 * .s1 Shift for inverse square root
82 *
83 */
84inline int2 get_invsqrt_quantized_multiplier_exp(int in, int reverse_shift)
85{
86 int2 stddev_inv;
87 int stddev_inv_multiplier = INT_MAX;
88 int stddev_inv_shift = 0;
89 int input = in;
90 if(input <= 1)
91 {
92 stddev_inv.s0 = stddev_inv_multiplier;
93 stddev_inv.s1 = stddev_inv_shift;
94 return stddev_inv;
95 }
96
97 stddev_inv_shift = 11;
98 while(input >= (1 << 29))
99 {
100 input /= 4;
101 ++stddev_inv_shift;
102 }
103
104 const unsigned int max_left_shift_bits = clz(input) - 1;
105 const unsigned int max_left_shift_bits_pairs = max_left_shift_bits / 2;
106 const unsigned int left_shift_bit_pairs = max_left_shift_bits_pairs - 1;
107 stddev_inv_shift -= left_shift_bit_pairs;
108 input <<= 2 * left_shift_bit_pairs;
109
110 typedef int FixedPointRawType;
111 const unsigned int fixedpoint_position = 3;
112 const unsigned int fixedpoint_int_position = sizeof(FixedPointRawType) * 8 - 1 - fixedpoint_position;
113 typedef FixedPointRawType FixedPoint3;
114 typedef FixedPointRawType FixedPoint0;
115
116 const FixedPoint3 fixedpoint_input = (input >> 1);
117 const FixedPoint3 fixedpoint_half_input = ASYMM_ROUNDING_DIVIDE_BY_POW2(fixedpoint_input, 1, 1);
118 const FixedPoint3 fixedpoint_half_three = (0x1 << fixedpoint_int_position) + (0x1 << (fixedpoint_int_position - 1));
119 FixedPoint3 x = 0x1 << fixedpoint_int_position;
120
121 const int num_iteration = 5;
122 for(int i = 0; i < num_iteration; i++)
123 {
124 int x3 = ASYMM_RESCALE(ASYMM_MULT(ASYMM_MULT(x, x, 1), x, 1), 9, fixedpoint_position, 1);
125 x = ASYMM_RESCALE(ASYMM_MULT(fixedpoint_half_three, x, 1) - ASYMM_MULT(fixedpoint_half_input, x3, 1), 6, fixedpoint_position, 1);
126 }
127 const FixedPoint0 fixedpoint_half_sqrt_2 = 1518500250;
128 x = ASYMM_MULT(fixedpoint_half_sqrt_2, x, 1);
129 stddev_inv_multiplier = x;
130 if(stddev_inv_shift < 0)
131 {
132 stddev_inv_multiplier <<= -stddev_inv_shift;
133 stddev_inv_shift = 0;
134 }
135 stddev_inv_shift *= reverse_shift;
136
137 stddev_inv.s0 = stddev_inv_multiplier;
138 stddev_inv.s1 = stddev_inv_shift;
139 return stddev_inv;
140}
141
142#if defined(VEC_SIZE) && defined(DATA_TYPE) && defined(WIDTH) && defined(OUTPUT_MULTIPLIER) && defined(OUTPUT_SHIFT)
143/** This function implements QLSTM layer normalization.
144 *
145 * @attention Vector size should be given as a preprocessor argument using -DVEC_SIZE=size. e.g. -DVEC_SIZE=16
146 * @attention Data type should be passed using the -DDATA_TYPE compile flag, e.g. -DDATA_TYPE=float
147 * @attention Width of the input tensor should be passed using the -DWIDTH compile flag, e.g. -DWIDTH=16
148 *
149 * @param[in] input_ptr Pointer to the first source tensor. Supported data types: QSYMM16
150 * @param[in] input_stride_x Stride of the first source tensor in X dimension (in bytes)
151 * @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
152 * @param[in] input_stride_y Stride of the first source tensor in Y dimension (in bytes)
153 * @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
154 * @param[in] input_offset_first_element_in_bytes The offset of the first element in the first source tensor
155 * @param[in] weight_ptr Pointer to the weight tensor. Supported data type: same as @p input_ptr
156 * @param[in] weight_stride_x Stride of the weight tensor in X dimension (in bytes)
157 * @param[in] weight_step_x weight_stride_x * number of elements along X processed per workitem(in bytes)
158 * @param[in] weight_offset_first_element_in_bytes The offset of the first element in the weight tensor
159 * @param[in] bias_ptr Pointer to the bias tensor. Supported data type: S32
160 * @param[in] bias_stride_x Stride of the bias tensor in X dimension (in bytes)
161 * @param[in] bias_step_x bias_stride_x * number of elements along X processed per workitem(in bytes)
162 * @param[in] bias_offset_first_element_in_bytes The offset of the first element in the biases tensor
163 * @param[out] output_ptr Pointer to the destination tensor. Supported data types: same as @p input_ptr
164 * @param[in] output_stride_x Stride of the destination tensor in X dimension (in bytes)
165 * @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes)
