blob: 08de1b5208bd9f57b3f4ba468687b4065557e9e1 [file] [log] [blame]
//
// Copyright © 2017-2023 Arm Ltd and Contributors. All rights reserved.
// SPDX-License-Identifier: MIT
//
#include "HalPolicy.hpp"
#include <armnn/Optional.hpp>
#include "FullyConnected.hpp"
#include "Utils.hpp"
namespace armnn_driver
{
namespace hal_1_0
{
bool HalPolicy::ConvertOperation(const Operation& operation, const Model& model, ConversionData& data)
{
switch (operation.type)
{
case V1_0::OperationType::ADD:
return ConvertElementwiseBinary(operation, model, data, armnn::BinaryOperation::Add);
case V1_0::OperationType::AVERAGE_POOL_2D:
return ConvertAveragePool2d(operation, model, data);
case V1_0::OperationType::CONCATENATION:
return ConvertConcatenation(operation, model, data);
case V1_0::OperationType::CONV_2D:
return ConvertConv2d(operation, model, data);
case V1_0::OperationType::DEPTH_TO_SPACE:
return ConvertDepthToSpace(operation, model, data);
case V1_0::OperationType::DEPTHWISE_CONV_2D:
return ConvertDepthwiseConv2d(operation, model, data);
case V1_0::OperationType::DEQUANTIZE:
return ConvertDequantize(operation, model, data);
case V1_0::OperationType::FLOOR:
return ConvertFloor(operation, model, data);
case V1_0::OperationType::FULLY_CONNECTED:
return ConvertFullyConnected(operation, model, data);
case V1_0::OperationType::LOCAL_RESPONSE_NORMALIZATION:
return ConvertLocalResponseNormalization(operation, model, data);
case V1_0::OperationType::LOGISTIC:
return ConvertLogistic(operation, model, data);
case V1_0::OperationType::LSTM:
return ConvertLstm(operation, model, data);
case V1_0::OperationType::L2_NORMALIZATION:
return ConvertL2Normalization(operation, model, data);
case V1_0::OperationType::L2_POOL_2D:
return ConvertL2Pool2d(operation, model, data);
case V1_0::OperationType::MAX_POOL_2D:
return ConvertMaxPool2d(operation, model, data);
case V1_0::OperationType::MUL:
return ConvertElementwiseBinary(operation, model, data, armnn::BinaryOperation::Mul);
case V1_0::OperationType::RELU:
return ConvertReLu(operation, model, data);
case V1_0::OperationType::RELU1:
return ConvertReLu1(operation, model, data);
case V1_0::OperationType::RELU6:
return ConvertReLu6(operation, model, data);
case V1_0::OperationType::SOFTMAX:
return ConvertSoftmax(operation, model, data);
case V1_0::OperationType::SPACE_TO_DEPTH:
return ConvertSpaceToDepth(operation, model, data);
case V1_0::OperationType::TANH:
return ConvertTanH(operation, model, data);
case V1_0::OperationType::RESHAPE:
return ConvertReshape(operation, model, data);
case V1_0::OperationType::RESIZE_BILINEAR:
return ConvertResizeBilinear(operation, model, data);
default:
return Fail("%s: Operation type %s not supported in ArmnnDriver",
__func__, toString(operation.type).c_str());
}
}
bool HalPolicy::ConvertAveragePool2d(const Operation& operation, const Model& model, ConversionData& data)
{
ALOGV("hal_1_0::HalPolicy::ConvertAveragePool2d()");
return ConvertPooling2d<hal_1_0::HalPolicy>(operation, __func__, armnn::PoolingAlgorithm::Average, model, data);
}
bool HalPolicy::ConvertConcatenation(const Operation& operation, const Model& model, ConversionData& data)
{
ALOGV("hal_1_0::HalPolicy::ConvertConcatenation()");
