blob: 1c31384ae17681d73f7e0de6ec94fb5cfe8da22e [file] [log] [blame]
//
// Copyright © 2017 Arm Ltd. All rights reserved.
// SPDX-License-Identifier: MIT
//
#include "ArmnnDriverImpl.hpp"
#include "../ArmnnPreparedModel_1_2.hpp"
#include "../ModelToINetworkConverter.hpp"
#include "../SystemPropertiesUtils.hpp"
#include <armnnDeserializer/IDeserializer.hpp>
#include <log/log.h>
#include <sys/stat.h>
namespace
{
const char *g_RelaxedFloat32toFloat16PerformanceExecTime = "ArmNN.relaxedFloat32toFloat16Performance.execTime";
const char *g_RelaxedFloat32toFloat16PerformancePowerUsage = "ArmNN.relaxedFloat32toFloat16Performance.powerUsage";
const char *g_OperandTypeTensorFloat32PerformanceExecTime = "Armnn.operandTypeTensorFloat32Performance.execTime";
const char *g_OperandTypeTensorFloat32PerformancePowerUsage = "Armnn.operandTypeTensorFloat32Performance.powerUsage";
const char *g_OperandTypeFloat32PerformanceExecTime = "Armnn.operandTypeFloat32Performance.execTime";
const char *g_OperandTypeFloat32PerformancePowerUsage = "Armnn.operandTypeFloat32Performance.powerUsage";
const char *g_OperandTypeTensorFloat16PerformanceExecTime = "Armnn.operandTypeTensorFloat16Performance.execTime";
const char *g_OperandTypeTensorFloat16PerformancePowerUsage = "Armnn.operandTypeTensorFloat16Performance.powerUsage";
const char *g_OperandTypeFloat16PerformanceExecTime = "Armnn.operandTypeFloat16Performance.execTime";
const char *g_OperandTypeFloat16PerformancePowerUsage = "Armnn.operandTypeFloat16Performance.powerUsage";
const char *g_OperandTypeTensorQuant8AsymmPerformanceExecTime =
"Armnn.operandTypeTensorQuant8AsymmPerformance.execTime";
const char *g_OperandTypeTensorQuant8AsymmPerformancePowerUsage =
"Armnn.operandTypeTensorQuant8AsymmPerformance.powerUsage";
const char *g_OperandTypeTensorQuant16SymmPerformanceExecTime =
"Armnn.operandTypeTensorQuant16SymmPerformance.execTime";
const char *g_OperandTypeTensorQuant16SymmPerformancePowerUsage =
"Armnn.operandTypeTensorQuant16SymmPerformance.powerUsage";
const char *g_OperandTypeTensorQuant8SymmPerformanceExecTime =
"Armnn.operandTypeTensorQuant8SymmPerformance.execTime";
const char *g_OperandTypeTensorQuant8SymmPerformancePowerUsage =
"Armnn.operandTypeTensorQuant8SymmPerformance.powerUsage";
const char *g_OperandTypeTensorQuant8SymmPerChannelPerformanceExecTime =
"Armnn.operandTypeTensorQuant8SymmPerChannelPerformance.execTime";
const char *g_OperandTypeTensorQuant8SymmPerChannelPerformancePowerUsage =
"Armnn.operandTypeTensorQuant8SymmPerChannelPerformance.powerUsage";
const char *g_OperandTypeTensorInt32PerformanceExecTime = "Armnn.operandTypeTensorInt32Performance.execTime";
const char *g_OperandTypeTensorInt32PerformancePowerUsage = "Armnn.operandTypeTensorInt32Performance.powerUsage";
const char *g_OperandTypeInt32PerformanceExecTime = "Armnn.operandTypeInt32Performance.execTime";
const char *g_OperandTypeInt32PerformancePowerUsage = "Armnn.operandTypeInt32Performance.powerUsage";
void NotifyCallbackAndCheck(const android::sp<V1_2::IPreparedModelCallback>& callback,
V1_0::ErrorStatus errorStatus,
const android::sp<V1_2::IPreparedModel>& preparedModelPtr)
{
Return<void> returned = callback->notify_1_2(errorStatus, preparedModelPtr);
