blob: ce1f951d2109b5729c0099b83ff18da322131eb7 [file] [log] [blame]
//
// Copyright © 2020 Arm Ltd and Contributors. All rights reserved.
// SPDX-License-Identifier: MIT
//
#pragma once
#include "TestUtils.hpp"
#include <armnn_delegate.hpp>
#include <flatbuffers/flatbuffers.h>
#include <tensorflow/lite/interpreter.h>
#include <tensorflow/lite/kernels/register.h>
#include <tensorflow/lite/model.h>
#include <tensorflow/lite/schema/schema_generated.h>
#include <tensorflow/lite/version.h>
#include <doctest/doctest.h>
namespace
{
template <typename T, typename B = float>
std::vector<char> CreateConv2dTfLiteModel(tflite::BuiltinOperator convolutionOperatorCode,
tflite::TensorType tensorType,
uint32_t strideX,
uint32_t strideY,
uint32_t dilationX,
uint32_t dilationY,
tflite::Padding padding,
tflite::ActivationFunctionType fused_activation_function,
const std::vector <int32_t>& inputTensorShape,
const std::vector <int32_t>& filterTensorShape,
const std::vector <int32_t>& biasTensorShape,
const std::vector <int32_t>& outputTensorShape,
const std::vector <T>& filterData,
const std::vector <B>& biasData,
const std::vector<float> biasScales = {1.0f},
const std::vector<int64_t> biasOffsets = {0},
const std::vector<float> filterScales = {1.0f},
const std::vector<int64_t> filterOffsets = {0},
float outputQuantScale = 2.0f,
int outputQuantOffset = 0,
float quantScale = 1.0f,
int quantOffset = 0,
int32_t depth_multiplier = 1,
int32_t filterQuantizationDim = 0)
{
using namespace tflite;
flatbuffers::FlatBufferBuilder flatBufferBuilder;
std::array<flatbuffers::Offset<tflite::Buffer>, 3> buffers;
buffers[0] = CreateBuffer(flatBufferBuilder, flatBufferBuilder.CreateVector({}));
buffers[1] = CreateBuffer(flatBufferBuilder,
flatBufferBuilder.CreateVector(reinterpret_cast<const uint8_t*>(filterData.data()),
sizeof(T) * filterData.size()));
buffers[2] = CreateBuffer(flatBufferBuilder,
flatBufferBuilder.CreateVector(reinterpret_cast<const uint8_t*>(biasData.data()),
sizeof(B) * biasData.size()));
auto quantizationParameters =
CreateQuantizationParameters(flatBufferBuilder,
0,
0,
flatBufferBuilder.CreateVector<float>({ quantScale }),
flatBufferBuilder.CreateVector<int64_t>({ quantOffset }));
auto outputQuantizationParameters =
CreateQuantizationParameters(flatBufferBuilder,
0,
0,
flatBufferBuilder.CreateVector<float>({ outputQuantScale }),
flatBufferBuilder.CreateVector<int64_t>({ outputQuantOffset }));
auto filterQuantizationParameters =
CreateQuantizationParameters(flatBufferBuilder,
0,
0,
flatBufferBuilder.CreateVector<float>(filterScales),
flatBufferBuilder.CreateVector<int64_t>(filterOffsets),
tflite::QuantizationDetails_NONE,
0,
filterQuantizationDim);
auto biasQuantizationParameters =
CreateQuantizationParameters(flatBufferBuilder,
0,
0,
flatBufferBuilder.CreateVector<float>(biasScales),
flatBufferBuilder.CreateVector<int64_t>(biasOffsets));
std::array<flatbuffers::Offset<Tensor>, 4> tensors;
tensors[0] = CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(inputTensorShape.data(),
inputTensorShape.size()),
tensorType,
0,
flatBufferBuilder.CreateString("input"),
quantizationParameters);
tensors[1] = CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(filterTensorShape.data(),
filterTensorShape.size()),
tensorType,
1,
flatBufferBuilder.CreateString("filter"),
filterQuantizationParameters);
auto biasTensorType = ::tflite::TensorType_FLOAT32;