166 * @param[in] output_stride_y Stride of the destination tensor in Y dimension (in bytes)
167 * @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes)
168 * @param[in] output_offset_first_element_in_bytes The offset of the first element in the destination tensor
169 */
170__kernel void qlstm_layer_normalization(
171 IMAGE_DECLARATION(input),
172 VECTOR_DECLARATION(weight),
173 VECTOR_DECLARATION(bias),
174 IMAGE_DECLARATION(output))
175{
176 // Get pixels pointer
177 Image input = CONVERT_TO_IMAGE_STRUCT(input);
178 Vector weight = CONVERT_TO_VECTOR_STRUCT(weight);
179 Vector bias = CONVERT_TO_VECTOR_STRUCT(bias);
180 Image output = CONVERT_TO_IMAGE_STRUCT(output);
181
182 VEC_DATA_TYPE(int, VEC_SIZE)
183 sum = 0;
184 VEC_DATA_TYPE(long, VEC_SIZE)
185 sum_sq = 0;
186 // Calculate partial sum
187 int i = 0;
188 for(; i <= (WIDTH - VEC_SIZE); i += VEC_SIZE)
189 {
190 // Load data
191 VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
192 data = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)offset(&input, i, 0));
193
194 sum += CONVERT(data, VEC_DATA_TYPE(int, VEC_SIZE));
195 sum_sq += CONVERT(data, VEC_DATA_TYPE(long, VEC_SIZE)) * CONVERT(data, VEC_DATA_TYPE(long, VEC_SIZE));
196 }
197 // Perform reduction
198 sum.s0 = PERFORM_REDUCTION(sum, int);
199 sum_sq.s0 = PERFORM_REDUCTION(sum_sq, long);
200
201 // Left-overs loop
202 for(; i < WIDTH; ++i)
203 {
204 DATA_TYPE data = *((__global DATA_TYPE *)offset(&input, i, 0));
205
206 sum.s0 += CONVERT(data, int);
207 sum_sq.s0 += CONVERT(data, long) * CONVERT(data, long);
208 }
209
210 int temp = 0x100000 / WIDTH;
211 int mean = (int)(sum.s0 * 1024 / WIDTH);
212 int var2 = ((sum_sq.s0 * (long)temp) - ((long)mean * (long)mean)) / 0x100000;
213 int2 stddev_inv = get_invsqrt_quantized_multiplier_exp(var2, -1);
214
215 i = 0;
216 for(; i <= (WIDTH - VEC_SIZE); i += VEC_SIZE)
217 {
218 VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
219 data = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)offset(&input, i, 0));
220 VEC_DATA_TYPE(int, VEC_SIZE)
221 res = CONVERT(data, VEC_DATA_TYPE(int, VEC_SIZE)) * 1024 - mean;
222 res = multiply_by_quantized_multiplier(res, stddev_inv.s0, stddev_inv.s1);
223 VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
224 w = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)vector_offset(&weight, i));
225 res = res * CONVERT(w, VEC_DATA_TYPE(int, VEC_SIZE));
226 res = res + VLOAD(VEC_SIZE)(0, (__global int *)vector_offset(&bias, i));
227 // Due to different rounding scheme, we might need to revisit in the future: res = select(res - 512, res + 512, res > 0) / 1024;
228 res = (res + 512) >> 10;
229 res = multiply_by_quantized_multiplier(res, OUTPUT_MULTIPLIER, OUTPUT_SHIFT + 12);
230#if defined(MIN_BOUND)
231 res = max(res, (VEC_DATA_TYPE(int, VEC_SIZE))MIN_BOUND);
232#endif // defined(MIN_BOUND)
233#if defined(MAX_BOUND)
234 res = min(res, (VEC_DATA_TYPE(int, VEC_SIZE))MAX_BOUND);
235#endif // defined(MAX_BOUND)
236 VSTORE(VEC_SIZE)
237 (CONVERT(res, VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)), 0, (__global DATA_TYPE *)offset(&output, i, 0));
238 }
239 for(; i < WIDTH; ++i)
240 {
241 DATA_TYPE data = *((__global DATA_TYPE *)offset(&input, i, 0));
242 int res = (int)data * 1024 - mean;
243 res = MULTIPLY_BY_QUANTIZED_MULTIPLIER(res, stddev_inv.s0, stddev_inv.s1, 1);
244 DATA_TYPE w = *((__global DATA_TYPE *)vector_offset(&weight, i));
245 res = res * (int)w;
246 int b = *((__global int *)vector_offset(&bias, i));
247 res = res + b;
248 // Due to different rounding scheme, we might need to revisit in the future: res = select(res - 512, res + 512, res > 0) / 1024;
249 res = (res + 512) >> 10;
250 res = MULTIPLY_BY_QUANTIZED_MULTIPLIER(res, OUTPUT_MULTIPLIER, OUTPUT_SHIFT + 12, 1);
251#if defined(MIN_BOUND)
252 res = max(res, MIN_BOUND);
253#endif // defined(MIN_BOUND)
254#if defined(MAX_BOUND)
255 res = min(res, MAX_BOUND);
256#endif // defined(MAX_BOUND)
257 *((__global DATA_TYPE *)offset(&output, i, 0)) = (DATA_TYPE)res;
258 }
259}
260#endif /* defined(VEC_SIZE) && defined(DATA_TYPE) && defined(WIDTH) && defined(OUTPUT_MULTIPLIER) && defined(OUTPUT_SHIFT) */