blob: 110325c5a0d98760cf3e26ffaa02309272f00ea6 [file] [log] [blame]
Moritz Pflanzer3ce3ff42017-07-21 17:41:02 +01001/*
Gunes Bayir9d0c4de2023-04-13 18:22:58 +01002 * Copyright (c) 2017-2023 Arm Limited.
Moritz Pflanzer3ce3ff42017-07-21 17:41:02 +01003 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
Moritz Pflanzera09de0c2017-09-01 20:41:12 +010024#include "tests/validation/Helpers.h"
Gunes Bayir9d0c4de2023-04-13 18:22:58 +010025#include "tests/framework/Asserts.h"
Moritz Pflanzer3ce3ff42017-07-21 17:41:02 +010026
Giorgio Arena1f9ca1d2018-03-01 11:13:45 +000027#include <algorithm>
28#include <cmath>
29
Moritz Pflanzer3ce3ff42017-07-21 17:41:02 +010030namespace arm_compute
31{
32namespace test
33{
34namespace validation
35{
Michalis Spyroued7b27d2019-11-27 16:04:17 +000036template <>
Anton Lokhmotovaf6204c2017-11-08 09:34:19 +000037SimpleTensor<float> convert_from_asymmetric(const SimpleTensor<uint8_t> &src)
38{
Georgios Pinitas4c5469b2019-05-21 13:32:43 +010039 const UniformQuantizationInfo &quantization_info = src.quantization_info().uniform();
40 SimpleTensor<float> dst{ src.shape(), DataType::F32, 1, QuantizationInfo(), src.data_layout() };
Michalis Spyroud1d77222020-04-08 14:10:15 +010041#if defined(_OPENMP)
42 #pragma omp parallel for
43#endif /* _OPENMP */
Anton Lokhmotovaf6204c2017-11-08 09:34:19 +000044 for(int i = 0; i < src.num_elements(); ++i)
45 {
Georgios Pinitas4c5469b2019-05-21 13:32:43 +010046 dst[i] = dequantize_qasymm8(src[i], quantization_info);
Anton Lokhmotovaf6204c2017-11-08 09:34:19 +000047 }
48 return dst;
49}
50
Michalis Spyroued7b27d2019-11-27 16:04:17 +000051template <>
Georgios Pinitas6e1791b2019-12-02 19:01:25 +000052SimpleTensor<float> convert_from_asymmetric(const SimpleTensor<int8_t> &src)
53{
54 const UniformQuantizationInfo &quantization_info = src.quantization_info().uniform();
55 SimpleTensor<float> dst{ src.shape(), DataType::F32, 1, QuantizationInfo(), src.data_layout() };
56
Michalis Spyroud1d77222020-04-08 14:10:15 +010057#if defined(_OPENMP)
58 #pragma omp parallel for
59#endif /* _OPENMP */
Georgios Pinitas6e1791b2019-12-02 19:01:25 +000060 for(int i = 0; i < src.num_elements(); ++i)
61 {
62 dst[i] = dequantize_qasymm8_signed(src[i], quantization_info);
63 }
64 return dst;
65}
66
67template <>
Michele Di Giorgio578a9fc2019-08-23 11:49:04 +010068SimpleTensor<float> convert_from_asymmetric(const SimpleTensor<uint16_t> &src)
69{
70 const UniformQuantizationInfo &quantization_info = src.quantization_info().uniform();
71 SimpleTensor<float> dst{ src.shape(), DataType::F32, 1, QuantizationInfo(), src.data_layout() };
72
Michalis Spyroud1d77222020-04-08 14:10:15 +010073#if defined(_OPENMP)
74 #pragma omp parallel for
75#endif /* _OPENMP */
Michele Di Giorgio578a9fc2019-08-23 11:49:04 +010076 for(int i = 0; i < src.num_elements(); ++i)
77 {
78 dst[i] = dequantize_qasymm16(src[i], quantization_info);
79 }
80 return dst;
81}
82
Michele Di Giorgio4aff98f2019-08-28 16:27:26 +010083template <>
Anton Lokhmotovaf6204c2017-11-08 09:34:19 +000084SimpleTensor<uint8_t> convert_to_asymmetric(const SimpleTensor<float> &src, const QuantizationInfo &quantization_info)
