blob: f5b69c7a444a2197ced4362209b4c8d6a36c526c [file] [log] [blame]
Chunosovd621bca2017-11-03 17:33:15 +07001/*
Viet-Hoa Do9c7c2d22023-04-11 17:16:27 +01002 * Copyright (c) 2017-2023 Arm Limited.
Chunosovd621bca2017-11-03 17:33:15 +07003 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
Michele Di Giorgiodf4cf572019-10-09 15:32:39 +010025#include "arm_compute/core/Helpers.h"
Matthew Bentham758b5ba2020-03-05 23:37:48 +000026#include "support/ToolchainSupport.h"
Viet-Hoa Doa62129a2023-04-26 15:38:45 +010027#include "src/core/utils/quantization/AsymmHelpers.h"
Chunosovd621bca2017-11-03 17:33:15 +070028
29#include <cmath>
30#include <limits>
31#include <numeric>
32
Michele Di Giorgiod87a7b22019-09-10 10:42:27 +010033namespace arm_compute
34{
35namespace quantization
36{
Michalis Spyrou299fdd32019-05-01 13:03:59 +010037constexpr int64_t fixed_point_one_Q0 = (1LL << 31);
Gian Marco Iodice3139f032018-11-05 14:26:32 +000038constexpr float epsilon = 0.00001f;
Chunosovf450caa2017-11-08 16:09:35 +070039
Sang-Hoon Park30b46a62020-04-18 01:40:57 +010040Status calculate_quantized_multiplier(float multiplier, int32_t *quant_multiplier, int32_t *shift, bool ignore_epsilon)
Manuel Bottini07263982019-10-17 18:37:26 +010041{
Michele Di Giorgio35c37942019-12-03 19:34:30 +000042 if(multiplier >= 1.f)
Manuel Bottini07263982019-10-17 18:37:26 +010043 {
44 Status status = calculate_quantized_multiplier_greater_than_one(multiplier, quant_multiplier, shift);
45 *shift *= -1;
46 return status;
47 }
48 else
49 {
Sang-Hoon Park30b46a62020-04-18 01:40:57 +010050 return calculate_quantized_multiplier_less_than_one(multiplier, quant_multiplier, shift, ignore_epsilon);
Manuel Bottini07263982019-10-17 18:37:26 +010051 }
52}
53
Michalis Spyroue7be8a02019-12-12 16:16:09 +000054Status calculate_quantized_multiplier_less_than_one(float multiplier,
55 int32_t *quant_multiplier,
Sang-Hoon Park30b46a62020-04-18 01:40:57 +010056 int32_t *right_shift,
57 bool ignore_epsilon)
Chunosovd621bca2017-11-03 17:33:15 +070058{
Sang-Hoon Park30b46a62020-04-18 01:40:57 +010059 const float internal_epsilon = ignore_epsilon ? 0.0f : epsilon;
60
Chunosovd621bca2017-11-03 17:33:15 +070061 ARM_COMPUTE_RETURN_ERROR_ON(quant_multiplier == nullptr);
62 ARM_COMPUTE_RETURN_ERROR_ON(right_shift == nullptr);
Sang-Hoon Park30b46a62020-04-18 01:40:57 +010063 ARM_COMPUTE_RETURN_ERROR_ON(multiplier < -internal_epsilon);
64 ARM_COMPUTE_RETURN_ERROR_ON(multiplier > 1.0f + internal_epsilon);
Gian Marco Iodice3139f032018-11-05 14:26:32 +000065
Michalis Spyroue7be8a02019-12-12 16:16:09 +000066 int shift_exp = 0;
67 const double q = std::frexp(multiplier, &shift_exp);
68 *right_shift = -1 * shift_exp;
69 auto q_fixed = static_cast<int64_t>(support::cpp11::round(q * fixed_point_one_Q0));
Chunosovf450caa2017-11-08 16:09:35 +070070 ARM_COMPUTE_RETURN_ERROR_ON(q_fixed > fixed_point_one_Q0);
71 if(q_fixed == fixed_point_one_Q0)
Chunosovd621bca2017-11-03 17:33:15 +070072 {
73 q_fixed /= 2;
74 --*right_shift;
75 }
Sang-Hoon Park30b46a62020-04-18 01:40:57 +010076
77 if(ignore_epsilon && *right_shift > 31)
78 {
79 *right_shift = 0;
80 q_fixed = 0;
81 }
82
Chunosovd621bca2017-11-03 17:33:15 +070083 ARM_COMPUTE_RETURN_ERROR_ON(*right_shift < 0);