// This check is required, if the callback fails and it isn't checked it will bring down the service
if (!returned.isOk())
{
ALOGE("ArmnnDriverImpl::prepareModel: hidl callback failed to return properly: %s ",
returned.description().c_str());
}
}
Return<V1_0::ErrorStatus> FailPrepareModel(V1_0::ErrorStatus error,
const std::string& message,
const android::sp<V1_2::IPreparedModelCallback>& callback)
{
ALOGW("ArmnnDriverImpl::prepareModel: %s", message.c_str());
NotifyCallbackAndCheck(callback, error, nullptr);
return error;
}
} // anonymous namespace
namespace armnn_driver
{
namespace hal_1_2
{
Return<V1_0::ErrorStatus> ArmnnDriverImpl::prepareArmnnModel_1_2(
const armnn::IRuntimePtr& runtime,
const armnn::IGpuAccTunedParametersPtr& clTunedParameters,
const DriverOptions& options,
const V1_2::Model& model,
const android::hardware::hidl_vec<android::hardware::hidl_handle>& modelCacheHandle,
const android::hardware::hidl_vec<android::hardware::hidl_handle>& dataCacheHandle,
const HidlToken& token,
const android::sp<V1_2::IPreparedModelCallback>& cb,
bool float32ToFloat16)
{
ALOGV("ArmnnDriverImpl::prepareArmnnModel_1_2()");
if (cb.get() == nullptr)
{
ALOGW("ArmnnDriverImpl::prepareModel: Invalid callback passed to prepareModel");
return V1_0::ErrorStatus::INVALID_ARGUMENT;
}
if (!runtime)
{
return FailPrepareModel(V1_0::ErrorStatus::DEVICE_UNAVAILABLE, "Device unavailable", cb);
}
if (!android::nn::validateModel(model))
{
return FailPrepareModel(V1_0::ErrorStatus::INVALID_ARGUMENT, "Invalid model passed as input", cb);
}
// Deliberately ignore any unsupported operations requested by the options -
// at this point we're being asked to prepare a model that we've already declared support for
// and the operation indices may be different to those in getSupportedOperations anyway.
std::set<unsigned int> unsupportedOperations;
ModelToINetworkConverter<HalPolicy> modelConverter(options.GetBackends(),
model,
unsupportedOperations);
if (modelConverter.GetConversionResult() != ConversionResult::Success)
{
FailPrepareModel(V1_0::ErrorStatus::GENERAL_FAILURE, "ModelToINetworkConverter failed", cb);
return V1_0::ErrorStatus::NONE;
}
// Serialize the network graph to a .armnn file if an output directory
// has been specified in the drivers' arguments.
std::vector<uint8_t> dataCacheData;
bool serializeToFile = dataCacheHandle.size() < 1 ? false : true;
auto serializedNetworkFileName =
SerializeNetwork(*modelConverter.GetINetwork(),
options.GetRequestInputsAndOutputsDumpDir(),
dataCacheData,
serializeToFile);
// Optimize the network
armnn::IOptimizedNetworkPtr optNet(nullptr, nullptr);
armnn::OptimizerOptions OptOptions;
OptOptions.m_ReduceFp32ToFp16 = float32ToFloat16;
OptOptions.m_ProfilingEnabled = options.IsGpuProfilingEnabled();
int cachedFd = -1;
bool saveCachedNetwork = options.SaveCachedNetwork();
unsigned int numberOfCachedModelFiles = 0;
if (modelCacheHandle.size() > 0)
{
unsigned int index = 0;
for (auto& backend : options.GetBackends())
{
// modelCacheHandle size should be equal to numberOfCachedModelFiles
// modelCacheHandle vector should be in same order as backends
auto numberOfCacheFiles = GetNumberOfCacheFiles(backend);
if (numberOfCacheFiles > 0)
{
numberOfCachedModelFiles += numberOfCacheFiles;
if (modelCacheHandle[index]->numFds == 1)
{