return ::ConvertConcatenation<hal_1_0::HalPolicy>(operation, model, data);
}
bool HalPolicy::ConvertConv2d(const Operation& operation, const Model& model, ConversionData& data)
{
ALOGV("hal_1_0::HalPolicy::ConvertConv2d()");
return ::ConvertConv2d<hal_1_0::HalPolicy>(operation, model, data);
}
bool HalPolicy::ConvertDepthToSpace(const Operation& operation, const Model& model, ConversionData& data)
{
ALOGV("hal_1_0::HalPolicy::ConvertDepthToSpace()");
return ::ConvertDepthToSpace<hal_1_0::HalPolicy>(operation, model, data);
}
bool HalPolicy::ConvertDepthwiseConv2d(const Operation& operation, const Model& model, ConversionData& data)
{
ALOGV("hal_1_0::HalPolicy::ConvertDepthwiseConv2d()");
return ::ConvertDepthwiseConv2d<hal_1_0::HalPolicy>(operation, model, data);
}
bool HalPolicy::ConvertDequantize(const Operation& operation, const Model& model, ConversionData& data)
{
ALOGV("hal_1_0::HalPolicy::ConvertDequantize()");
return ::ConvertDequantize<hal_1_0::HalPolicy>(operation, model, data);
}
bool HalPolicy::ConvertElementwiseBinary(const Operation& operation,
const Model& model,
ConversionData& data,
armnn::BinaryOperation binaryOperation)
{
ALOGV("hal_1_0::HalPolicy::ConvertElementwiseBinary()");
return ::ConvertElementwiseBinary<hal_1_0::HalPolicy>(operation, model, data, binaryOperation);
}
bool HalPolicy::ConvertFloor(const Operation& operation, const Model& model, ConversionData& data)
{
ALOGV("hal_1_0::HalPolicy::ConvertFloor()");
return ::ConvertFloor<hal_1_0::HalPolicy>(operation, model, data);
}
bool HalPolicy::ConvertFullyConnected(const Operation& operation, const Model& model, ConversionData& data)
{
ALOGV("hal_1_0::HalPolicy::ConvertFullyConnected()");
return ::ConvertFullyConnected<hal_1_0::HalPolicy>(operation, model, data);
}
bool HalPolicy::ConvertLocalResponseNormalization(const Operation& operation,
const Model& model,
ConversionData& data)
{
ALOGV("hal_1_0::HalPolicy::ConvertLocalResponseNormalization()");
return ::ConvertLocalResponseNormalization<hal_1_0::HalPolicy>(operation, model, data);
}
bool HalPolicy::ConvertLogistic(const Operation& operation, const Model& model, ConversionData& data)
{
ALOGV("hal_1_0::HalPolicy::ConvertLogistic()");
return ::ConvertLogistic<hal_1_0::HalPolicy>(operation, model, data);
}
bool HalPolicy::ConvertLstm(const Operation& operation, const Model& model, ConversionData& data)
{
ALOGV("hal_1_0::HalPolicy::ConvertLstm()");
// Inputs:
// 00: The input: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [batch_size, input_size], where
// “batch_size” corresponds to the batching dimension, and “input_size” is the size of the input.
LayerInputHandle input = ConvertToLayerInputHandle<hal_1_0::HalPolicy>(operation, 0, model, data);
if (!input.IsValid())
{
return Fail("%s: Could not read input 0: input", __func__);
}
// 18: The output state: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [batch_size, output_size].
LayerInputHandle outputStateIn = ConvertToLayerInputHandle<hal_1_0::HalPolicy>(operation, 18, model, data);
if (!outputStateIn.IsValid())
{
return Fail("%s: Could not read input 18: outputStateIn", __func__);
}
// 19: The cell state: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [batch_size, num_units].