84 ARM_COMPUTE_RETURN_ERROR_ON(q_fixed > std::numeric_limits<int32_t>::max());
Chunosovf450caa2017-11-08 16:09:35 +070085 *quant_multiplier = static_cast<int32_t>(q_fixed);
Chunosovd621bca2017-11-03 17:33:15 +070086
Michele Di Giorgiod87a7b22019-09-10 10:42:27 +010087 return Status{};
Chunosovf450caa2017-11-08 16:09:35 +070088}
89
Michalis Spyroue7be8a02019-12-12 16:16:09 +000090Status calculate_quantized_multiplier_greater_than_one(float multiplier,
91 int32_t *quantized_multiplier,
92 int32_t *left_shift)
Chunosovf450caa2017-11-08 16:09:35 +070093{
94 ARM_COMPUTE_RETURN_ERROR_ON(quantized_multiplier == nullptr);
95 ARM_COMPUTE_RETURN_ERROR_ON(left_shift == nullptr);
96 ARM_COMPUTE_RETURN_ERROR_ON(multiplier < 1.f);
Michalis Spyroue7be8a02019-12-12 16:16:09 +000097
98 int shift_exp = 0;
99 const double q = std::frexp(multiplier, &shift_exp);
100 *left_shift = shift_exp;
101 auto q_fixed = static_cast<int64_t>(support::cpp11::round(q * fixed_point_one_Q0));
Chunosovf450caa2017-11-08 16:09:35 +0700102 ARM_COMPUTE_RETURN_ERROR_ON(q_fixed > fixed_point_one_Q0);
103 if(q_fixed == fixed_point_one_Q0)
104 {
105 q_fixed /= 2;
106 ++*left_shift;
107 }
108 ARM_COMPUTE_RETURN_ERROR_ON(*left_shift < 0);
109 ARM_COMPUTE_RETURN_ERROR_ON(q_fixed > std::numeric_limits<int32_t>::max());
110 *quantized_multiplier = static_cast<int32_t>(q_fixed);
111
Michele Di Giorgiod87a7b22019-09-10 10:42:27 +0100112 return Status{};
Chunosovf450caa2017-11-08 16:09:35 +0700113}
Georgios Pinitasdbdea0d2019-10-16 19:21:40 +0100114
Michele Di Giorgiof29d1b72019-10-29 10:58:13 +0000115arm_compute::Status calculate_quantized_multipliers(const QuantizationInfo &iq_info,
116 const QuantizationInfo &wq_info,
117 const QuantizationInfo &oq_info,
118 GEMMLowpOutputStageInfo &stage_info)
Georgios Pinitasdbdea0d2019-10-16 19:21:40 +0100119{
120 ARM_COMPUTE_RETURN_ERROR_ON(iq_info.scale().empty());
121 ARM_COMPUTE_RETURN_ERROR_ON(wq_info.scale().empty());
122 ARM_COMPUTE_RETURN_ERROR_ON(oq_info.scale().empty());
123
124 const unsigned int size = wq_info.scale().size();
125
126 auto &quant_multipliers = stage_info.gemmlowp_multipliers;
127 auto &quant_shifts = stage_info.gemmlowp_shifts;
128 quant_multipliers.resize(size);
129 quant_shifts.resize(size);
130
131 const auto &w_scales = wq_info.scale();
132 const float i_scale = iq_info.scale().at(0);
133 const float o_scale = oq_info.scale().at(0);
134
135 for(unsigned int i = 0; i < size; ++i)
136 {
137 const float multiplier = i_scale * w_scales[i] / o_scale;
Michalis Spyroue7be8a02019-12-12 16:16:09 +0000138 int32_t quant_multiplier = 0;
139 int32_t quant_shift = 0;
Michele Di Giorgiof29d1b72019-10-29 10:58:13 +0000140 ARM_COMPUTE_RETURN_ON_ERROR(calculate_quantized_multiplier(multiplier, &quant_multiplier, &quant_shift));
Georgios Pinitasdbdea0d2019-10-16 19:21:40 +0100141 quant_multipliers[i] = quant_multiplier;
142 quant_shifts[i] = quant_shift;
143 }
144
145 // Legacy part
146 stage_info.gemmlowp_shift = quant_shifts[0];
147 stage_info.gemmlowp_multiplier = quant_multipliers[0];
148
149 return Status{};
150}
151
Michele Di Giorgiod87a7b22019-09-10 10:42:27 +0100152std::pair<int, int> get_min_max_values_from_quantized_data_type(DataType data_type)
153{
154 int min_quant_val = 0;
155 int max_quant_val = 0;