85{
Georgios Pinitas4c5469b2019-05-21 13:32:43 +010086 SimpleTensor<uint8_t> dst{ src.shape(), DataType::QASYMM8, 1, quantization_info };
87 const UniformQuantizationInfo &qinfo = quantization_info.uniform();
88
Michalis Spyroud1d77222020-04-08 14:10:15 +010089#if defined(_OPENMP)
90 #pragma omp parallel for
91#endif /* _OPENMP */
Anton Lokhmotovaf6204c2017-11-08 09:34:19 +000092 for(int i = 0; i < src.num_elements(); ++i)
93 {
Georgios Pinitas4c5469b2019-05-21 13:32:43 +010094 dst[i] = quantize_qasymm8(src[i], qinfo);
Anton Lokhmotovaf6204c2017-11-08 09:34:19 +000095 }
96 return dst;
97}
Giorgio Arena1f9ca1d2018-03-01 11:13:45 +000098
Manuel Bottini3689fcd2019-06-14 17:18:12 +010099template <>
Sang-Hoon Parkae6ef7c2019-11-13 16:51:45 +0000100SimpleTensor<int8_t> convert_to_asymmetric(const SimpleTensor<float> &src, const QuantizationInfo &quantization_info)
101{
102 SimpleTensor<int8_t> dst{ src.shape(), DataType::QASYMM8_SIGNED, 1, quantization_info };
103 const UniformQuantizationInfo &qinfo = quantization_info.uniform();
104
Michalis Spyroud1d77222020-04-08 14:10:15 +0100105#if defined(_OPENMP)
106 #pragma omp parallel for
107#endif /* _OPENMP */
Sang-Hoon Parkae6ef7c2019-11-13 16:51:45 +0000108 for(int i = 0; i < src.num_elements(); ++i)
109 {
110 dst[i] = quantize_qasymm8_signed(src[i], qinfo);
111 }
112 return dst;
113}
114
Michalis Spyroued7b27d2019-11-27 16:04:17 +0000115template <>
Michele Di Giorgio4aff98f2019-08-28 16:27:26 +0100116SimpleTensor<uint16_t> convert_to_asymmetric(const SimpleTensor<float> &src, const QuantizationInfo &quantization_info)
117{
118 SimpleTensor<uint16_t> dst{ src.shape(), DataType::QASYMM16, 1, quantization_info };
119 const UniformQuantizationInfo &qinfo = quantization_info.uniform();
120
Michalis Spyroud1d77222020-04-08 14:10:15 +0100121#if defined(_OPENMP)
122 #pragma omp parallel for
123#endif /* _OPENMP */
Michele Di Giorgio4aff98f2019-08-28 16:27:26 +0100124 for(int i = 0; i < src.num_elements(); ++i)
125 {
126 dst[i] = quantize_qasymm16(src[i], qinfo);
127 }
128 return dst;
129}
130
131template <>
Manuel Bottini3689fcd2019-06-14 17:18:12 +0100132SimpleTensor<int16_t> convert_to_symmetric(const SimpleTensor<float> &src, const QuantizationInfo &quantization_info)
133{
134 SimpleTensor<int16_t> dst{ src.shape(), DataType::QSYMM16, 1, quantization_info };
135 const UniformQuantizationInfo &qinfo = quantization_info.uniform();
136
Michalis Spyroud1d77222020-04-08 14:10:15 +0100137#if defined(_OPENMP)
138 #pragma omp parallel for
139#endif /* _OPENMP */
Manuel Bottini3689fcd2019-06-14 17:18:12 +0100140 for(int i = 0; i < src.num_elements(); ++i)
141 {
142 dst[i] = quantize_qsymm16(src[i], qinfo);
143 }
144 return dst;
145}
146
147template <>
148SimpleTensor<float> convert_from_symmetric(const SimpleTensor<int16_t> &src)
149{
150 const UniformQuantizationInfo &quantization_info = src.quantization_info().uniform();
151 SimpleTensor<float> dst{ src.shape(), DataType::F32, 1, QuantizationInfo(), src.data_layout() };
152