if (tensorType == ::tflite::TensorType_INT8 || tensorType == ::tflite::TensorType_UINT8)
{
biasTensorType = ::tflite::TensorType_INT32;
}
tensors[2] = CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(biasTensorShape.data(), biasTensorShape.size()),
biasTensorType,
2,
flatBufferBuilder.CreateString("bias"),
biasQuantizationParameters);
tensors[3] = CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(outputTensorShape.data(),
outputTensorShape.size()),
tensorType,
0,
flatBufferBuilder.CreateString("output"),
outputQuantizationParameters);
flatbuffers::Offset<void> operatorBuiltinOptions;
tflite::BuiltinOptions operatorBuiltinOptionsType;
if(convolutionOperatorCode == tflite::BuiltinOperator_DEPTHWISE_CONV_2D)
{
operatorBuiltinOptionsType = tflite::BuiltinOptions_DepthwiseConv2DOptions;
operatorBuiltinOptions = CreateDepthwiseConv2DOptions(flatBufferBuilder,
padding,
strideX,
strideY,
depth_multiplier,
fused_activation_function,
dilationX,
dilationY).Union();
}
if(convolutionOperatorCode == tflite::BuiltinOperator_CONV_2D)
{
operatorBuiltinOptionsType = tflite::BuiltinOptions_Conv2DOptions;
operatorBuiltinOptions = CreateConv2DOptions(flatBufferBuilder,
padding,
strideX,
strideY,
fused_activation_function,
dilationX,
dilationY).Union();
}
// create operator
const std::vector<int> operatorInputs{0, 1, 2};
const std::vector<int> operatorOutputs{3};
flatbuffers::Offset <Operator> convolutionOperator =
CreateOperator(flatBufferBuilder,
0,
flatBufferBuilder.CreateVector<int32_t>(operatorInputs.data(), operatorInputs.size()),
flatBufferBuilder.CreateVector<int32_t>(operatorOutputs.data(), operatorOutputs.size()),
operatorBuiltinOptionsType,
operatorBuiltinOptions);
const std::vector<int> subgraphInputs{0, 1, 2};
const std::vector<int> subgraphOutputs{3};
flatbuffers::Offset <SubGraph> subgraph =
CreateSubGraph(flatBufferBuilder,
flatBufferBuilder.CreateVector(tensors.data(), tensors.size()),
flatBufferBuilder.CreateVector<int32_t>(subgraphInputs.data(), subgraphInputs.size()),
flatBufferBuilder.CreateVector<int32_t>(subgraphOutputs.data(), subgraphOutputs.size()),
flatBufferBuilder.CreateVector(&convolutionOperator, 1));
flatbuffers::Offset <flatbuffers::String> modelDescription =
flatBufferBuilder.CreateString("ArmnnDelegate: Convolution2d Operator Model");
flatbuffers::Offset <OperatorCode> operatorCode = CreateOperatorCode(flatBufferBuilder, convolutionOperatorCode);
flatbuffers::Offset <Model> flatbufferModel =
CreateModel(flatBufferBuilder,
TFLITE_SCHEMA_VERSION,
flatBufferBuilder.CreateVector(&operatorCode, 1),
flatBufferBuilder.CreateVector(&subgraph, 1),
modelDescription,
flatBufferBuilder.CreateVector(buffers.data(), buffers.size()));
flatBufferBuilder.Finish(flatbufferModel);
return std::vector<char>(flatBufferBuilder.GetBufferPointer(),
flatBufferBuilder.GetBufferPointer() + flatBufferBuilder.GetSize());
}
template <typename T, typename B = float>
void ConvolutionTest(tflite::BuiltinOperator convolutionOperatorCode,
tflite::TensorType tensorType,
uint32_t strideX,
uint32_t strideY,
uint32_t dilationX,
uint32_t dilationY,
tflite::Padding padding,
tflite::ActivationFunctionType fused_activation_function,
std::vector<armnn::BackendId>& backends,
std::vector<int32_t>& inputShape,
std::vector<int32_t>& filterShape,
std::vector<int32_t>& outputShape,
std::vector<T>& inputValues,
std::vector<T>& filterValues,
std::vector<T>& expectedOutputValues,
const std::vector<int32_t>& biasShape = {},