LayerInputHandle cellStateIn = ConvertToLayerInputHandle<hal_1_0::HalPolicy>(operation, 19, model, data);
if (!cellStateIn.IsValid())
{
return Fail("%s: Could not read input 19: cellStateIn", __func__);
}
// Get the mandatory input tensors:
// 02: The input-to-forget weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape
// [num_units, input_size].
const ConstTensorPin inputToForgetWeightsPin =
ConvertOperationInputToConstTensorPin<hal_1_0::HalPolicy>(operation, 2, model, data);
// 03: The input-to-cell weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape
// [num_units, input_size].
const ConstTensorPin inputToCellWeightsPin =
ConvertOperationInputToConstTensorPin<hal_1_0::HalPolicy>(operation, 3, model, data);
// 04: The input-to-output weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape
// [num_units, input_size].
const ConstTensorPin inputToOutputWeightsPin =
ConvertOperationInputToConstTensorPin<hal_1_0::HalPolicy>(operation, 4, model, data);
// 06: The recurrent-to-forget weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape
// [num_units, output_size].
const ConstTensorPin recurrentToForgetWeightsPin =
ConvertOperationInputToConstTensorPin<hal_1_0::HalPolicy>(operation, 6, model, data);
// 07: The recurrent-to-cell weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape
// [num_units, output_size].
const ConstTensorPin recurrentToCellWeightsPin =
ConvertOperationInputToConstTensorPin<hal_1_0::HalPolicy>(operation, 7, model, data);
// 08: The recurrent-to-output weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape
// [num_units, output_size].
const ConstTensorPin recurrentToOutputWeightsPin =
ConvertOperationInputToConstTensorPin<hal_1_0::HalPolicy>(operation, 8, model, data);
// 13: The forget gate bias: A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units].
const ConstTensorPin forgetGateBiasPin =
ConvertOperationInputToConstTensorPin<hal_1_0::HalPolicy>(operation, 13, model, data);
// 14: The cell bias: A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units].
const ConstTensorPin cellBiasPin =
ConvertOperationInputToConstTensorPin<hal_1_0::HalPolicy>(operation, 14, model, data);
// 15: The output gate bias: A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units].
const ConstTensorPin outputGateBiasPin =
ConvertOperationInputToConstTensorPin<hal_1_0::HalPolicy>(operation, 15, model, data);
if (!inputToForgetWeightsPin.IsValid() ||
!inputToCellWeightsPin.IsValid() ||
!inputToOutputWeightsPin.IsValid() ||
!recurrentToForgetWeightsPin.IsValid() ||
!recurrentToCellWeightsPin.IsValid() ||
!recurrentToOutputWeightsPin.IsValid() ||
!forgetGateBiasPin.IsValid() ||
!cellBiasPin.IsValid() ||
!outputGateBiasPin.IsValid())
{
return Fail("%s: Operation has invalid tensor inputs", __func__);
}
// Get the optional input tensors:
// 01: The input-to-input weights: Optional. A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape
// [num_units, input_size], where “num_units” corresponds to the number of cell units.
const ConstTensorPin inputToInputWeightsPin =
ConvertOperationInputToConstTensorPin<hal_1_0::HalPolicy>(operation,
1,
model,
data,
g_DontPermute,
nullptr,
true);
// 05: The recurrent-to-input weights: Optional. A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape
// [num_units, output_size], where “output_size” corresponds to either the number of cell units (i.e.,
// “num_units”), or the second dimension of the “projection_weights”, if defined.
const ConstTensorPin recurrentToInputWeightsPin =
ConvertOperationInputToConstTensorPin<hal_1_0::HalPolicy>(operation,
5,
model,
data,
g_DontPermute,
nullptr,
true);
// 09: The cell-to-input weights: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units].
const ConstTensorPin cellToInputWeightsPin =
ConvertOperationInputToConstTensorPin<hal_1_0::HalPolicy>(operation,
9,
model,
data,
g_DontPermute,
nullptr,
true);
// 10: The cell-to-forget weights: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units].
const ConstTensorPin cellToForgetWeightsPin =
ConvertOperationInputToConstTensorPin<hal_1_0::HalPolicy>(operation,
10,
model,
data,
g_DontPermute,
nullptr,
true);
// 11: The cell-to-output weights: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units].
