blob: 50fb3d7f357c93250018653439061263e8d47b64 [file] [log] [blame]
Anthony Barbier6ff3b192017-09-04 18:44:23 +01001/*
Michele Di Giorgiod9eaf612020-07-08 11:12:57 +01002 * Copyright (c) 2016-2019 Arm Limited.
Anthony Barbier6ff3b192017-09-04 18:44:23 +01003 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24#include "helpers.h"
25
26#ifndef DATA_TYPE
27#define DATA_TYPE short
Anthony Barbierac69aa12017-07-03 17:39:37 +010028#endif /* DATA_TYPE */
Anthony Barbier6ff3b192017-09-04 18:44:23 +010029
30#ifndef COMPUTE_TYPE
31#define COMPUTE_TYPE int
Anthony Barbierac69aa12017-07-03 17:39:37 +010032#endif /* COMPUTE_TYPE */
Anthony Barbier6ff3b192017-09-04 18:44:23 +010033
34#ifndef DATA_TYPE_OUT
35#define DATA_TYPE_OUT uchar
Anthony Barbierac69aa12017-07-03 17:39:37 +010036#endif /* DATA_TYPE_OUT */
Anthony Barbier6ff3b192017-09-04 18:44:23 +010037
38/** Compute a 1D horizontal convolution of size 7 for 8 bytes assuming the input is made of 1 channel of 1 byte (i.e 8 pixels).
39 *
40 * @param[in] left_pixel Pointer to the left pixel
41 * @param[in] left1_coeff Weight of the most left pixel
42 * @param[in] left2_coeff Weight of the second left pixel
43 * @param[in] left3_coeff Weight of the left pixel
44 * @param[in] middle_coeff Weight of the middle pixel
45 * @param[in] right1_coeff Weight of the right pixel
46 * @param[in] right2_coeff Weight of the second right pixel
47 * @param[in] right3_coeff Weight of the most right pixel
48 *
49 * @return a short8 containing 8 convoluted values.
50 */
51VEC_DATA_TYPE(DATA_TYPE, 8)
52convolution1x7(
53 __global const uchar *left_pixel,
54 const short left1_coeff,
55 const short left2_coeff,
56 const short left3_coeff,
57 const short middle_coeff,
58 const short right1_coeff,
59 const short right2_coeff,
60 const short right3_coeff)
61{
62 uchar16 temp = vload16(0, left_pixel);
63
64 VEC_DATA_TYPE(DATA_TYPE, 8)
65 left1 = CONVERT(temp.s01234567, VEC_DATA_TYPE(DATA_TYPE, 8));
66 VEC_DATA_TYPE(DATA_TYPE, 8)
67 left2 = CONVERT(temp.s12345678, VEC_DATA_TYPE(DATA_TYPE, 8));
68 VEC_DATA_TYPE(DATA_TYPE, 8)
69 left3 = CONVERT(temp.s23456789, VEC_DATA_TYPE(DATA_TYPE, 8));
70 VEC_DATA_TYPE(DATA_TYPE, 8)
71 middle = CONVERT(temp.s3456789a, VEC_DATA_TYPE(DATA_TYPE, 8));
72 VEC_DATA_TYPE(DATA_TYPE, 8)
73 right1 = CONVERT(temp.s456789ab, VEC_DATA_TYPE(DATA_TYPE, 8));
74 VEC_DATA_TYPE(DATA_TYPE, 8)
75 right2 = CONVERT(temp.s56789abc, VEC_DATA_TYPE(DATA_TYPE, 8));
76 VEC_DATA_TYPE(DATA_TYPE, 8)
77 right3 = CONVERT(temp.s6789abcd, VEC_DATA_TYPE(DATA_TYPE, 8));
78
79 return left1 * (VEC_DATA_TYPE(DATA_TYPE, 8))left1_coeff + left2 * (VEC_DATA_TYPE(DATA_TYPE, 8))left2_coeff + left3 * (VEC_DATA_TYPE(DATA_TYPE, 8))left3_coeff + middle * (VEC_DATA_TYPE(DATA_TYPE,
80 8))middle_coeff + right1 * (VEC_DATA_TYPE(DATA_TYPE, 8))right1_coeff + right2 * (VEC_DATA_TYPE(DATA_TYPE, 8))right2_coeff + right3 * (VEC_DATA_TYPE(DATA_TYPE, 8))right3_coeff;
81}
82
83/** Compute a 1D vertical convolution of size 7 for 8 bytes assuming the input is made of 1 channel of 1 byte (i.e 8 pixels).