const std::vector<B>& biasValues = {},
const std::vector<float> biasScales = {1.0f},
const std::vector<int64_t> biasOffsets = {0},
const std::vector<float> filterScales = {1.0f},
const std::vector<int64_t> filterOffsets = {0},
float outputQuantScale = 2.0f,
int outputQuantOffset = 0,
float quantScale = 1.0f,
int quantOffset = 0,
int32_t depth_multiplier = 1,
int32_t filterQuantizationDim = 3)
{
using namespace tflite;
std::vector<char> modelBuffer;
modelBuffer = CreateConv2dTfLiteModel(convolutionOperatorCode,
tensorType,
strideX,
strideY,
dilationX,
dilationY,
padding,
fused_activation_function,
inputShape,
filterShape,
biasShape,
outputShape,
filterValues,
biasValues,
biasScales,
biasOffsets,
filterScales,
filterOffsets,
outputQuantScale,
outputQuantOffset,
quantScale,
quantOffset,
depth_multiplier,
filterQuantizationDim);
const Model* tfLiteModel = GetModel(modelBuffer.data());
// Create TfLite Interpreters
std::unique_ptr<Interpreter> armnnDelegateInterpreter;
CHECK(InterpreterBuilder(tfLiteModel, ::tflite::ops::builtin::BuiltinOpResolver())
(&armnnDelegateInterpreter) == kTfLiteOk);
CHECK(armnnDelegateInterpreter != nullptr);
CHECK(armnnDelegateInterpreter->AllocateTensors() == kTfLiteOk);
std::unique_ptr<Interpreter> tfLiteInterpreter;
CHECK(InterpreterBuilder(tfLiteModel, ::tflite::ops::builtin::BuiltinOpResolver())
(&tfLiteInterpreter) == kTfLiteOk);
CHECK(tfLiteInterpreter != nullptr);
CHECK(tfLiteInterpreter->AllocateTensors() == kTfLiteOk);
// Create the ArmNN Delegate
armnnDelegate::DelegateOptions delegateOptions(backends);
std::unique_ptr<TfLiteDelegate, decltype(&armnnDelegate::TfLiteArmnnDelegateDelete)>
theArmnnDelegate(armnnDelegate::TfLiteArmnnDelegateCreate(delegateOptions),
armnnDelegate::TfLiteArmnnDelegateDelete);
CHECK(theArmnnDelegate != nullptr);
// Modify armnnDelegateInterpreter to use armnnDelegate
CHECK(armnnDelegateInterpreter->ModifyGraphWithDelegate(theArmnnDelegate.get()) == kTfLiteOk);
// Set input data
auto tfLiteDelegateInputId = tfLiteInterpreter->inputs()[0];
auto tfLiteDelageInputData = tfLiteInterpreter->typed_tensor<T>(tfLiteDelegateInputId);
for (unsigned int i = 0; i < inputValues.size(); ++i)
{
tfLiteDelageInputData[i] = inputValues[i];
}
auto armnnDelegateInputId = armnnDelegateInterpreter->inputs()[0];
auto armnnDelegateInputData = armnnDelegateInterpreter->typed_tensor<T>(armnnDelegateInputId);
for (unsigned int i = 0; i < inputValues.size(); ++i)
{
armnnDelegateInputData[i] = inputValues[i];
}
// Run EnqueueWorkload
CHECK(tfLiteInterpreter->Invoke() == kTfLiteOk);
CHECK(armnnDelegateInterpreter->Invoke() == kTfLiteOk);
// Compare output data
auto tfLiteDelegateOutputId = tfLiteInterpreter->outputs()[0];
auto tfLiteDelagateOutputData = tfLiteInterpreter->typed_tensor<T>(tfLiteDelegateOutputId);
auto armnnDelegateOutputId = armnnDelegateInterpreter->outputs()[0];
auto armnnDelegateOutputData = armnnDelegateInterpreter->typed_tensor<T>(armnnDelegateOutputId);
for (size_t i = 0; i < expectedOutputValues.size(); i++)
{
CHECK(tfLiteDelagateOutputData[i] == armnnDelegateOutputData[i]);
CHECK(doctest::Approx(tfLiteDelagateOutputData[i]).epsilon(0.000001f) == expectedOutputValues[i]);
CHECK(doctest::Approx(armnnDelegateOutputData[i]).epsilon(0.000001f) == expectedOutputValues[i]);
}
}
// Conv3d is only correctly supported for external delegates from TF Lite v2.6, as there was a breaking bug in v2.5.