if (backend == armnn::Compute::GpuAcc)
{
cachedFd = modelCacheHandle[index]->data[0];
saveCachedNetwork = true;
}
}
index += numberOfCachedModelFiles;
}
}
}
armnn::BackendOptions gpuAcc("GpuAcc",
{
{ "FastMathEnabled", options.IsFastMathEnabled() },
{ "SaveCachedNetwork", saveCachedNetwork },
{ "CachedNetworkFilePath", options.GetCachedNetworkFilePath() },
{ "MLGOTuningFilePath", options.GetClMLGOTunedParametersFile() },
{ "CachedFileDescriptor", cachedFd }
});
armnn::BackendOptions cpuAcc("CpuAcc",
{
{ "FastMathEnabled", options.IsFastMathEnabled() },
{ "NumberOfThreads", options.GetNumberOfThreads() }
});
OptOptions.m_ModelOptions.push_back(gpuAcc);
OptOptions.m_ModelOptions.push_back(cpuAcc);
std::vector<std::string> errMessages;
try
{
optNet = armnn::Optimize(*modelConverter.GetINetwork(),
options.GetBackends(),
runtime->GetDeviceSpec(),
OptOptions,
errMessages);
}
catch (std::exception &e)
{
std::stringstream message;
message << "Exception (" << e.what() << ") caught from optimize.";
FailPrepareModel(V1_0::ErrorStatus::GENERAL_FAILURE, message.str(), cb);
return V1_0::ErrorStatus::NONE;
}
// Check that the optimized network is valid.
if (!optNet)
{
std::stringstream message;
message << "Invalid optimized network";
for (const std::string& msg : errMessages)
{
message << "\n" << msg;
}
FailPrepareModel(V1_0::ErrorStatus::GENERAL_FAILURE, message.str(), cb);
return V1_0::ErrorStatus::NONE;
}
// Export the optimized network graph to a dot file if an output dump directory
// has been specified in the drivers' arguments.
std::string dotGraphFileName = ExportNetworkGraphToDotFile(*optNet,
options.GetRequestInputsAndOutputsDumpDir());
// Load it into the runtime.
armnn::NetworkId netId = 0;
std::string msg;
armnn::INetworkProperties networkProperties(options.isAsyncModelExecutionEnabled(),
MemorySource::Undefined,
MemorySource::Undefined,
options.IsGpuProfilingEnabled());
auto numInputs = getMainModel(model).inputIndexes.size();
auto numOutputs = getMainModel(model).outputIndexes.size();
try
{
if (runtime->LoadNetwork(netId, move(optNet), msg, networkProperties) != armnn::Status::Success)
{
return FailPrepareModel(V1_0::ErrorStatus::GENERAL_FAILURE, msg, cb);
}
}
catch (std::exception& e)
{
std::stringstream message;
message << "Exception (" << e.what()<< ") caught from LoadNetwork.";
FailPrepareModel(V1_0::ErrorStatus::GENERAL_FAILURE, message.str(), cb);
return V1_0::ErrorStatus::NONE;
}
// Now that we have a networkId for the graph rename the exported files to use it
// so that we can associate the graph file and the input/output tensor exported files
RenameExportedFiles(serializedNetworkFileName,
dotGraphFileName,
options.GetRequestInputsAndOutputsDumpDir(),
netId);
std::unique_ptr<ArmnnPreparedModel_1_2<hal_1_2::HalPolicy>> preparedModel(
new ArmnnPreparedModel_1_2<hal_1_2::HalPolicy>(
netId,
runtime.get(),
model,
options.GetRequestInputsAndOutputsDumpDir(),
options.IsGpuProfilingEnabled(),
options.isAsyncModelExecutionEnabled(),
options.getNoOfArmnnThreads(),
options.isImportEnabled(),
options.isExportEnabled()));
// Run a single 'dummy' inference of the model. This means that CL kernels will get compiled (and tuned if
// this is enabled) before the first 'real' inference which removes the overhead of the first inference.