Michalis Spyroud1d77222020-04-08 14:10:15 +0100153#if defined(_OPENMP)
154 #pragma omp parallel for
155#endif /* _OPENMP */
Manuel Bottini3689fcd2019-06-14 17:18:12 +0100156 for(int i = 0; i < src.num_elements(); ++i)
157 {
158 dst[i] = dequantize_qsymm16(src[i], quantization_info);
159 }
160 return dst;
161}
162
Vidhya Sudhan Loganathan71ecf392018-08-31 16:10:16 +0100163template <typename T>
164void matrix_multiply(const SimpleTensor<T> &a, const SimpleTensor<T> &b, SimpleTensor<T> &out)
Giorgio Arena1f9ca1d2018-03-01 11:13:45 +0000165{
166 ARM_COMPUTE_ERROR_ON(a.shape()[0] != b.shape()[1]);
167 ARM_COMPUTE_ERROR_ON(a.shape()[1] != out.shape()[1]);
168 ARM_COMPUTE_ERROR_ON(b.shape()[0] != out.shape()[0]);
169
170 const int M = a.shape()[1]; // Rows
171 const int N = b.shape()[0]; // Cols
172 const int K = b.shape()[1];
173
Michalis Spyroud1d77222020-04-08 14:10:15 +0100174#if defined(_OPENMP)
175 #pragma omp parallel for collapse(2)
176#endif /* _OPENMP */
Giorgio Arena1f9ca1d2018-03-01 11:13:45 +0000177 for(int y = 0; y < M; ++y)
178 {
179 for(int x = 0; x < N; ++x)
180 {
181 float acc = 0.0f;
182 for(int k = 0; k < K; ++k)
183 {
184 acc += a[y * K + k] * b[x + k * N];
185 }
186
187 out[x + y * N] = acc;
188 }
189 }
190}
191
Vidhya Sudhan Loganathan71ecf392018-08-31 16:10:16 +0100192template <typename T>
193void transpose_matrix(const SimpleTensor<T> &in, SimpleTensor<T> &out)
Giorgio Arena1f9ca1d2018-03-01 11:13:45 +0000194{
195 ARM_COMPUTE_ERROR_ON((in.shape()[0] != out.shape()[1]) || (in.shape()[1] != out.shape()[0]));
196
197 const int width = in.shape()[0];
198 const int height = in.shape()[1];
199
Michalis Spyroud1d77222020-04-08 14:10:15 +0100200#if defined(_OPENMP)
201 #pragma omp parallel for collapse(2)
202#endif /* _OPENMP */
Giorgio Arena1f9ca1d2018-03-01 11:13:45 +0000203 for(int y = 0; y < height; ++y)
204 {
205 for(int x = 0; x < width; ++x)
206 {
Gian Marco Iodice5ba5e092018-12-06 17:13:09 +0000207 const T val = in[x + y * width];
Giorgio Arena1f9ca1d2018-03-01 11:13:45 +0000208
209 out[x * height + y] = val;
210 }
211 }
212}
213
214template <typename T>
215void get_tile(const SimpleTensor<T> &in, SimpleTensor<T> &tile, const Coordinates &coord)
216{
Gian Marco Iodicef1c2bf02018-06-13 14:05:54 +0100217 ARM_COMPUTE_ERROR_ON(tile.shape().num_dimensions() > 2);
Giorgio Arena1f9ca1d2018-03-01 11:13:45 +0000218
219 const int w_tile = tile.shape()[0];
220 const int h_tile = tile.shape()[1];
221
222 // Fill the tile with zeros
223 std::fill(tile.data() + 0, (tile.data() + (w_tile * h_tile)), static_cast<T>(0));
224
225 // Check if with the dimensions greater than 2 we could have out-of-bound reads
226 for(size_t d = 2; d < Coordinates::num_max_dimensions; ++d)
227 {
228 if(coord[d] < 0 || coord[d] >= static_cast<int>(in.shape()[d]))
229 {
230 ARM_COMPUTE_ERROR("coord[d] < 0 || coord[d] >= in.shape()[d] with d >= 2");
231 }
232 }
233
234 // Since we could have out-of-bound reads along the X and Y dimensions,
235 // we start calculating the input address with x = 0 and y = 0
236 Coordinates start_coord = coord;
237 start_coord[0] = 0;
238 start_coord[1] = 0;