#if defined(ARMNN_POST_TFLITE_2_5)
template <typename T, typename B = float>
std::vector<char> CreateConv3dTfLiteModel(tflite::BuiltinOperator convolutionOperatorCode,
tflite::TensorType tensorType,
std::vector<uint32_t> strides,
std::vector<uint32_t> dilation,
tflite::Padding padding,
tflite::ActivationFunctionType fused_activation_function,
const std::vector<int32_t>& inputTensorShape,
const std::vector<int32_t>& filterTensorShape,
const std::vector<int32_t>& biasTensorShape,
const std::vector<int32_t>& outputTensorShape,
const std::vector<T>& filterData,
const std::vector<B>& biasData,
const std::vector<float> biasScales = {1.0f},
const std::vector<int64_t> biasOffsets = {0},
const std::vector<float> filterScales = {1.0f},
const std::vector<int64_t> filterOffsets = {0},
float outputQuantScale = 2.0f,
int outputQuantOffset = 0,
float quantScale = 1.0f,
int quantOffset = 0,
int32_t depth_multiplier = 1,
int32_t filterQuantizationDim = 0)
{
using namespace tflite;
flatbuffers::FlatBufferBuilder flatBufferBuilder;
std::array<flatbuffers::Offset<tflite::Buffer>, 3> buffers;
buffers[0] = CreateBuffer(flatBufferBuilder, flatBufferBuilder.CreateVector({}));
buffers[1] = CreateBuffer(flatBufferBuilder,
flatBufferBuilder.CreateVector(reinterpret_cast<const uint8_t*>(filterData.data()),
sizeof(T) * filterData.size()));
buffers[2] = CreateBuffer(flatBufferBuilder,
flatBufferBuilder.CreateVector(reinterpret_cast<const uint8_t*>(biasData.data()),
sizeof(B) * biasData.size()));
auto quantizationParameters =
CreateQuantizationParameters(flatBufferBuilder,
0,
0,
flatBufferBuilder.CreateVector<float>({ quantScale }),
flatBufferBuilder.CreateVector<int64_t>({ quantOffset }));
auto outputQuantizationParameters =
CreateQuantizationParameters(flatBufferBuilder,
0,
0,
flatBufferBuilder.CreateVector<float>({ outputQuantScale }),
flatBufferBuilder.CreateVector<int64_t>({ outputQuantOffset }));
auto filterQuantizationParameters =
CreateQuantizationParameters(flatBufferBuilder,
0,
0,
flatBufferBuilder.CreateVector<float>(filterScales),
flatBufferBuilder.CreateVector<int64_t>(filterOffsets),
tflite::QuantizationDetails_NONE,
0,
filterQuantizationDim);
auto biasQuantizationParameters =
CreateQuantizationParameters(flatBufferBuilder,
0,
0,
flatBufferBuilder.CreateVector<float>(biasScales),
flatBufferBuilder.CreateVector<int64_t>(biasOffsets));
std::array<flatbuffers::Offset<Tensor>, 4> tensors;
tensors[0] = CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(inputTensorShape.data(),
inputTensorShape.size()),
tensorType,
0,
flatBufferBuilder.CreateString("input"),
quantizationParameters);
tensors[1] = CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(filterTensorShape.data(),
filterTensorShape.size()),
tensorType,
1,
flatBufferBuilder.CreateString("filter"),
filterQuantizationParameters);
auto biasTensorType = ::tflite::TensorType_FLOAT32;
if (tensorType == ::tflite::TensorType_INT8 || tensorType == ::tflite::TensorType_UINT8)
{
biasTensorType = ::tflite::TensorType_INT32;
}
tensors[2] = CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(biasTensorShape.data(), biasTensorShape.size()),
biasTensorType,
2,
flatBufferBuilder.CreateString("bias"),
biasQuantizationParameters);
tensors[3] = CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(outputTensorShape.data(),
outputTensorShape.size()),
tensorType,
0,
flatBufferBuilder.CreateString("output"),