// Only run this if the GpuAcc backend has been added to options
if (std::find(options.GetBackends().begin(),
options.GetBackends().end(),
armnn::Compute::GpuAcc) != options.GetBackends().end())
{
if (!preparedModel->ExecuteWithDummyInputs(numInputs, numOutputs))
{
return FailPrepareModel(V1_0::ErrorStatus::GENERAL_FAILURE, "Network could not be executed", cb);
}
if (clTunedParameters &&
options.GetClTunedParametersMode() == armnn::IGpuAccTunedParameters::Mode::UpdateTunedParameters)
{
// Now that we've done one inference the CL kernel parameters will have been tuned,
// so save the updated file.
try
{
clTunedParameters->Save(options.GetClTunedParametersFile().c_str());
}
catch (std::exception& error)
{
ALOGE("ArmnnDriverImpl::prepareModel: Failed to save CL tuned parameters file '%s': %s",
options.GetClTunedParametersFile().c_str(), error.what());
}
}
}
size_t hashValue = 0;
// Cache the model
if (dataCacheHandle.size() > 0)
{
// Cache the Arm NN model, should be only 1
if (dataCacheHandle.size() != 1)
{
NotifyCallbackAndCheck(cb, V1_0::ErrorStatus::NONE, preparedModel.release());
return V1_0::ErrorStatus::NONE;
}
if (dataCacheHandle[0]->numFds != 1)
{
ALOGW("ArmnnDriverImpl::prepareArmnnModel_1_3: Cannot cache the data, numFds != 1.");
NotifyCallbackAndCheck(cb, V1_0::ErrorStatus::NONE, preparedModel.release());
return V1_0::ErrorStatus::NONE;
}
if (dataCacheHandle[0]->data[0] < 0)
{
ALOGW("ArmnnDriverImpl::prepareArmnnModel_1_3: Cannot cache the data, fd < 0");
NotifyCallbackAndCheck(cb, V1_0::ErrorStatus::NONE, preparedModel.release());
return V1_0::ErrorStatus::NONE;
}
int dataCacheFileAccessMode = fcntl(dataCacheHandle[0]->data[0], F_GETFL) & O_ACCMODE;
if (dataCacheFileAccessMode != O_RDWR)
{
ALOGW("ArmnnDriverImpl::prepareModelFromCache_1_2(): Invalid Access Mode.");
NotifyCallbackAndCheck(cb, V1_0::ErrorStatus::NONE, preparedModel.release());
return V1_0::ErrorStatus::NONE;
}
write(dataCacheHandle[0]->data[0], dataCacheData.data(), dataCacheData.size());
hashValue = CacheDataHandlerInstance().Hash(dataCacheData);
}
if (modelCacheHandle.size() > 0)
{
if (modelCacheHandle.size() != numberOfCachedModelFiles)
{
NotifyCallbackAndCheck(cb, V1_0::ErrorStatus::NONE, preparedModel.release());
return V1_0::ErrorStatus::NONE;
}
for (uint32_t i = 0; i < modelCacheHandle.size(); ++i)
{
if (modelCacheHandle[i]->numFds == 1)
{
int modelCacheFileAccessMode = fcntl(modelCacheHandle[i]->data[0], F_GETFL) & O_ACCMODE;
if (modelCacheFileAccessMode != O_RDONLY)
{
struct stat statBuffer;
if (fstat(modelCacheHandle[i]->data[0], &statBuffer) == 0)
{
long modelDataSize = statBuffer.st_size;
if (modelDataSize > 0)
{
std::vector <uint8_t> modelData(modelDataSize);
pread(modelCacheHandle[i]->data[0], modelData.data(), modelData.size(), 0);
hashValue ^= CacheDataHandlerInstance().Hash(modelData);
}
}
}
}
}
}
if (hashValue != 0)
{
CacheDataHandlerInstance().Register(token, hashValue, dataCacheData.size());
}
NotifyCallbackAndCheck(cb, V1_0::ErrorStatus::NONE, preparedModel.release());
return V1_0::ErrorStatus::NONE;
}
Return<V1_0::ErrorStatus> ArmnnDriverImpl::prepareModelFromCache(
const armnn::IRuntimePtr& runtime,
const DriverOptions& options,
const android::hardware::hidl_vec<android::hardware::hidl_handle>& modelCacheHandle,