239
240 // Get input and roi pointers
241 auto in_ptr = static_cast<const T *>(in(start_coord));
242 auto roi_ptr = static_cast<T *>(tile.data());
243
244 const int x_in_start = std::max(0, coord[0]);
245 const int y_in_start = std::max(0, coord[1]);
246 const int x_in_end = std::min(static_cast<int>(in.shape()[0]), coord[0] + w_tile);
247 const int y_in_end = std::min(static_cast<int>(in.shape()[1]), coord[1] + h_tile);
248
249 // Number of elements to copy per row
250 const int n = x_in_end - x_in_start;
251
252 // Starting coordinates for the ROI
253 const int x_tile_start = coord[0] > 0 ? 0 : std::abs(coord[0]);
254 const int y_tile_start = coord[1] > 0 ? 0 : std::abs(coord[1]);
255
256 // Update input pointer
257 in_ptr += x_in_start;
258 in_ptr += (y_in_start * in.shape()[0]);
259
260 // Update ROI pointer
261 roi_ptr += x_tile_start;
262 roi_ptr += (y_tile_start * tile.shape()[0]);
263
264 for(int y = y_in_start; y < y_in_end; ++y)
265 {
266 // Copy per row
267 std::copy(in_ptr, in_ptr + n, roi_ptr);
268
269 in_ptr += in.shape()[0];
270 roi_ptr += tile.shape()[0];
271 }
272}
273
Gian Marco Iodicef1c2bf02018-06-13 14:05:54 +0100274template <typename T>
275void zeros(SimpleTensor<T> &in, const Coordinates &anchor, const TensorShape &shape)
276{
277 ARM_COMPUTE_ERROR_ON(anchor.num_dimensions() != shape.num_dimensions());
278 ARM_COMPUTE_ERROR_ON(in.shape().num_dimensions() > 2);
279 ARM_COMPUTE_ERROR_ON(shape.num_dimensions() > 2);
280
281 // Check if with the dimensions greater than 2 we could have out-of-bound reads
282 for(size_t d = 0; d < Coordinates::num_max_dimensions; ++d)
283 {
284 if(anchor[d] < 0 || ((anchor[d] + shape[d]) > in.shape()[d]))
285 {
286 ARM_COMPUTE_ERROR("anchor[d] < 0 || (anchor[d] + shape[d]) > in.shape()[d]");
287 }
288 }
289
290 // Get input pointer
291 auto in_ptr = static_cast<T *>(in(anchor[0] + anchor[1] * in.shape()[0]));
292
293 const unsigned int n = in.shape()[0];
294
295 for(unsigned int y = 0; y < shape[1]; ++y)
296 {
297 std::fill(in_ptr, in_ptr + shape[0], 0);
298 in_ptr += n;
299 }
300}
301
Michele Di Giorgioed5a4922018-09-13 16:22:01 +0100302std::pair<int, int> get_quantized_bounds(const QuantizationInfo &quant_info, float min, float max)
303{
304 ARM_COMPUTE_ERROR_ON_MSG(min > max, "min must be lower equal than max");
305
Georgios Pinitas4c5469b2019-05-21 13:32:43 +0100306 const int min_bound = quantize_qasymm8(min, quant_info.uniform());
307 const int max_bound = quantize_qasymm8(max, quant_info.uniform());
Michalis Spyroubcfd09a2019-05-01 13:03:59 +0100308 return std::pair<int, int> { min_bound, max_bound };
Michele Di Giorgioed5a4922018-09-13 16:22:01 +0100309}
310
Georgios Pinitas6e1791b2019-12-02 19:01:25 +0000311std::pair<int, int> get_quantized_qasymm8_signed_bounds(const QuantizationInfo &quant_info, float min, float max)
312{
313 ARM_COMPUTE_ERROR_ON_MSG(min > max, "min must be lower equal than max");
314
315 const int min_bound = quantize_qasymm8_signed(min, quant_info.uniform());
316 const int max_bound = quantize_qasymm8_signed(max, quant_info.uniform());