const ConstTensorPin cellToOutputWeightsPin =
ConvertOperationInputToConstTensorPin<hal_1_0::HalPolicy>(operation,
11,
model,
data,
g_DontPermute,
nullptr,
true);
// 12: The input gate bias: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units].
const ConstTensorPin inputGateBiasPin =
ConvertOperationInputToConstTensorPin<hal_1_0::HalPolicy>(operation,
12,
model,
data,
g_DontPermute,
nullptr,
true);
// 16: The projection weights: Optional. A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape
// [output_size, num_units].
const ConstTensorPin projectionWeightsPin =
ConvertOperationInputToConstTensorPin<hal_1_0::HalPolicy>(operation,
16,
model,
data,
g_DontPermute,
nullptr,
true);
// 17: The projection bias: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [output_size].
const ConstTensorPin projectionBiasPin =
ConvertOperationInputToConstTensorPin<hal_1_0::HalPolicy>(operation,
17,
model,
data,
g_DontPermute,
nullptr,
true);
if ((!inputToInputWeightsPin.IsValid() && !inputToInputWeightsPin.IsOptional()) ||
(!recurrentToInputWeightsPin.IsValid() && !recurrentToInputWeightsPin.IsOptional()) ||
(!cellToInputWeightsPin.IsValid() && !cellToInputWeightsPin.IsOptional()) ||
(!cellToForgetWeightsPin.IsValid() && !cellToForgetWeightsPin.IsOptional()) ||
(!cellToOutputWeightsPin.IsValid() && !cellToOutputWeightsPin.IsOptional()) ||
(!inputGateBiasPin.IsValid() && !inputGateBiasPin.IsOptional()) ||
(!projectionWeightsPin.IsValid() && !projectionWeightsPin.IsOptional()) ||
(!projectionBiasPin.IsValid() && !projectionBiasPin.IsOptional()))
{
return Fail("%s: Operation has invalid tensor inputs", __func__);
}
// Get the mandatory input scalars (actually 1-D tensors of size 1):
// 20: The activation function: A value indicating the activation function:
// 0: None; 1: Relu; 3: Relu6; 4: Tanh; 6: Sigmoid.
// 21: The clipping threshold: for the cell state, such that values are bound within [-cell_clip, cell_clip].
// If set to 0.0 then clipping is disabled.
// 22: The clipping threshold: for the output from the projection layer, such that values are bound within
// [-proj_clip, proj_clip]. If set to 0.0 then clipping is disabled.
ActivationFn activation;
float cellClip;
float projClip;
if (!GetInputActivationFunctionFromTensor<hal_1_0::HalPolicy>(operation, 20, activation, model, data) ||
!GetInputScalar<hal_1_0::HalPolicy>(operation, 21, OperandType::FLOAT32, cellClip, model, data) ||
!GetInputScalar<hal_1_0::HalPolicy>(operation, 22, OperandType::FLOAT32, projClip, model, data))
{
return Fail("%s: Operation has invalid scalar inputs", __func__);
}
// Outputs:
// 00: The scratch buffer: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [batch_size, num_units * 4]
// with CIFG, or [batch_size, num_units * 3] without CIFG.
const Operand* scratchBuffer = GetOutputOperand<hal_1_0::HalPolicy>(operation, 0, model);
if (!scratchBuffer)
{
return Fail("%s: Could not read output 0: scratchBuffer", __func__);
}
// 01: The output state (out): A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [batch_size, output_size].
const Operand* outputStateOut = GetOutputOperand<hal_1_0::HalPolicy>(operation, 1, model);
if (!outputStateOut)
{
return Fail("%s: Could not read output 1: outputStateOut", __func__);
}
// 02: The cell state (out): A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [batch_size, num_units].
const Operand* cellStateOut = GetOutputOperand<hal_1_0::HalPolicy>(operation, 2, model);
if (!cellStateOut)
{
return Fail("%s: Could not read output 2: cellStateOut", __func__);
}
// 03: The output: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [batch_size, output_size]. This is
// effectively the same as the current “output state (out)” value.