outputQuantizationParameters);
tflite::BuiltinOptions operatorBuiltinOptionsType = tflite::BuiltinOptions_Conv3DOptions;
flatbuffers::Offset<void> operatorBuiltinOptions = CreateConv3DOptions(flatBufferBuilder,
padding,
strides[2], // Depth
strides[0], // Width
strides[1], // Height
fused_activation_function,
dilation[2],
dilation[0],
dilation[1]).Union();
// Create operator
const std::vector<int> operatorInputs{0, 1, 2};
const std::vector<int> operatorOutputs{3};
flatbuffers::Offset <Operator> convolutionOperator =
CreateOperator(flatBufferBuilder,
0,
flatBufferBuilder.CreateVector<int32_t>(operatorInputs.data(), operatorInputs.size()),
flatBufferBuilder.CreateVector<int32_t>(operatorOutputs.data(), operatorOutputs.size()),
operatorBuiltinOptionsType,
operatorBuiltinOptions);
const std::vector<int> subgraphInputs{0, 1, 2};
const std::vector<int> subgraphOutputs{3};
flatbuffers::Offset <SubGraph> subgraph =
CreateSubGraph(flatBufferBuilder,
flatBufferBuilder.CreateVector(tensors.data(), tensors.size()),
flatBufferBuilder.CreateVector<int32_t>(subgraphInputs.data(), subgraphInputs.size()),
flatBufferBuilder.CreateVector<int32_t>(subgraphOutputs.data(), subgraphOutputs.size()),
flatBufferBuilder.CreateVector(&convolutionOperator, 1));
flatbuffers::Offset <flatbuffers::String> modelDescription =
flatBufferBuilder.CreateString("ArmnnDelegate: Convolution 3d Operator Model");
// If using an operator with a code greater than 127 then the enum value should be passed as the fifth
// parameter rather than the second like in other tests.
flatbuffers::Offset <OperatorCode> operatorCode =
CreateOperatorCode(flatBufferBuilder, 0, 0, 1, tflite::BuiltinOperator_CONV_3D);
flatbuffers::Offset <Model> flatbufferModel =
CreateModel(flatBufferBuilder,
TFLITE_SCHEMA_VERSION,
flatBufferBuilder.CreateVector(&operatorCode, 1),
flatBufferBuilder.CreateVector(&subgraph, 1),
modelDescription,
flatBufferBuilder.CreateVector(buffers.data(), buffers.size()));
flatBufferBuilder.Finish(flatbufferModel);
return std::vector<char>(flatBufferBuilder.GetBufferPointer(),
flatBufferBuilder.GetBufferPointer() + flatBufferBuilder.GetSize());
}
template <typename T, typename B = float>
void Convolution3dTest(tflite::BuiltinOperator convolutionOperatorCode,
tflite::TensorType tensorType,
std::vector<uint32_t> strides,
std::vector<uint32_t> dilation,
tflite::Padding padding,
tflite::ActivationFunctionType fused_activation_function,
std::vector<armnn::BackendId>& backends,
std::vector<int32_t>& inputShape,
std::vector<int32_t>& filterShape,
std::vector<int32_t>& outputShape,
std::vector<T>& inputValues,
std::vector<T>& filterValues,
std::vector<T>& expectedOutputValues,
const std::vector<int32_t>& biasShape = {},
const std::vector<B>& biasValues = {},
const std::vector<float> biasScales = {1.0f},
const std::vector<int64_t> biasOffsets = {0},
const std::vector<float> filterScales = {1.0f},
const std::vector<int64_t> filterOffsets = {0},
float outputQuantScale = 2.0f,
int outputQuantOffset = 0,
float quantScale = 1.0f,
int quantOffset = 0,
int32_t depth_multiplier = 1,
int32_t filterQuantizationDim = 3)
{
using namespace tflite;
std::vector<char> modelBuffer;
modelBuffer = CreateConv3dTfLiteModel(convolutionOperatorCode,
tensorType,
strides,
dilation,
padding,
fused_activation_function,
inputShape,
filterShape,
biasShape,
outputShape,