317 return std::pair<int, int> { min_bound, max_bound };
318}
319
Georgios Pinitasdbdea0d2019-10-16 19:21:40 +0100320std::pair<int, int> get_symm_quantized_per_channel_bounds(const QuantizationInfo &quant_info, float min, float max, size_t channel_id)
321{
322 ARM_COMPUTE_ERROR_ON_MSG(min > max, "min must be lower equal than max");
323
324 const int min_bound = quantize_qsymm8_per_channel(min, quant_info, channel_id);
325 const int max_bound = quantize_qsymm8_per_channel(max, quant_info, channel_id);
326 return std::pair<int, int> { min_bound, max_bound };
327}
328
Manuel Bottinif733e032021-05-19 16:15:36 +0100329void add_padding_x(std::initializer_list<ITensor *> tensors, const DataLayout &data_layout, bool only_right_pad)
Giorgio Arena63825e82021-03-25 14:54:50 +0000330{
331 if(data_layout == DataLayout::NHWC)
332 {
333 constexpr unsigned int lower = 1U;
334 constexpr unsigned int upper = 16U;
335
336 std::uniform_int_distribution<unsigned int> distribution(lower, upper);
337 size_t seed_offset = 0;
338
339 for(ITensor *tensor : tensors)
340 {
341 ARM_COMPUTE_ERROR_ON(!tensor->info()->is_resizable());
342
343 std::mt19937 gen(library->seed() + seed_offset++);
344
345 const unsigned int right = distribution(gen);
Manuel Bottinif733e032021-05-19 16:15:36 +0100346 const unsigned int left = only_right_pad ? 0 : distribution(gen);
Giorgio Arena63825e82021-03-25 14:54:50 +0000347
348 tensor->info()->extend_padding(PaddingSize(0U, right, 0U, left));
349 }
350 }
351}
352
Gian Marco Iodice72b56872021-06-29 10:08:46 +0100353void add_padding_y(std::initializer_list<ITensor *> tensors, const DataLayout &data_layout)
354{
355 if(data_layout == DataLayout::NHWC)
356 {
357 constexpr unsigned int lower = 1U;
358 constexpr unsigned int upper = 4U;
359
360 std::uniform_int_distribution<unsigned int> distribution(lower, upper);
361 size_t seed_offset = 0;
362
363 for(ITensor *tensor : tensors)
364 {
365 ARM_COMPUTE_ERROR_ON(!tensor->info()->is_resizable());
366
367 std::mt19937 gen(library->seed() + seed_offset++);
368
369 const unsigned int top = distribution(gen);
370 const unsigned int bottom = distribution(gen);
371
372 tensor->info()->extend_padding(PaddingSize(top, 0U, bottom, 0U));
373 }
374 }
375}
376
Gunes Bayir9d0c4de2023-04-13 18:22:58 +0100377QuantizationInfo calculate_mat_mul_dst_q_info(const QuantizationInfo &a_q_info, const QuantizationInfo &b_q_info, int m, int n, int k, DataType data_type)
378{
379 ARM_COMPUTE_UNUSED(m, n);
380 QuantizationInfo c_q_info;
381
382 ARM_COMPUTE_ASSERT(data_type == DataType::QASYMM8 || data_type == DataType::QASYMM8_SIGNED);
383
384 const int32_t t_max = static_cast<int32_t>(data_type == DataType::QASYMM8 ? std::numeric_limits<uint8_t>::max() : std::numeric_limits<int8_t>::max());
385 const int32_t t_min = static_cast<int32_t>(data_type == DataType::QASYMM8 ? std::numeric_limits<uint8_t>::min() : std::numeric_limits<int8_t>::min());
386
387 /** Quantization Setup of matrix multiplication
388 *
389 * We have a matrix multiplication of the form C = A * B
390 * where A is (M X K), B is (K x N) and C is therefore (M x N).