const Operand* output = GetOutputOperand<hal_1_0::HalPolicy>(operation, 3, model);
if (!output)
{
return Fail("%s: Could not read output 3: output", __func__);
}
// set the params structure for the AddLstmLayer call
armnn::LstmInputParams params;
params.m_InputToInputWeights = inputToInputWeightsPin.GetConstTensorPtr();
params.m_InputToForgetWeights = inputToForgetWeightsPin.GetConstTensorPtr();
params.m_InputToCellWeights = inputToCellWeightsPin.GetConstTensorPtr();
params.m_InputToOutputWeights = inputToOutputWeightsPin.GetConstTensorPtr();
params.m_RecurrentToInputWeights = recurrentToInputWeightsPin.GetConstTensorPtr();
params.m_RecurrentToForgetWeights = recurrentToForgetWeightsPin.GetConstTensorPtr();
params.m_RecurrentToCellWeights = recurrentToCellWeightsPin.GetConstTensorPtr();
params.m_RecurrentToOutputWeights = recurrentToOutputWeightsPin.GetConstTensorPtr();
params.m_CellToInputWeights = cellToInputWeightsPin.GetConstTensorPtr();
params.m_CellToForgetWeights = cellToForgetWeightsPin.GetConstTensorPtr();
params.m_CellToOutputWeights = cellToOutputWeightsPin.GetConstTensorPtr();
params.m_InputGateBias = inputGateBiasPin.GetConstTensorPtr();
params.m_ForgetGateBias = forgetGateBiasPin.GetConstTensorPtr();
params.m_CellBias = cellBiasPin.GetConstTensorPtr();
params.m_OutputGateBias = outputGateBiasPin.GetConstTensorPtr();
params.m_ProjectionWeights = projectionWeightsPin.GetConstTensorPtr();
params.m_ProjectionBias = projectionBiasPin.GetConstTensorPtr();
// set the layer descriptor
armnn::LstmDescriptor desc;
desc.m_ActivationFunc = activation;
desc.m_ClippingThresCell = cellClip;
desc.m_ClippingThresProj = projClip;
desc.m_CifgEnabled = (params.m_InputToInputWeights == nullptr ||
params.m_RecurrentToInputWeights == nullptr ||
params.m_InputGateBias == nullptr);
desc.m_PeepholeEnabled = (params.m_CellToForgetWeights != nullptr ||
params.m_CellToOutputWeights != nullptr);
desc.m_ProjectionEnabled = (params.m_ProjectionWeights != nullptr);
// validate the optional input groups
if (desc.m_CifgEnabled &&
(params.m_InputToInputWeights != nullptr ||
params.m_RecurrentToInputWeights != nullptr ||
params.m_InputGateBias != nullptr))
{
return Fail("%s: All, or none, of input-to-input weights, recurrent-to-input weights,"
" and input gate bias must be provided", __func__);
}
if (!desc.m_ProjectionEnabled && params.m_ProjectionBias != nullptr)
{
return Fail("%s: projection bias should not be provided without projection weights", __func__);
}
if (desc.m_PeepholeEnabled &&
(params.m_CellToForgetWeights == nullptr ||
params.m_CellToOutputWeights == nullptr ||
(!desc.m_CifgEnabled && params.m_CellToInputWeights == nullptr)))
{
return Fail("%s: All, or none, of cell-to-forget weights and cell-to-output weights must be provided"
" and, if CIFG is not enabled, cell-to-input weights must also be provided", __func__);
}
// Check if the layer is supported
// Inputs
const armnn::TensorInfo& inputInfo = input.GetTensorInfo();
const armnn::TensorInfo& outputStateInInfo = outputStateIn.GetTensorInfo();
const armnn::TensorInfo& cellStateInInfo = cellStateIn.GetTensorInfo();
// Outputs
const armnn::TensorInfo& scratchBufferInfo = GetTensorInfoForOperand(*scratchBuffer);