84 *
85 * @param[in] src Pointer to source image.
86 * @param[in] up1_coeff Weight of the most up pixel
87 * @param[in] up2_coeff Weight of the second up pixel
88 * @param[in] up3_coeff Weight of the up pixel
89 * @param[in] middle_coeff Weight of the middle pixel
90 * @param[in] down1_coeff Weight of the down pixel
91 * @param[in] down2_coeff Weight of the second down pixel
92 * @param[in] down3_coeff Weight of the third down pixel
93 *
94 * @return a short8 containing 8 convoluted values.
95 */
96VEC_DATA_TYPE(COMPUTE_TYPE, 8)
97convolution7x1(
98 Image *src,
99 const short up1_coeff,
100 const short up2_coeff,
101 const short up3_coeff,
102 const short middle_coeff,
103 const short down1_coeff,
104 const short down2_coeff,
105 const short down3_coeff)
106{
107 VEC_DATA_TYPE(COMPUTE_TYPE, 8)
108 val;
109 VEC_DATA_TYPE(COMPUTE_TYPE, 8)
110 out = (VEC_DATA_TYPE(COMPUTE_TYPE, 8))0;
111
112 val = CONVERT(vload8(0, (__global DATA_TYPE *)offset(src, 0, -3)), VEC_DATA_TYPE(COMPUTE_TYPE, 8));
113 out += val * (VEC_DATA_TYPE(COMPUTE_TYPE, 8))up1_coeff;
114
115 val = CONVERT(vload8(0, (__global DATA_TYPE *)offset(src, 0, -2)), VEC_DATA_TYPE(COMPUTE_TYPE, 8));
116 out += val * (VEC_DATA_TYPE(COMPUTE_TYPE, 8))up2_coeff;
117
118 val = CONVERT(vload8(0, (__global DATA_TYPE *)offset(src, 0, -1)), VEC_DATA_TYPE(COMPUTE_TYPE, 8));
119 out += val * (VEC_DATA_TYPE(COMPUTE_TYPE, 8))up3_coeff;
120
121 val = CONVERT(vload8(0, (__global DATA_TYPE *)offset(src, 0, 0)), VEC_DATA_TYPE(COMPUTE_TYPE, 8));
122 out += val * (VEC_DATA_TYPE(COMPUTE_TYPE, 8))middle_coeff;
123
124 val = CONVERT(vload8(0, (__global DATA_TYPE *)offset(src, 0, 1)), VEC_DATA_TYPE(COMPUTE_TYPE, 8));
125 out += val * (VEC_DATA_TYPE(COMPUTE_TYPE, 8))down1_coeff;
126
127 val = CONVERT(vload8(0, (__global DATA_TYPE *)offset(src, 0, 2)), VEC_DATA_TYPE(COMPUTE_TYPE, 8));
128 out += val * (VEC_DATA_TYPE(COMPUTE_TYPE, 8))down2_coeff;
129
130 val = CONVERT(vload8(0, (__global DATA_TYPE *)offset(src, 0, 3)), VEC_DATA_TYPE(COMPUTE_TYPE, 8));
131 out += val * (VEC_DATA_TYPE(COMPUTE_TYPE, 8))down3_coeff;
132
133 return out;
134}
135
136/** Apply a 7x7 convolution matrix to a single channel U8 input image and return the result.