391 *
392 * If we have some distributions statistics of A and B, i.e. mean and variance,
393 * we can estimate the mean and variance of a single value in C matrix and
394 * pick good scale and offset values for the output and have non-saturated tests.
395 *
396 * Each element in the output matrix can be calculated as follows:
397 * C_ij = sum_k(A_ik * B_kj)
398 *
399 * All values are float above.
400 *
401 * Note: All possible A_ik, B_kj random variables are assumed mutually independent.
402 *
403 * Terminology:
404 * E[X]: Mean of the random variable X (sometimes referred as mu_x)
405 * var(X): Variance of the random variable X (someimes referred as sigma^2_x)
406 * std(X): sqrt(var(X)), standard deviation of X
407 *
408 * 1) Calculate the mean:
409 * E[C_ij] = sum_k( E[A_ik] * E[B_kj] ) = K * mean_a * mean_b
410 *
411 * Since elements of A and B are uniformly distributed random variables, we have
412 * mean_a = (max_a + min_a) / 2, mean_b = (max_b + min_b ) / 2
413 * max_a and min_a can be calculated with the scale_a/b and offset_a/b
414 * by replacing data type minimum and maximums in the equations
415 *
416 * 2) Calculate the variance:
417 * var(C_ij) = sum_k( var(A_ik * B_kj) )
418 * = sum_k ( E[A_ik^2 * B_kj^2] - E[A_ik]^2E[B_kj^2] )
419 * = ...
420 * = K * (var_a * var_b + var_a * mean^2_b + var_b * mean^2_a)
421 *
422 * Similarly, due to uniform random variable properties, we have
423 * var_a = (max_a - min_a)^2 / 12
424 * var_b = (max_b - min_b)^2 / 12
425 *
426 *
427 * 3) Now, we have an idea of what would an average C_ij will like and how much deviation
428 * is present around it. The exact distribution of C is not easy to come up with dependent on K.
429 * But, as K increases, due to Central Limit Theorem, it'll look more like a bell shaped figure,
430 * approaching normal distribution.
431 *
432 * This is useful because, in normal distribution, we know that values +- 2 std_deviation around
433 * the mean constitute 95% of the values. Therefore, setting a plausible range for us:
434 * C_range = [C_min, C_max] = [mean_c - 2 * std_c, mean_c + 2 * std_c]
435 *
436 * 4)
437 * If we map this [C_min, C_max] to [0, 255] or [-128, 127] depending on the signedness of the
438 * data type, we can find a suitable scale and offset for the output. On average, it's expected
439 * that 5% of the output values will saturate and 95% will remain in the range.