const armnn::TensorInfo& outputStateOutInfo = GetTensorInfoForOperand(*outputStateOut);
const armnn::TensorInfo& cellStateOutInfo = GetTensorInfoForOperand(*cellStateOut);
const armnn::TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
// Basic parameters
armnn::LstmInputParamsInfo paramsInfo;
paramsInfo.m_InputToForgetWeights = &(params.m_InputToForgetWeights->GetInfo());
paramsInfo.m_InputToCellWeights = &(params.m_InputToCellWeights->GetInfo());
paramsInfo.m_InputToOutputWeights = &(params.m_InputToOutputWeights->GetInfo());
paramsInfo.m_RecurrentToForgetWeights = &(params.m_RecurrentToForgetWeights->GetInfo());
paramsInfo.m_RecurrentToCellWeights = &(params.m_RecurrentToCellWeights->GetInfo());
paramsInfo.m_RecurrentToOutputWeights = &(params.m_RecurrentToOutputWeights->GetInfo());
paramsInfo.m_ForgetGateBias = &(params.m_ForgetGateBias->GetInfo());
paramsInfo.m_CellBias = &(params.m_CellBias->GetInfo());
paramsInfo.m_OutputGateBias = &(params.m_OutputGateBias->GetInfo());
// Optional parameters
if(!desc.m_CifgEnabled)
{
paramsInfo.m_InputToInputWeights = &(params.m_InputToInputWeights->GetInfo());
paramsInfo.m_RecurrentToInputWeights = &(params.m_RecurrentToInputWeights->GetInfo());
if (params.m_CellToInputWeights != nullptr)
{
paramsInfo.m_CellToInputWeights = &(params.m_CellToInputWeights->GetInfo());
}
paramsInfo.m_InputGateBias = &(params.m_InputGateBias->GetInfo());
}
if(desc.m_ProjectionEnabled)
{
paramsInfo.m_ProjectionWeights = &(params.m_ProjectionWeights->GetInfo());
if (params.m_ProjectionBias != nullptr)
{
paramsInfo.m_ProjectionBias = &(params.m_ProjectionBias->GetInfo());
}
}
if(desc.m_PeepholeEnabled)
{
paramsInfo.m_CellToForgetWeights = &(params.m_CellToForgetWeights->GetInfo());
paramsInfo.m_CellToOutputWeights = &(params.m_CellToOutputWeights->GetInfo());
}
bool isSupported = false;
armnn::BackendId setBackend;
FORWARD_LAYER_SUPPORT_FUNC(__func__,
IsLstmSupported,
data.m_Backends,
isSupported,
setBackend,
inputInfo,
outputStateInInfo,
cellStateInInfo,
scratchBufferInfo,
outputStateOutInfo,
cellStateOutInfo,
outputInfo,
desc,
paramsInfo);
if (!isSupported)
{
return false;
}
// Add the layer
armnn::IConnectableLayer* layer = data.m_Network->AddLstmLayer(desc, params, "Lstm");
layer->SetBackendId(setBackend);
input.Connect(layer->GetInputSlot(0));
outputStateIn.Connect(layer->GetInputSlot(1));
cellStateIn.Connect(layer->GetInputSlot(2));
return (SetupAndTrackLayerOutputSlot<hal_1_0::HalPolicy>(operation, 0, *layer, 0, model, data) &&
SetupAndTrackLayerOutputSlot<hal_1_0::HalPolicy>(operation, 1, *layer, 1, model, data) &&
SetupAndTrackLayerOutputSlot<hal_1_0::HalPolicy>(operation, 2, *layer, 2, model, data) &&
SetupAndTrackLayerOutputSlot<hal_1_0::HalPolicy>(operation, 3, *layer, 3, model, data));
}
bool HalPolicy::ConvertL2Normalization(const Operation& operation, const Model& model, ConversionData& data)
{
ALOGV("hal_1_0::HalPolicy::ConvertL2Normalization()");
return ::ConvertL2Normalization<hal_1_0::HalPolicy>(operation, model, data);
}
bool HalPolicy::ConvertL2Pool2d(const Operation& operation, const Model& model, ConversionData& data)
{