137 *
138 * Convolution matrix layout:\n
139 * [ mat0, mat1, mat2, mat3 , mat4, mat5, mat6 ]\n
140 * [ mat7, mat8, mat9, mat10, mat11, mat12, mat13 ]\n
141 * [ mat14, mat15, mat16, mat17, mat18, mat19, mat20 ]\n
142 * [ mat21, mat22, mat23, mat24, mat25, mat26, mat27 ]\n
143 * [ mat28, mat29, mat30, mat31, mat32, mat33, mat34 ]\n
144 * [ mat35, mat36, mat37, mat38, mat39, mat40, mat41 ]\n
145 * [ mat42, mat43, mat44, mat45, mat46, mat47, mat48 ]
146 *
147 * @param[in] src A pointer to source Image structure.
148 * @param[in] mat0 Coefficient from the convolution matrix
149 * @param[in] mat1 Coefficient from the convolution matrix
150 * @param[in] mat2 Coefficient from the convolution matrix
151 * @param[in] mat3 Coefficient from the convolution matrix
152 * @param[in] mat4 Coefficient from the convolution matrix
153 * @param[in] mat5 Coefficient from the convolution matrix
154 * @param[in] mat6 Coefficient from the convolution matrix
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100155 * @param[in] mat7 Coefficient from the convolution matrix
156 * @param[in] mat8 Coefficient from the convolution matrix
157 * @param[in] mat9 Coefficient from the convolution matrix
158 * @param[in] mat10 Coefficient from the convolution matrix
159 * @param[in] mat11 Coefficient from the convolution matrix
160 * @param[in] mat12 Coefficient from the convolution matrix
161 * @param[in] mat13 Coefficient from the convolution matrix
162 * @param[in] mat14 Coefficient from the convolution matrix
163 * @param[in] mat15 Coefficient from the convolution matrix
164 * @param[in] mat16 Coefficient from the convolution matrix
Anthony Barbier6ff3b192017-09-04 18:44:23 +0100165 * @param[in] mat17 Coefficient from the convolution matrix
166 * @param[in] mat18 Coefficient from the convolution matrix
167 * @param[in] mat19 Coefficient from the convolution matrix
168 * @param[in] mat20 Coefficient from the convolution matrix
169 * @param[in] mat21 Coefficient from the convolution matrix
170 * @param[in] mat22 Coefficient from the convolution matrix
171 * @param[in] mat23 Coefficient from the convolution matrix
172 * @param[in] mat24 Coefficient from the convolution matrix
173 * @param[in] mat25 Coefficient from the convolution matrix
174 * @param[in] mat26 Coefficient from the convolution matrix
175 * @param[in] mat27 Coefficient from the convolution matrix
176 * @param[in] mat28 Coefficient from the convolution matrix
177 * @param[in] mat29 Coefficient from the convolution matrix
178 * @param[in] mat30 Coefficient from the convolution matrix
179 * @param[in] mat31 Coefficient from the convolution matrix
180 * @param[in] mat32 Coefficient from the convolution matrix
181 * @param[in] mat33 Coefficient from the convolution matrix
182 * @param[in] mat34 Coefficient from the convolution matrix
183 * @param[in] mat35 Coefficient from the convolution matrix
184 * @param[in] mat36 Coefficient from the convolution matrix
185 * @param[in] mat37 Coefficient from the convolution matrix
186 * @param[in] mat38 Coefficient from the convolution matrix
187 * @param[in] mat39 Coefficient from the convolution matrix
188 * @param[in] mat40 Coefficient from the convolution matrix
189 * @param[in] mat41 Coefficient from the convolution matrix
190 * @param[in] mat42 Coefficient from the convolution matrix
191 * @param[in] mat43 Coefficient from the convolution matrix
192 * @param[in] mat44 Coefficient from the convolution matrix
193 * @param[in] mat45 Coefficient from the convolution matrix
194 * @param[in] mat46 Coefficient from the convolution matrix
195 * @param[in] mat47 Coefficient from the convolution matrix
196 * @param[in] mat48 Coefficient from the convolution matrix
197 * @param[in] scale Convolution matrix scale (Sum of the coefficients, or 1 if the sum is 0)