440 *
441 * The equations to be solved for offset_c and scale_c are:
442 * C_min = scale_c * (type_min - offset_c)
443 * C_max = scale_c * (type_max - offset_c)
444 */
445
446 const int32_t a_offset = a_q_info.uniform().offset;
447 const float a_scale = a_q_info.uniform().scale;
448 const int32_t b_offset = b_q_info.uniform().offset;
449 const float b_scale = b_q_info.uniform().scale;
450
451 // Lhs/A stats
452 const float max_a = (t_max - a_offset) * a_scale;
453 const float min_a = (t_min - a_offset) * a_scale;
454 const float mean_a = (max_a + min_a) / 2;
455 const float var_a = (max_a - min_a) * (max_a - min_a) / 12;
456
457 // Rhs/B stats
458 const float max_b = (t_max - b_offset) * b_scale;
459 const float min_b = (t_min - b_offset) * b_scale;
460 const float mean_b = (max_b + min_b) / 2;
461 const float var_b = (max_b - min_b) * (max_b - min_b) / 12;
462
463 // Output stats
464 const float mean_out = k * mean_a * mean_b;
465 const float var_out = k * (var_a * var_b + var_a * mean_b * mean_b + var_b * mean_a * mean_a);
466 const float std_out = sqrt(var_out);
467
468 // Output quantization setup
469 const float scale_out = 4 * std_out / 255;
470 const int32_t offset_out = static_cast<int32_t>(t_min - (mean_out - 2.f * std_out) / scale_out);
471
472 c_q_info = QuantizationInfo(scale_out, offset_out);
473 return c_q_info;
474}
475
Giorgio Arena1f9ca1d2018-03-01 11:13:45 +0000476template void get_tile(const SimpleTensor<float> &in, SimpleTensor<float> &roi, const Coordinates &coord);
Vidhya Sudhan Loganathan71ecf392018-08-31 16:10:16 +0100477template void get_tile(const SimpleTensor<half> &in, SimpleTensor<half> &roi, const Coordinates &coord);
Gian Marco Iodice5ba5e092018-12-06 17:13:09 +0000478template void get_tile(const SimpleTensor<int> &in, SimpleTensor<int> &roi, const Coordinates &coord);
479template void get_tile(const SimpleTensor<short> &in, SimpleTensor<short> &roi, const Coordinates &coord);
480template void get_tile(const SimpleTensor<char> &in, SimpleTensor<char> &roi, const Coordinates &coord);
Gian Marco Iodicef1c2bf02018-06-13 14:05:54 +0100481template void zeros(SimpleTensor<float> &in, const Coordinates &anchor, const TensorShape &shape);
Vidhya Sudhan Loganathan71ecf392018-08-31 16:10:16 +0100482template void zeros(SimpleTensor<half> &in, const Coordinates &anchor, const TensorShape &shape);
483template void transpose_matrix(const SimpleTensor<float> &in, SimpleTensor<float> &out);
484template void transpose_matrix(const SimpleTensor<half> &in, SimpleTensor<half> &out);
Gian Marco Iodice5ba5e092018-12-06 17:13:09 +0000485template void transpose_matrix(const SimpleTensor<int> &in, SimpleTensor<int> &out);
486template void transpose_matrix(const SimpleTensor<short> &in, SimpleTensor<short> &out);
487template void transpose_matrix(const SimpleTensor<char> &in, SimpleTensor<char> &out);
Adnan AlSinanc5849582022-05-05 11:13:19 +0100488template void transpose_matrix(const SimpleTensor<int8_t> &in, SimpleTensor<int8_t> &out);
489template void transpose_matrix(const SimpleTensor<uint8_t> &in, SimpleTensor<uint8_t> &out);
Vidhya Sudhan Loganathan71ecf392018-08-31 16:10:16 +0100490template void matrix_multiply(const SimpleTensor<float> &a, const SimpleTensor<float> &b, SimpleTensor<float> &out);
491template void matrix_multiply(const SimpleTensor<half> &a, const SimpleTensor<half> &b, SimpleTensor<half> &out);
492
Moritz Pflanzer3ce3ff42017-07-21 17:41:02 +0100493} // namespace validation
494} // namespace test
495} // namespace arm_compute