const android::hardware::hidl_vec<android::hardware::hidl_handle>& dataCacheHandle,
const HidlToken& token,
const android::sp<V1_2::IPreparedModelCallback>& cb,
bool float32ToFloat16)
{
ALOGV("ArmnnDriverImpl::prepareModelFromCache()");
if (cb.get() == nullptr)
{
ALOGW("ArmnnDriverImpl::prepareModelFromCache: Invalid callback passed to prepareModel");
return V1_0::ErrorStatus::INVALID_ARGUMENT;
}
if (!runtime)
{
return FailPrepareModel(V1_0::ErrorStatus::DEVICE_UNAVAILABLE, "Device unavailable", cb);
}
if (token.size() != ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN)
{
FailPrepareModel(V1_0::ErrorStatus::INVALID_ARGUMENT, "Invalid token passed!", cb);
return V1_0::ErrorStatus::INVALID_ARGUMENT;
}
// DataCacheHandle size should always be 1
// Arm NN model
if (dataCacheHandle.size() != 1)
{
FailPrepareModel(V1_0::ErrorStatus::GENERAL_FAILURE, "No data cache!", cb);
return V1_0::ErrorStatus::GENERAL_FAILURE;
}
// Check if model files cached they match the expected value
unsigned int numberOfCachedModelFiles = 0;
for (auto& backend : options.GetBackends())
{
numberOfCachedModelFiles += GetNumberOfCacheFiles(backend);
}
if (modelCacheHandle.size() != numberOfCachedModelFiles)
{
FailPrepareModel(V1_0::ErrorStatus::GENERAL_FAILURE, "Invalid model cache!", cb);
return V1_0::ErrorStatus::GENERAL_FAILURE;
}
if (dataCacheHandle[0]->numFds != 1)
{
ALOGW("ArmnnDriverImpl::prepareModelFromCache: Cannot read from the cache data, numFds != 1.");
FailPrepareModel(V1_0::ErrorStatus::GENERAL_FAILURE, "No data cache!", cb);
return V1_0::ErrorStatus::GENERAL_FAILURE;
}
if (dataCacheHandle[0]->data[0] < 0)
{
ALOGW("ArmnnDriverImpl::prepareModelFromCache: Cannot read from the cache data, fd < 0");
FailPrepareModel(V1_0::ErrorStatus::GENERAL_FAILURE, "No data cache!", cb);
return V1_0::ErrorStatus::GENERAL_FAILURE;
}
int dataCacheFileAccessMode = fcntl(dataCacheHandle[0]->data[0], F_GETFL) & O_ACCMODE;
if (dataCacheFileAccessMode != O_RDWR)
{
FailPrepareModel(V1_0::ErrorStatus::GENERAL_FAILURE, "Invalid Access Mode!", cb);
return V1_0::ErrorStatus::GENERAL_FAILURE;
}
auto dataSize = CacheDataHandlerInstance().GetCacheSize(token);
if (dataSize == 0)
{
ALOGW("ArmnnDriverImpl::prepareModelFromCache: Invalid data to deserialize!");
FailPrepareModel(V1_0::ErrorStatus::GENERAL_FAILURE, "Invalid data to deserialize!", cb);
return V1_0::ErrorStatus::GENERAL_FAILURE;
}
int offset = 0;
{
struct stat statBuffer;
if (fstat(dataCacheHandle[0]->data[0], &statBuffer) == 0)
{
unsigned long bufferSize = statBuffer.st_size;
if (bufferSize != dataSize)
{
ALOGW("ArmnnDriverImpl::prepareModelFromCache: Invalid data to deserialize!");
FailPrepareModel(V1_0::ErrorStatus::GENERAL_FAILURE, "Invalid data to deserialize!", cb);
return V1_0::ErrorStatus::GENERAL_FAILURE;
}
}
}
std::vector<uint8_t> dataCacheData(dataSize);
pread(dataCacheHandle[0]->data[0], dataCacheData.data(), dataCacheData.size(), offset);
auto hashValue = CacheDataHandlerInstance().Hash(dataCacheData);
int gpuAccCachedFd = -1;
bool saveCachedNetwork = false;
if (modelCacheHandle.size() > 0)
{
unsigned int index = 0;
for (auto& backend : options.GetBackends())
{
// modelCacheHandle size should be equal to numberOfCachedModelFiles