198 *
199 */
200short8 convolution7x7(
201 Image *src,
202 const short mat0, const short mat1, const short mat2, const short mat3, const short mat4,
203 const short mat5, const short mat6, const short mat7, const short mat8, const short mat9,
204 const short mat10, const short mat11, const short mat12, const short mat13, const short mat14,
205 const short mat15, const short mat16, const short mat17, const short mat18, const short mat19,
206 const short mat20, const short mat21, const short mat22, const short mat23, const short mat24,
207 const short mat25, const short mat26, const short mat27, const short mat28, const short mat29,
208 const short mat30, const short mat31, const short mat32, const short mat33, const short mat34,
209 const short mat35, const short mat36, const short mat37, const short mat38, const short mat39,
210 const short mat40, const short mat41, const short mat42, const short mat43, const short mat44,
211 const short mat45, const short mat46, const short mat47, const short mat48, uint scale)
212{
213 VEC_DATA_TYPE(DATA_TYPE, 8)
214 pixels;
215
216 pixels = convolution1x7(offset(src, -3, -3), mat0, mat1, mat2, mat3, mat4, mat5, mat6);
217 pixels += convolution1x7(offset(src, -3, -2), mat7, mat8, mat9, mat10, mat11, mat12, mat13);
218 pixels += convolution1x7(offset(src, -3, -1), mat14, mat15, mat16, mat17, mat18, mat19, mat20);
219 pixels += convolution1x7(offset(src, -3, 0), mat21, mat22, mat23, mat24, mat25, mat26, mat27);
220 pixels += convolution1x7(offset(src, -3, 1), mat28, mat29, mat30, mat31, mat32, mat33, mat34);
221 pixels += convolution1x7(offset(src, -3, 2), mat35, mat36, mat37, mat38, mat39, mat40, mat41);
222 pixels += convolution1x7(offset(src, -3, 3), mat42, mat43, mat44, mat45, mat46, mat47, mat48);
223
224 if(scale > 0)
225 {
226 pixels /= (VEC_DATA_TYPE(DATA_TYPE, 8))scale;
227 }
228
229 return convert_short8_sat(pixels);
230}
231
232#ifndef DYNAMIC_MATRIX_CONVOLUTION
233
234/** Apply a 1x7 static convolution matrix to a single channel U8 input image and output a single temporary channel image.
235 *
236 * @attention The matrix coefficients (MAT0, MAT1, MAT2, MAT3, MAT4, MAT5, MAT6) and DATA_TYPE need to be passed at compile time:\n
237 * e.g. -DMAT0=1 -DMAT1=2, ... -DMAT6=6, -DDATA_TYPE=int
238 *
239 * @param[in] src_ptr Pointer to the source image. Supported data types: U8
240 * @param[in] src_stride_x Stride of the source image in X dimension (in bytes)
241 * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
242 * @param[in] src_stride_y Stride of the source image in Y dimension (in bytes)
243 * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
244 * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source image
245 * @param[out] dst_ptr Pointer to the destination image. Supported data types: U16, S16, S32
246 * @param[in] dst_stride_x Stride of the destination image in X dimension (in bytes)
247 * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
248 * @param[in] dst_stride_y Stride of the destination image in Y dimension (in bytes)
249 * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
250 * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination image
251 */
252__kernel void convolution_separable1x7_static(
253 IMAGE_DECLARATION(src),
254 IMAGE_DECLARATION(dst))
255{
256 Image src = CONVERT_TO_IMAGE_STRUCT(src);
257 Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
258
259 // Output pixels
260 VEC_DATA_TYPE(DATA_TYPE, 8)
261 pixels = convolution1x7(offset(&src, -3, 0), MAT0, MAT1, MAT2, MAT3, MAT4, MAT5, MAT6);
262
263 // Store result in dst
264 vstore8(pixels, 0, (__global DATA_TYPE *)dst.ptr);
265}
266
267/** Apply a 7x1 static convolution matrix to a single channel U8 input image and output a single channel image.