156 switch(data_type)
157 {
158 case DataType::QASYMM8:
159 min_quant_val = std::numeric_limits<uint8_t>::min();
160 max_quant_val = std::numeric_limits<uint8_t>::max();
161 break;
162 case DataType::QSYMM8:
Manuel Bottini8481d832019-12-10 15:28:40 +0000163 case DataType::QASYMM8_SIGNED:
Michele Di Giorgiod87a7b22019-09-10 10:42:27 +0100164 min_quant_val = std::numeric_limits<int8_t>::min();
165 max_quant_val = std::numeric_limits<int8_t>::max();
166 break;
167 case DataType::QASYMM16:
168 min_quant_val = std::numeric_limits<uint16_t>::min();
169 max_quant_val = std::numeric_limits<uint16_t>::max();
170 break;
171 case DataType::QSYMM16:
172 min_quant_val = std::numeric_limits<int16_t>::min();
173 max_quant_val = std::numeric_limits<int16_t>::max();
174 break;
175 default:
176 ARM_COMPUTE_ERROR("Unsupported data type");
177 }
178 return std::make_pair(min_quant_val, max_quant_val);
179}
Viet-Hoa Do9c7c2d22023-04-11 17:16:27 +0100180
Viet-Hoa Doa62129a2023-04-26 15:38:45 +0100181std::tuple<int32_t, int32_t> get_quantized_asymmetric_output_min_max(const QuantizationInfo &q_info, const ActivationLayerInfo &act_info, DataType data_type)
Viet-Hoa Do9c7c2d22023-04-11 17:16:27 +0100182{
Viet-Hoa Doa62129a2023-04-26 15:38:45 +0100183 ARM_COMPUTE_ERROR_ON(data_type != DataType::QASYMM8 && data_type != DataType::QASYMM8_SIGNED);
184
185 const auto min_max = get_min_max(data_type);
186
187 int32_t type_min = std::get<0>(min_max).get<int32_t>();
188 int32_t type_max = std::get<1>(min_max).get<int32_t>();
189
Viet-Hoa Do9c7c2d22023-04-11 17:16:27 +0100190 const UniformQuantizationInfo q_unif = q_info.uniform();
191
192 if(act_info.enabled())
193 {
194 switch(act_info.activation())
195 {
196 case ActivationLayerInfo::ActivationFunction::RELU:
Viet-Hoa Doa62129a2023-04-26 15:38:45 +0100197 type_min = q_unif.offset;
Viet-Hoa Do9c7c2d22023-04-11 17:16:27 +0100198 break;
199 case ActivationLayerInfo::ActivationFunction::BOUNDED_RELU:
Viet-Hoa Doa62129a2023-04-26 15:38:45 +0100200 type_min = q_unif.offset;
201 type_max = (data_type == DataType::QASYMM8) ? quantize_qasymm8(act_info.a(), q_info) : quantize_qasymm8_signed(act_info.a(), q_info);
Viet-Hoa Do9c7c2d22023-04-11 17:16:27 +0100202 break;
203 case ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU:
Viet-Hoa Doa62129a2023-04-26 15:38:45 +0100204 type_min = (data_type == DataType::QASYMM8) ? quantize_qasymm8(act_info.b(), q_info) : quantize_qasymm8_signed(act_info.b(), q_info);
205 type_max = (data_type == DataType::QASYMM8) ? quantize_qasymm8(act_info.a(), q_info) : quantize_qasymm8_signed(act_info.a(), q_info);
Viet-Hoa Do9c7c2d22023-04-11 17:16:27 +0100206 break;
207 default:
208 ARM_COMPUTE_ERROR("Activation function not supported.");
209 break;
210 }
211 }
212
Viet-Hoa Doa62129a2023-04-26 15:38:45 +0100213 return std::make_tuple(type_min, type_max);
Viet-Hoa Do9c7c2d22023-04-11 17:16:27 +0100214}
215
Vidhya Sudhan Loganathan951b8a42019-11-04 14:42:08 +0000216void compute_quantized_multipliers_and_shifts(const ITensorInfo *input,
217 const ITensorInfo *weights,
218 const ITensorInfo *output,
Vidhya Sudhan Loganathan951b8a42019-11-04 14:42:08 +0000219 int32_t *output_multipliers_ptr,
220 int32_t *output_shifts_ptr)
Michele Di Giorgiodf4cf572019-10-09 15:32:39 +0100221{