filterValues,
biasValues,
biasScales,
biasOffsets,
filterScales,
filterOffsets,
outputQuantScale,
outputQuantOffset,
quantScale,
quantOffset,
depth_multiplier,
filterQuantizationDim);
const Model* tfLiteModel = GetModel(modelBuffer.data());
// Create TfLite Interpreters
std::unique_ptr<Interpreter> armnnDelegateInterpreter;
CHECK(InterpreterBuilder(tfLiteModel, ::tflite::ops::builtin::BuiltinOpResolver())
(&armnnDelegateInterpreter) == kTfLiteOk);
CHECK(armnnDelegateInterpreter != nullptr);
CHECK(armnnDelegateInterpreter->AllocateTensors() == kTfLiteOk);
std::unique_ptr<Interpreter> tfLiteInterpreter;
CHECK(InterpreterBuilder(tfLiteModel, ::tflite::ops::builtin::BuiltinOpResolver())
(&tfLiteInterpreter) == kTfLiteOk);
CHECK(tfLiteInterpreter != nullptr);
CHECK(tfLiteInterpreter->AllocateTensors() == kTfLiteOk);
// Create the ArmNN Delegate
armnnDelegate::DelegateOptions delegateOptions(backends);
std::unique_ptr<TfLiteDelegate, decltype(&armnnDelegate::TfLiteArmnnDelegateDelete)>
theArmnnDelegate(armnnDelegate::TfLiteArmnnDelegateCreate(delegateOptions),
armnnDelegate::TfLiteArmnnDelegateDelete);
CHECK(theArmnnDelegate != nullptr);
// Modify armnnDelegateInterpreter to use armnnDelegate
CHECK(armnnDelegateInterpreter->ModifyGraphWithDelegate(theArmnnDelegate.get()) == kTfLiteOk);
// Set input data
armnnDelegate::FillInput<T>(tfLiteInterpreter, 0, inputValues);
armnnDelegate::FillInput<T>(armnnDelegateInterpreter, 0, inputValues);
// Run EnqueueWorkload
CHECK(tfLiteInterpreter->Invoke() == kTfLiteOk);
CHECK(armnnDelegateInterpreter->Invoke() == kTfLiteOk);
// Compare output data
auto tfLiteDelegateOutputId = tfLiteInterpreter->outputs()[0];
auto tfLiteDelagateOutputData = tfLiteInterpreter->typed_tensor<float>(tfLiteDelegateOutputId);
auto armnnDelegateOutputId = armnnDelegateInterpreter->outputs()[0];
auto armnnDelegateOutputData = armnnDelegateInterpreter->typed_tensor<float>(armnnDelegateOutputId);
armnnDelegate::CompareData(expectedOutputValues.data(), armnnDelegateOutputData, expectedOutputValues.size(), 1);
armnnDelegate::CompareData(expectedOutputValues.data(), tfLiteDelagateOutputData, expectedOutputValues.size(), 1);
armnnDelegate::CompareData(tfLiteDelagateOutputData, armnnDelegateOutputData, expectedOutputValues.size(), 1);
}
#endif
template <typename T>
std::vector<char> CreateTransposeConvTfLiteModel(tflite::TensorType tensorType,
uint32_t strideX,
uint32_t strideY,
tflite::Padding padding,
const std::vector <int32_t>& transposeTensorShape,
const std::vector <int32_t>& filterTensorShape,
const std::vector <int32_t>& inputTensorShape,
const std::vector <int32_t>& outputTensorShape,
const std::vector <int32_t>& transposeData,
const std::vector <T>& filterData,
float filterScale = 1.0f,
int filterOffset = 0,
float outputQuantScale = 2.0f,
int outputQuantOffset = 0,
float quantScale = 1.0f,
int quantOffset = 0)
{
using namespace tflite;
flatbuffers::FlatBufferBuilder flatBufferBuilder;
std::array<flatbuffers::Offset<tflite::Buffer>, 3> buffers;
buffers[0] = CreateBuffer(flatBufferBuilder, flatBufferBuilder.CreateVector({}));
buffers[1] = CreateBuffer(flatBufferBuilder,
flatBufferBuilder.CreateVector(reinterpret_cast<const uint8_t*>(transposeData.data()),
sizeof(int32_t) * transposeData.size()));
buffers[2] = CreateBuffer(flatBufferBuilder,
flatBufferBuilder.CreateVector(reinterpret_cast<const uint8_t*>(filterData.data()),