268 *
269 * @attention The matrix coefficients (MAT7, MAT8, MAT9, MAT10, MAT11, MAT12, MAT13, SCALE), COMPUTE_TYPE and DATA_TYPE_OUT need to be passed at compile time:\n
270 * e.g. -DMAT0=7 -DMAT1=8, ... -DMAT24=13, -DSCALE=6, -DCOMPUTE_TYPE=int, -DDATA_TYPE_OUT=int
271 *
272 * @param[in] src_ptr Pointer to the source image. Supported data types: U16, S16, S32
273 * @param[in] src_stride_x Stride of the source image in X dimension (in bytes)
274 * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
275 * @param[in] src_stride_y Stride of the source image in Y dimension (in bytes)
276 * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
277 * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source image
278 * @param[out] dst_ptr Pointer to the destination image. Supported data types: U8, S16
279 * @param[in] dst_stride_x Stride of the destination image in X dimension (in bytes)
280 * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
281 * @param[in] dst_stride_y Stride of the destination image in Y dimension (in bytes)
282 * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
283 * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination image
284 */
285__kernel void convolution_separable7x1_static(
286 IMAGE_DECLARATION(src),
287 IMAGE_DECLARATION(dst))
288{
289 Image src = CONVERT_TO_IMAGE_STRUCT(src);
290 Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
291
292 // Output pixels
293 VEC_DATA_TYPE(COMPUTE_TYPE, 8)
294 pixels = convolution7x1(&src, MAT7, MAT8, MAT9, MAT10, MAT11, MAT12, MAT13);
295
296 // Divide by the scale
297 pixels /= (VEC_DATA_TYPE(COMPUTE_TYPE, 8))SCALE;
298
299 // Store result in dst
300 vstore8(CONVERT_SAT(pixels, VEC_DATA_TYPE(DATA_TYPE_OUT, 8)), 0, (__global DATA_TYPE_OUT *)dst.ptr);
301}
302
303/** Apply a static 7x7 convolution matrix to a single channel U8 input image and output a single channel U8 image including the borders.
304 *
305 * @attention The matrix coefficients(MAT0, MAT1, ... MAT48, SCALE), DATA_TYPE_OUT need to be passed at compile time:\n
306 * e.g. -DMAT0=7 -DMAT1=8, ... -DMAT48=48, -DSCALE=6, -DDATA_TYPE_OUT=int
307 *
308 * @param[in] src_ptr Pointer to the source image. Supported data types: U8
309 * @param[in] src_stride_x Stride of the source image in X dimension (in bytes)
310 * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
311 * @param[in] src_stride_y Stride of the source image in Y dimension (in bytes)
312 * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
313 * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source image
314 * @param[out] dst_ptr Pointer to the destination image. Supported data types: U8, S16
315 * @param[in] dst_stride_x Stride of the destination image in X dimension (in bytes)
316 * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
317 * @param[in] dst_stride_y Stride of the destination image in Y dimension (in bytes)
318 * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
319 * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination image
320 */
321__kernel void convolution7x7_static(
322 IMAGE_DECLARATION(src),
323 IMAGE_DECLARATION(dst))
324{
325 Image src = CONVERT_TO_IMAGE_STRUCT(src);
326 Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
327
328 short8 pixels = convolution7x7(&src,
329 MAT0, MAT1, MAT2, MAT3, MAT4, MAT5, MAT6, MAT7, MAT8, MAT9, MAT10, MAT11, MAT12, MAT13,
330 MAT14, MAT15, MAT16, MAT17, MAT18, MAT19, MAT20, MAT21, MAT22, MAT23, MAT24, MAT25,
331 MAT26, MAT27, MAT28, MAT29, MAT30, MAT31, MAT32, MAT33, MAT34, MAT35, MAT36, MAT37,
332 MAT38, MAT39, MAT40, MAT41, MAT42, MAT43, MAT44, MAT45, MAT46, MAT47, MAT48, SCALE);
333
334 // Clamp results to [ 0, 255 ] and store them in dst
335 vstore8(CONVERT_SAT(pixels, VEC_DATA_TYPE(DATA_TYPE_OUT, 8)), 0, (__global DATA_TYPE_OUT *)dst.ptr);
336}
337
338#endif // DYNAMIC_MATRIX_CONVOLUTION