Vidhya Sudhan Loganathan951b8a42019-11-04 14:42:08 +0000222 const UniformQuantizationInfo iq_info = input->quantization_info().uniform();
223 const QuantizationInfo wq_info = weights->quantization_info();
224 const UniformQuantizationInfo oq_info = output->quantization_info().uniform();
Michele Di Giorgiodf4cf572019-10-09 15:32:39 +0100225
Michele Di Giorgiod02d5ed2021-01-22 09:47:04 +0000226 const unsigned int num_filters = wq_info.scale().size();
227
Michele Di Giorgiodf4cf572019-10-09 15:32:39 +0100228 for(unsigned int i = 0; i < num_filters; ++i)
229 {
Michalis Spyroue7be8a02019-12-12 16:16:09 +0000230 int32_t output_multiplier = 0;
231 int32_t output_shift = 0;
Michele Di Giorgiodf4cf572019-10-09 15:32:39 +0100232 const float multiplier = iq_info.scale * wq_info.scale()[i] / oq_info.scale;
Michele Di Giorgio14cbfb22019-10-23 10:53:10 +0100233 calculate_quantized_multiplier(multiplier, &output_multiplier, &output_shift);
Michele Di Giorgiodf4cf572019-10-09 15:32:39 +0100234
235 output_multipliers_ptr[i] = output_multiplier;
236 output_shifts_ptr[i] = output_shift;
237 }
238}
Sang-Hoon Park396cb952020-03-26 14:02:37 +0000239
240int32_t saturating_rounding_doubling_highmul(int32_t a, int32_t b)
241{
242 bool overflow = a == b && a == std::numeric_limits<int32_t>::min();
243 int64_t a_64(a);
244 int64_t b_64(b);
Sang-Hoon Park0d008f72020-03-13 14:56:05 +0000245 int64_t ab_64 = a_64 * b_64;
Pablo Tello4e66d702022-03-07 18:20:12 +0000246 const bool is_positive_or_zero =
247 a == 0 || b == 0 ||
248 (std::signbit(static_cast<double>(a)) == std::signbit(static_cast<double>(b)));
Sang-Hoon Park0d008f72020-03-13 14:56:05 +0000249 int32_t nudge = is_positive_or_zero ? (1 << 30) : (1 - (1 << 30));
250 int32_t ab_x2_high32 = static_cast<int32_t>((ab_64 + nudge) / (1ll << 31));
Sang-Hoon Park396cb952020-03-26 14:02:37 +0000251 return overflow ? std::numeric_limits<int32_t>::max() : ab_x2_high32;
252}
253
254inline int32_t rounding_divide_by_pow2(int32_t x, int exponent)
255{
256 const int32_t mask = (1 << exponent) - 1;
257 const int32_t threshold = (mask >> 1) + (x < 0 ? 1 : 0);
258 return (x >> exponent) + ((x & mask) > threshold ? 1 : 0);
259}
260
Sang-Hoon Park0d008f72020-03-13 14:56:05 +0000261int32_t multiply_by_quantized_multiplier(int32_t input, int32_t qmul, int32_t shift)
Sang-Hoon Park396cb952020-03-26 14:02:37 +0000262{
263 const auto left_shift = shift > 0 ? shift : 0;
264 const auto right_shift = shift > 0 ? 0 : -shift;
265 return rounding_divide_by_pow2(saturating_rounding_doubling_highmul(input * (1 << left_shift), qmul), right_shift);
266}
267
268int32_t saturating_rounding_multiply_by_pow2(int32_t exponent, int32_t v)
269{
270 if(exponent == 0)
271 {
272 return v;
273 }
274 else if(exponent < 0)
275 {
276 return rounding_divide_by_pow2(v, -exponent);
277 }
278 else
279 {
280 constexpr auto min = std::numeric_limits<int32_t>::min();
281 constexpr auto max = std::numeric_limits<int32_t>::max();
282 const auto width = sizeof(int32_t) * 8;
283
284 const int32_t threshold = ((1 << (width - 1 - exponent)) - 1);
285 bool pos_mask = v > threshold;
286 bool neg_mask = v < -threshold;
287 int32_t result = v << exponent;
288 result = pos_mask ? max : result;
289 result = neg_mask ? min : result;