sizeof(T) * filterData.size()));
auto quantizationParameters =
CreateQuantizationParameters(flatBufferBuilder,
0,
0,
flatBufferBuilder.CreateVector<float>({ quantScale }),
flatBufferBuilder.CreateVector<int64_t>({ quantOffset }));
auto outputQuantizationParameters =
CreateQuantizationParameters(flatBufferBuilder,
0,
0,
flatBufferBuilder.CreateVector<float>({ outputQuantScale }),
flatBufferBuilder.CreateVector<int64_t>({ outputQuantOffset }));
auto filterQuantizationParameters =
CreateQuantizationParameters(flatBufferBuilder,
0,
0,
flatBufferBuilder.CreateVector<float>({ filterScale }),
flatBufferBuilder.CreateVector<int64_t>({ filterOffset }));
std::array<flatbuffers::Offset<Tensor>, 4> tensors;
tensors[0] = CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(transposeTensorShape.data(),
transposeTensorShape.size()),
tflite::TensorType_INT32,
1);
tensors[1] = CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(filterTensorShape.data(),
filterTensorShape.size()),
tensorType,
2,
flatBufferBuilder.CreateString("filter"),
filterQuantizationParameters);
tensors[2] = CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(inputTensorShape.data(),
inputTensorShape.size()),
tensorType,
0,
flatBufferBuilder.CreateString("input"),
quantizationParameters);
tensors[3] = CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(outputTensorShape.data(),
outputTensorShape.size()),
tensorType,
0,
flatBufferBuilder.CreateString("output"),
outputQuantizationParameters);
tflite::BuiltinOptions operatorBuiltinOptionsType = tflite::BuiltinOptions_TransposeConvOptions;
flatbuffers::Offset<void> operatorBuiltinOptions =
CreateTransposeConvOptions(flatBufferBuilder, padding, strideX, strideY).Union();
// create operator
const std::vector<int> operatorInputs{0, 1, 2};
const std::vector<int> operatorOutputs{3};
flatbuffers::Offset <Operator> convolutionOperator =
CreateOperator(flatBufferBuilder,
0,
flatBufferBuilder.CreateVector<int32_t>(operatorInputs.data(), operatorInputs.size()),
flatBufferBuilder.CreateVector<int32_t>(operatorOutputs.data(), operatorOutputs.size()),
operatorBuiltinOptionsType,
operatorBuiltinOptions);
const std::vector<int> subgraphInputs{0, 1, 2};
const std::vector<int> subgraphOutputs{3};
flatbuffers::Offset <SubGraph> subgraph =
CreateSubGraph(flatBufferBuilder,
flatBufferBuilder.CreateVector(tensors.data(), tensors.size()),
flatBufferBuilder.CreateVector<int32_t>(subgraphInputs.data(), subgraphInputs.size()),
flatBufferBuilder.CreateVector<int32_t>(subgraphOutputs.data(), subgraphOutputs.size()),
flatBufferBuilder.CreateVector(&convolutionOperator, 1));
flatbuffers::Offset <flatbuffers::String> modelDescription =
flatBufferBuilder.CreateString("ArmnnDelegate: TransposeConv Operator Model");
flatbuffers::Offset <OperatorCode> operatorCode =
CreateOperatorCode(flatBufferBuilder, tflite::BuiltinOperator_TRANSPOSE_CONV);
flatbuffers::Offset <Model> flatbufferModel =
CreateModel(flatBufferBuilder,
TFLITE_SCHEMA_VERSION,
flatBufferBuilder.CreateVector(&operatorCode, 1),
flatBufferBuilder.CreateVector(&subgraph, 1),
modelDescription,
flatBufferBuilder.CreateVector(buffers.data(), buffers.size()));
flatBufferBuilder.Finish(flatbufferModel);
return std::vector<char>(flatBufferBuilder.GetBufferPointer(),
flatBufferBuilder.GetBufferPointer() + flatBufferBuilder.GetSize());
}
template <typename T>