// modelCacheHandle vector should be in same order as backends
auto numberOfCacheFiles = GetNumberOfCacheFiles(backend);
if (numberOfCacheFiles > 0)
{
if (modelCacheHandle[index]->numFds != 1)
{
ALOGW("ArmnnDriverImpl::prepareModelFromCache: Cannot read from the model cache, numFds != 1.");
FailPrepareModel(V1_0::ErrorStatus::GENERAL_FAILURE,
"Cannot read from the model cache, numFds != 1.", cb);
return V1_0::ErrorStatus::GENERAL_FAILURE;
}
auto cachedFd = modelCacheHandle[index]->data[0];
int modelCacheFileAccessMode = fcntl(cachedFd, F_GETFL) & O_ACCMODE;
if (modelCacheFileAccessMode != O_RDWR)
{
FailPrepareModel(V1_0::ErrorStatus::GENERAL_FAILURE, "Invalid Access Mode!", cb);
return V1_0::ErrorStatus::GENERAL_FAILURE;
}
struct stat statBuffer;
if (cachedFd != -1 && fstat(cachedFd, &statBuffer) == 0)
{
long modelDataSize = statBuffer.st_size;
if (modelDataSize <= 0)
{
FailPrepareModel(V1_0::ErrorStatus::GENERAL_FAILURE, "Wrong cached model size!", cb);
return V1_0::ErrorStatus::NONE;
}
std::vector<uint8_t> modelData(modelDataSize);
pread(cachedFd, modelData.data(), modelData.size(), 0);
hashValue ^= CacheDataHandlerInstance().Hash(modelData);
// For GpuAcc numberOfCachedFiles is 1
if (backend == armnn::Compute::GpuAcc)
{
gpuAccCachedFd = cachedFd;
}
}
index += numberOfCacheFiles;
}
}
}
if (!CacheDataHandlerInstance().Validate(token, hashValue, dataCacheData.size()))
{
ALOGW("ArmnnDriverImpl::prepareModelFromCache: ValidateHash() failed!");
FailPrepareModel(V1_0::ErrorStatus::GENERAL_FAILURE, "ValidateHash Failed!", cb);
return V1_0::ErrorStatus::GENERAL_FAILURE;
}
// Deserialize the network..
armnn::INetworkPtr network = armnn::INetworkPtr(nullptr, [](armnn::INetwork*){});
try
{
network = armnnDeserializer::IDeserializer::Create()->CreateNetworkFromBinary(dataCacheData);
}
catch (std::exception& e)
{
std::stringstream message;
message << "Exception (" << e.what() << ") caught from Deserializer.";
FailPrepareModel(V1_0::ErrorStatus::GENERAL_FAILURE, message.str(), cb);
return V1_0::ErrorStatus::GENERAL_FAILURE;
}
// Optimize the network
armnn::IOptimizedNetworkPtr optNet(nullptr, nullptr);
armnn::OptimizerOptions OptOptions;
OptOptions.m_ReduceFp32ToFp16 = float32ToFloat16;
OptOptions.m_ProfilingEnabled = options.IsGpuProfilingEnabled();
armnn::BackendOptions gpuAcc("GpuAcc",
{
{"FastMathEnabled", options.IsFastMathEnabled()},
{"SaveCachedNetwork", saveCachedNetwork},
{"CachedNetworkFilePath", options.GetCachedNetworkFilePath()},
{"MLGOTuningFilePath", options.GetClMLGOTunedParametersFile()},
{"CachedFileDescriptor", gpuAccCachedFd}
});
armnn::BackendOptions cpuAcc("CpuAcc",
{
{"FastMathEnabled", options.IsFastMathEnabled()},
{"NumberOfThreads", options.GetNumberOfThreads()}
});
OptOptions.m_ModelOptions.push_back(gpuAcc);
OptOptions.m_ModelOptions.push_back(cpuAcc);
std::vector<std::string> errMessages;
try
{
optNet = armnn::Optimize(*network.get(),
options.GetBackends(),
runtime->GetDeviceSpec(),
OptOptions,
errMessages);
}
catch (std::exception& e)
{
std::stringstream message;
message << "Exception (" << e.what() << ") caught from optimize.";
FailPrepareModel(V1_0::ErrorStatus::GENERAL_FAILURE, message.str(), cb);
return V1_0::ErrorStatus::NONE;
}
// Check that the optimized network is valid.