290 return result;
291 }
292}
Sang-Hoon Park0d008f72020-03-13 14:56:05 +0000293
294void get_invsqrt_quantized_multiplier_exp(int32_t input, int32_t reverse_shift, int32_t &output_inv_sqrt, int32_t &output_shift)
295{
296 ARM_COMPUTE_ERROR_ON(input < 0);
297
298 if(input <= 1)
299 {
300 // dealing the inputs (0 and 1) separately to avoid overflow
301 output_inv_sqrt = std::numeric_limits<std::int32_t>::max();
302 output_shift = 0;
303 return;
304 }
305
306 // prepare input for fixed point operation and compute shift value
307 output_shift = 11;
308 while(input >= (1 << 29))
309 {
310 input /= 4;
311 ++output_shift;
312 }
313
314 const uint32_t max_left_shift_bits = __builtin_clz(static_cast<uint32_t>(input)) - 1;
315 const uint32_t max_left_shift_bits_pairs = max_left_shift_bits / 2;
316 const uint32_t left_shift_bit_pairs = max_left_shift_bits_pairs - 1;
317 output_shift -= left_shift_bit_pairs;
318 input <<= 2 * left_shift_bit_pairs;
319
320 // Calculation in fixed point domain with 3 integer bits.
321 using FixedPointRawType = int32_t;
322 constexpr uint32_t fixedpoint_position = 3;
323 constexpr uint32_t fixedpoint_int_position = sizeof(FixedPointRawType) * 8 - 1 - fixedpoint_position;
324 using FixedPoint3 = FixedPointRawType;
325 using FixedPoint0 = FixedPointRawType;
326
327 // fixed point representation of input divided by 2 and 1.5 for Newton-Raphson iteration
328 const FixedPoint3 fixedpoint_input = (input >> 1);
329 const FixedPoint3 fixedpoint_half_input = rounding_divide_by_pow2(fixedpoint_input, 1);
330 const FixedPoint3 fixedpoint_half_three = (0x1 << fixedpoint_int_position) + (0x1 << (fixedpoint_int_position - 1));
331
332 // initial guess (1) in fixed point representation
333 FixedPoint3 x = 0x1 << fixedpoint_int_position;
334
335 // multiplication of two fixed point numbers, defined for readability
336 auto fixed_point_mul = [](FixedPointRawType a, FixedPointRawType b) -> FixedPointRawType
337 {
338 return saturating_rounding_doubling_highmul(a, b);
339 };
340
341 // rescaling of fixed point to have dst_bit integer bits, defined for readability
342 auto fixed_point_rescale = [](FixedPointRawType a, uint32_t src_bit, uint32_t dst_bit) -> FixedPointRawType
343 {
344 const uint32_t exponent = src_bit - dst_bit;
345 return saturating_rounding_multiply_by_pow2(exponent, a);
346 };
347
348 // 5 iterations of Newton-Raphson method for inverse square root - 1.5 * x_n = input/2 * (x_n)^3
349 constexpr int32_t num_iteration = 5;
350 for(int32_t i = 0; i < num_iteration; ++i)
351 {
352 const auto x3 = fixed_point_rescale(fixed_point_mul(fixed_point_mul(x, x), x), 9, fixedpoint_position);
353 x = fixed_point_rescale(fixed_point_mul(fixedpoint_half_three, x) - fixed_point_mul(fixedpoint_half_input, x3), 6, fixedpoint_position);
354 }
355
356 // fixed point representation of sqrt(1/2)
357 const FixedPoint0 fixedpoint_half_sqrt_2 = 1518500250;
358 x = fixed_point_mul(fixedpoint_half_sqrt_2, x);
359 output_inv_sqrt = x;
360 if(output_shift < 0)
361 {
362 output_inv_sqrt <<= -output_shift;
363 output_shift = 0;
364 }
365 // convert right shift to left shift
366 output_shift *= reverse_shift;
367}
Michele Di Giorgiod87a7b22019-09-10 10:42:27 +0100368} // quantization
369} // arm_compute