void TransposeConvTest(std::vector<armnn::BackendId>& backends,
tflite::TensorType tensorType,
uint32_t strideX,
uint32_t strideY,
tflite::Padding padding,
const std::vector <int32_t>& transposeTensorShape,
const std::vector <int32_t>& filterTensorShape,
const std::vector <int32_t>& inputTensorShape,
const std::vector <int32_t>& outputTensorShape,
const std::vector <int32_t>& transposeData,
const std::vector <T>& filterData,
std::vector<T>& inputValues,
std::vector<T>& expectedOutputValues,
float filterScale = 1.0f,
int filterOffset = 0,
float outputQuantScale = 1.0f,
int outputQuantOffset = 0,
float quantScale = 1.0f,
int quantOffset = 0)
{
using namespace tflite;
std::vector<char> modelBuffer;
modelBuffer = CreateTransposeConvTfLiteModel<T>(tensorType,
strideX,
strideY,
padding,
transposeTensorShape,
filterTensorShape,
inputTensorShape,
outputTensorShape,
transposeData,
filterData,
filterScale,
filterOffset,
outputQuantScale,
outputQuantOffset,
quantScale,
quantOffset);
const Model* tfLiteModel = GetModel(modelBuffer.data());
// Create TfLite Interpreters
std::unique_ptr<Interpreter> armnnDelegateInterpreter;
CHECK(InterpreterBuilder(tfLiteModel, ::tflite::ops::builtin::BuiltinOpResolver())
(&armnnDelegateInterpreter) == kTfLiteOk);
CHECK(armnnDelegateInterpreter != nullptr);
CHECK(armnnDelegateInterpreter->AllocateTensors() == kTfLiteOk);
std::unique_ptr<Interpreter> tfLiteInterpreter;
CHECK(InterpreterBuilder(tfLiteModel, ::tflite::ops::builtin::BuiltinOpResolver())
(&tfLiteInterpreter) == kTfLiteOk);
CHECK(tfLiteInterpreter != nullptr);
CHECK(tfLiteInterpreter->AllocateTensors() == kTfLiteOk);
// Create the ArmNN Delegate
armnnDelegate::DelegateOptions delegateOptions(backends);
std::unique_ptr<TfLiteDelegate, decltype(&armnnDelegate::TfLiteArmnnDelegateDelete)>
theArmnnDelegate(armnnDelegate::TfLiteArmnnDelegateCreate(delegateOptions),
armnnDelegate::TfLiteArmnnDelegateDelete);
CHECK(theArmnnDelegate != nullptr);
// Modify armnnDelegateInterpreter to use armnnDelegate
CHECK(armnnDelegateInterpreter->ModifyGraphWithDelegate(theArmnnDelegate.get()) == kTfLiteOk);
// Set input data
auto tfLiteDelegateInputId = tfLiteInterpreter->inputs()[2];
auto tfLiteDelageInputData = tfLiteInterpreter->typed_tensor<T>(tfLiteDelegateInputId);
for (unsigned int i = 0; i < inputValues.size(); ++i)
{
tfLiteDelageInputData[i] = inputValues[i];
}
auto armnnDelegateInputId = armnnDelegateInterpreter->inputs()[2];
auto armnnDelegateInputData = armnnDelegateInterpreter->typed_tensor<T>(armnnDelegateInputId);
for (unsigned int i = 0; i < inputValues.size(); ++i)
{
armnnDelegateInputData[i] = inputValues[i];
}
// Run EnqueueWorkload
CHECK(tfLiteInterpreter->Invoke() == kTfLiteOk);
CHECK(armnnDelegateInterpreter->Invoke() == kTfLiteOk);
// Compare output data
auto tfLiteDelegateOutputId = tfLiteInterpreter->outputs()[0];
auto tfLiteDelagateOutputData = tfLiteInterpreter->typed_tensor<T>(tfLiteDelegateOutputId);
auto armnnDelegateOutputId = armnnDelegateInterpreter->outputs()[0];
auto armnnDelegateOutputData = armnnDelegateInterpreter->typed_tensor<T>(armnnDelegateOutputId);
for (size_t i = 0; i < expectedOutputValues.size(); i++)
{
CHECK(armnnDelegateOutputData[i] == expectedOutputValues[i]);
CHECK(tfLiteDelagateOutputData[i] == expectedOutputValues[i]);
CHECK(tfLiteDelagateOutputData[i] == armnnDelegateOutputData[i]);
}
}
} // anonymous namespace