if (!optNet)
{
std::stringstream message;
message << "Invalid optimized network";
for (const std::string& msg : errMessages)
{
message << "\n" << msg;
}
FailPrepareModel(V1_0::ErrorStatus::GENERAL_FAILURE, message.str(), cb);
return V1_0::ErrorStatus::NONE;
}
// Export the optimized network graph to a dot file if an output dump directory
// has been specified in the drivers' arguments.
std::string dotGraphFileName = ExportNetworkGraphToDotFile(*optNet,
options.GetRequestInputsAndOutputsDumpDir());
// Load it into the runtime.
armnn::NetworkId netId = 0;
std::string msg;
armnn::INetworkProperties networkProperties(options.isAsyncModelExecutionEnabled(),
MemorySource::Undefined,
MemorySource::Undefined,
options.IsGpuProfilingEnabled());
try
{
if (runtime->LoadNetwork(netId, move(optNet), msg, networkProperties) != armnn::Status::Success)
{
return FailPrepareModel(V1_0::ErrorStatus::GENERAL_FAILURE, msg, cb);
}
}
catch (std::exception& e)
{
std::stringstream message;
message << "Exception (" << e.what() << ") caught from LoadNetwork.";
FailPrepareModel(V1_0::ErrorStatus::GENERAL_FAILURE, message.str(), cb);
return V1_0::ErrorStatus::NONE;
}
std::unique_ptr<ArmnnPreparedModel_1_2<hal_1_2::HalPolicy>> preparedModel(
new ArmnnPreparedModel_1_2<hal_1_2::HalPolicy>(
netId,
runtime.get(),
options.GetRequestInputsAndOutputsDumpDir(),
options.IsGpuProfilingEnabled(),
options.isAsyncModelExecutionEnabled(),
options.getNoOfArmnnThreads(),
options.isImportEnabled(),
options.isExportEnabled(),
true));
NotifyCallbackAndCheck(cb, V1_0::ErrorStatus::NONE, preparedModel.release());
return V1_0::ErrorStatus::NONE;
}
Return<void> ArmnnDriverImpl::getCapabilities_1_2(const armnn::IRuntimePtr& runtime,
V1_2::IDevice::getCapabilities_1_2_cb cb)
{
ALOGV("hal_1_2::ArmnnDriverImpl::getCapabilities()");
V1_2::Capabilities capabilities;
float defaultValue = .1f;
if (runtime)
{
capabilities.relaxedFloat32toFloat16PerformanceScalar.execTime =
ParseSystemProperty(g_RelaxedFloat32toFloat16PerformanceExecTime, defaultValue);
capabilities.relaxedFloat32toFloat16PerformanceScalar.powerUsage =
ParseSystemProperty(g_RelaxedFloat32toFloat16PerformancePowerUsage, defaultValue);
capabilities.relaxedFloat32toFloat16PerformanceTensor.execTime =
ParseSystemProperty(g_RelaxedFloat32toFloat16PerformanceExecTime, defaultValue);
capabilities.relaxedFloat32toFloat16PerformanceTensor.powerUsage =
ParseSystemProperty(g_RelaxedFloat32toFloat16PerformancePowerUsage, defaultValue);
// Set the base value for all operand types
#if defined(ARMNN_ANDROID_R) || defined(ARMNN_ANDROID_S)
capabilities.operandPerformance = nonExtensionOperandPerformance<HalVersion::V1_2>({FLT_MAX, FLT_MAX});
#else
capabilities.operandPerformance = nonExtensionOperandPerformance({FLT_MAX, FLT_MAX});
#endif
// Load supported operand types
update(&capabilities.operandPerformance, V1_2::OperandType::TENSOR_FLOAT32,
{
.execTime = ParseSystemProperty(g_OperandTypeTensorFloat32PerformanceExecTime, defaultValue),
.powerUsage = ParseSystemProperty(g_OperandTypeTensorFloat32PerformancePowerUsage, defaultValue)
});
update(&capabilities.operandPerformance, V1_2::OperandType::FLOAT32,