ALOGV("hal_1_0::HalPolicy::ConvertL2Pool2d()");
return ConvertPooling2d<hal_1_0::HalPolicy>(operation, __func__, armnn::PoolingAlgorithm::L2, model, data);
}
bool HalPolicy::ConvertMaxPool2d(const Operation& operation, const Model& model, ConversionData& data)
{
ALOGV("hal_1_0::HalPolicy::ConvertMaxPool2d()");
return ConvertPooling2d<hal_1_0::HalPolicy>(operation, __func__, armnn::PoolingAlgorithm::Max, model, data);
}
bool HalPolicy::ConvertReLu(const Operation& operation, const Model& model, ConversionData& data)
{
ALOGV("hal_1_0::HalPolicy::ConvertReLu()");
return ::ConvertReLu<hal_1_0::HalPolicy>(operation, model, data);
}
bool HalPolicy::ConvertReLu1(const Operation& operation, const Model& model, ConversionData& data)
{
ALOGV("hal_1_0::HalPolicy::ConvertReLu1()");
return ::ConvertReLu1<hal_1_0::HalPolicy>(operation, model, data);
}
bool HalPolicy::ConvertReLu6(const Operation& operation, const Model& model, ConversionData& data)
{
ALOGV("hal_1_0::HalPolicy::ConvertReLu6()");
return ::ConvertReLu6<hal_1_0::HalPolicy>(operation, model, data);
}
bool HalPolicy::ConvertSoftmax(const Operation& operation, const Model& model, ConversionData& data)
{
ALOGV("hal_1_0::HalPolicy::ConvertSoftmax()");
LayerInputHandle input = ConvertToLayerInputHandle<hal_1_0::HalPolicy>(operation, 0, model, data);
if (!input.IsValid())
{
return Fail("%s: Operation has invalid inputs", __func__);
}
const Operand* outputOperand = GetOutputOperand<hal_1_0::HalPolicy>(operation, 0, model);
if (!outputOperand)
{
return Fail("%s: Operation has no outputs", __func__);
}
const armnn::TensorInfo& outputInfo = GetTensorInfoForOperand(*outputOperand);
if (IsDynamicTensor(outputInfo))
{
return Fail("%s: Dynamic output tensors are not supported", __func__);
}
armnn::SoftmaxDescriptor desc;
if (!GetInputFloat32<hal_1_0::HalPolicy>(operation, 1, desc.m_Beta, model, data))
{
return Fail("%s: Operation has invalid inputs", __func__);
}
bool isSupported = false;
armnn::BackendId setBackend;
FORWARD_LAYER_SUPPORT_FUNC(__func__,
IsSoftmaxSupported,
data.m_Backends,
isSupported,
setBackend,
input.GetTensorInfo(),
outputInfo,
desc);
if (!isSupported)
{
return false;
}
armnn::IConnectableLayer* layer = data.m_Network->AddSoftmaxLayer(desc);
layer->SetBackendId(setBackend);
if (!layer)
{
return Fail("%s: Could not add the SoftmaxLayer", __func__);
}
input.Connect(layer->GetInputSlot(0));
return SetupAndTrackLayerOutputSlot<hal_1_0::HalPolicy>(operation, 0, *layer, model, data);
}
bool HalPolicy::ConvertSpaceToDepth(const Operation& operation, const Model& model, ConversionData& data)
{
ALOGV("hal_1_0::HalPolicy::ConvertSpaceToDepth()");
LayerInputHandle input = ConvertToLayerInputHandle<hal_1_0::HalPolicy>(operation, 0, model, data);
if (!input.IsValid() )
{
return Fail("%s: Operation has invalid inputs", __func__);
}
const armnn::TensorInfo& inputInfo = input.GetTensorInfo();
unsigned int rank = inputInfo.GetNumDimensions();
if (rank != 4)
{
return Fail("%s: Only inputs with rank 4 are supported", __func__);
}
armnn::SpaceToDepthDescriptor desc;
GetInputScalar<hal_1_0::HalPolicy>(operation, 1, OperandType::INT32, desc.m_BlockSize, model, data);
if (desc.m_BlockSize <= 1)