{
.execTime = ParseSystemProperty(g_OperandTypeFloat32PerformanceExecTime, defaultValue),
.powerUsage = ParseSystemProperty(g_OperandTypeFloat32PerformancePowerUsage, defaultValue)
});
update(&capabilities.operandPerformance, V1_2::OperandType::TENSOR_FLOAT16,
{
.execTime = ParseSystemProperty(g_OperandTypeTensorFloat16PerformanceExecTime, defaultValue),
.powerUsage = ParseSystemProperty(g_OperandTypeTensorFloat16PerformancePowerUsage, defaultValue)
});
update(&capabilities.operandPerformance, V1_2::OperandType::FLOAT16,
{
.execTime = ParseSystemProperty(g_OperandTypeFloat16PerformanceExecTime, defaultValue),
.powerUsage = ParseSystemProperty(g_OperandTypeFloat16PerformancePowerUsage, defaultValue)
});
update(&capabilities.operandPerformance, V1_2::OperandType::TENSOR_QUANT8_ASYMM,
{
.execTime = ParseSystemProperty(g_OperandTypeTensorQuant8AsymmPerformanceExecTime, defaultValue),
.powerUsage = ParseSystemProperty(g_OperandTypeTensorQuant8AsymmPerformancePowerUsage, defaultValue)
});
update(&capabilities.operandPerformance, V1_2::OperandType::TENSOR_QUANT8_SYMM,
{
.execTime = ParseSystemProperty(g_OperandTypeTensorQuant8SymmPerformanceExecTime, defaultValue),
.powerUsage = ParseSystemProperty(g_OperandTypeTensorQuant8SymmPerformancePowerUsage, defaultValue)
});
update(&capabilities.operandPerformance, V1_2::OperandType::TENSOR_QUANT16_SYMM,
{
.execTime = ParseSystemProperty(g_OperandTypeTensorQuant16SymmPerformanceExecTime, defaultValue),
.powerUsage = ParseSystemProperty(g_OperandTypeTensorQuant16SymmPerformancePowerUsage, defaultValue)
});
update(&capabilities.operandPerformance, V1_2::OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL,
{
.execTime =
ParseSystemProperty(g_OperandTypeTensorQuant8SymmPerChannelPerformanceExecTime, defaultValue),
.powerUsage =
ParseSystemProperty(g_OperandTypeTensorQuant8SymmPerChannelPerformancePowerUsage, defaultValue)
});
update(&capabilities.operandPerformance, V1_2::OperandType::TENSOR_INT32,
{
.execTime = ParseSystemProperty(g_OperandTypeTensorInt32PerformanceExecTime, defaultValue),
.powerUsage = ParseSystemProperty(g_OperandTypeTensorInt32PerformancePowerUsage, defaultValue)
});
update(&capabilities.operandPerformance, V1_2::OperandType::INT32,
{
.execTime = ParseSystemProperty(g_OperandTypeInt32PerformanceExecTime, defaultValue),
.powerUsage = ParseSystemProperty(g_OperandTypeInt32PerformancePowerUsage, defaultValue)
});
cb(V1_0::ErrorStatus::NONE, capabilities);
}
else
{
capabilities.relaxedFloat32toFloat16PerformanceScalar.execTime = 0;
capabilities.relaxedFloat32toFloat16PerformanceScalar.powerUsage = 0;
capabilities.relaxedFloat32toFloat16PerformanceTensor.execTime = 0;
capabilities.relaxedFloat32toFloat16PerformanceTensor.powerUsage = 0;
// Set the base value for all operand types
#if defined(ARMNN_ANDROID_R) || defined(ARMNN_ANDROID_S)
capabilities.operandPerformance = nonExtensionOperandPerformance<HalVersion::V1_2>({0.f, 0.0f});
#else
capabilities.operandPerformance = nonExtensionOperandPerformance({0.f, 0.0f});
#endif
cb(V1_0::ErrorStatus::DEVICE_UNAVAILABLE, capabilities);
}
return Void();
}
} // namespace hal_1_2
} // namespace armnn_driver