{
return Fail("%s: Block size must be at least 1 in all dimensions");
}
const Operand* output = GetOutputOperand<hal_1_0::HalPolicy>(operation, 0, model);
if (!output)
{
return Fail("%s: Could not read output 0", __func__);
}
const armnn::TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
if (IsDynamicTensor(outputInfo))
{
return Fail("%s: Dynamic output tensors are not supported", __func__);
}
bool isSupported = false;
armnn::BackendId setBackend;
FORWARD_LAYER_SUPPORT_FUNC(__func__,
IsSpaceToDepthSupported,
data.m_Backends,
isSupported,
setBackend,
inputInfo,
outputInfo,
desc);
if (!isSupported)
{
return false;
}
armnn::IConnectableLayer* const layer = data.m_Network->AddSpaceToDepthLayer(desc);
layer->SetBackendId(setBackend);
if (!layer)
{
return Fail("%s: Could not add the SpaceToDepthLayer", __func__);
}
input.Connect(layer->GetInputSlot(0));
return SetupAndTrackLayerOutputSlot<hal_1_0::HalPolicy>(operation, 0, *layer, model, data);
}
bool HalPolicy::ConvertTanH(const Operation& operation, const Model& model, ConversionData& data)
{
ALOGV("hal_1_0::HalPolicy::ConvertTanH()");
return ::ConvertTanH<hal_1_0::HalPolicy>(operation, model, data);
}
bool HalPolicy::ConvertReshape(const Operation& operation, const Model& model, ConversionData& data)
{
ALOGV("hal_1_0::HalPolicy::ConvertReshape()");
return ::ConvertReshape<hal_1_0::HalPolicy>(operation, model, data);
}
bool HalPolicy::ConvertResizeBilinear(const Operation& operation, const Model& model, ConversionData& data)
{
ALOGV("hal_1_0::HalPolicy::ConvertResizeBilinear()");
LayerInputHandle input = ConvertToLayerInputHandle<hal_1_0::HalPolicy>(operation, 0, model, data);
if (!input.IsValid())
{
return Fail("%s: Could not read input 0", __func__);
}
const Operand* output = GetOutputOperand<hal_1_0::HalPolicy>(operation, 0, model);
if (!output)
{
return Fail("%s: Could not read output 0", __func__);
}
const armnn::TensorInfo& inputInfo = input.GetTensorInfo();
const armnn::TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
if (IsDynamicTensor(outputInfo))
{
return Fail("%s: Dynamic output tensors are not supported", __func__);
}
armnn::ResizeDescriptor desc;
desc.m_Method = armnn::ResizeMethod::Bilinear;
desc.m_DataLayout = armnn::DataLayout::NHWC;
bool isSupported = false;
armnn::BackendId setBackend;
FORWARD_LAYER_SUPPORT_FUNC(__func__,
IsResizeSupported,
data.m_Backends,
isSupported,
setBackend,
inputInfo,
outputInfo,
desc);
if (!isSupported)
{
return false;
}
if (!GetInputScalar<hal_1_0::HalPolicy>(operation, 1, OperandType::INT32, desc.m_TargetWidth, model, data) ||
!GetInputScalar<hal_1_0::HalPolicy>(operation, 2, OperandType::INT32, desc.m_TargetHeight, model, data))
{
return Fail("%s: Operation has invalid inputs", __func__);
}
armnn::IConnectableLayer* layer = data.m_Network->AddResizeLayer(desc);
layer->SetBackendId(setBackend);
if (!layer)
{
return Fail("%s: Could not add the ResizeLayer", __func__);
}
layer->GetOutputSlot(0).SetTensorInfo(outputInfo);
input.Connect(layer->GetInputSlot(0));
return SetupAndTrackLayerOutputSlot<hal_1_0::HalPolicy>(operation, 0, *layer, model, data);
}
} // namespace hal_1_0
} // namespace armnn_driver