blob: 6e0cc3154c68efa2c59b2b0cf4b80abfe4466e0a [file] [log] [blame]
//
// Copyright © 2021 Arm Ltd and Contributors. All rights reserved.
// SPDX-License-Identifier: MIT
//
#pragma once
#include <armnn_delegate.hpp>
#include "ConvolutionTestHelper.hpp"
#include "TestUtils.hpp"
#include <flatbuffers/flatbuffers.h>
#include <tensorflow/lite/interpreter.h>
#include <tensorflow/lite/kernels/register.h>
#include <tensorflow/lite/model.h>
#include <tensorflow/lite/schema/schema_generated.h>
#include <tensorflow/lite/version.h>
#include <doctest/doctest.h>
namespace
{
struct StreamRedirector
{
public:
StreamRedirector(std::ostream &stream, std::streambuf *newStreamBuffer)
: m_Stream(stream), m_BackupBuffer(m_Stream.rdbuf(newStreamBuffer)) {}
~StreamRedirector() { m_Stream.rdbuf(m_BackupBuffer); }
private:
std::ostream &m_Stream;
std::streambuf *m_BackupBuffer;
};
std::vector<char> CreateAddDivTfLiteModel(tflite::TensorType tensorType,
const std::vector<int32_t>& tensorShape,
float quantScale = 1.0f,
int quantOffset = 0)
{
using namespace tflite;
flatbuffers::FlatBufferBuilder flatBufferBuilder;
std::vector<flatbuffers::Offset<tflite::Buffer>> buffers;
buffers.push_back(CreateBuffer(flatBufferBuilder, flatBufferBuilder.CreateVector({})));
auto quantizationParameters =
CreateQuantizationParameters(flatBufferBuilder,
0,
0,
flatBufferBuilder.CreateVector<float>({ quantScale }),
flatBufferBuilder.CreateVector<int64_t>({ quantOffset }));
std::array<flatbuffers::Offset<Tensor>, 5> tensors;
tensors[0] = CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(tensorShape.data(),
tensorShape.size()),
tensorType,
0,
flatBufferBuilder.CreateString("input_0"),
quantizationParameters);
tensors[1] = CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(tensorShape.data(),
tensorShape.size()),
tensorType,
0,
flatBufferBuilder.CreateString("input_1"),
quantizationParameters);
tensors[2] = CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(tensorShape.data(),
tensorShape.size()),
tensorType,
0,
flatBufferBuilder.CreateString("input_2"),
quantizationParameters);
tensors[3] = CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(tensorShape.data(),
tensorShape.size()),
tensorType,
0,
flatBufferBuilder.CreateString("add"),
quantizationParameters);
tensors[4] = CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(tensorShape.data(),
tensorShape.size()),
tensorType,
0,
flatBufferBuilder.CreateString("output"),
quantizationParameters);
// create operator
tflite::BuiltinOptions addBuiltinOptionsType = tflite::BuiltinOptions_AddOptions;
flatbuffers::Offset<void> addBuiltinOptions =
CreateAddOptions(flatBufferBuilder, ActivationFunctionType_NONE).Union();
tflite::BuiltinOptions divBuiltinOptionsType = tflite::BuiltinOptions_DivOptions;
flatbuffers::Offset<void> divBuiltinOptions =
CreateAddOptions(flatBufferBuilder, ActivationFunctionType_NONE).Union();
std::array<flatbuffers::Offset<Operator>, 2> operators;
const std::vector<int32_t> addInputs{0, 1};
const std::vector<int32_t> addOutputs{3};
operators[0] = CreateOperator(flatBufferBuilder,
0,
flatBufferBuilder.CreateVector<int32_t>(addInputs.data(), addInputs.size()),
flatBufferBuilder.CreateVector<int32_t>(addOutputs.data(), addOutputs.size()),
addBuiltinOptionsType,
addBuiltinOptions);
const std::vector<int32_t> divInputs{3, 2};
const std::vector<int32_t> divOutputs{4};
operators[1] = CreateOperator(flatBufferBuilder,
1,
flatBufferBuilder.CreateVector<int32_t>(divInputs.data(), divInputs.size()),
flatBufferBuilder.CreateVector<int32_t>(divOutputs.data(), divOutputs.size()),
divBuiltinOptionsType,
divBuiltinOptions);
const std::vector<int> subgraphInputs{0, 1, 2};
const std::vector<int> subgraphOutputs{4};
flatbuffers::Offset<SubGraph> subgraph =
CreateSubGraph(flatBufferBuilder,
flatBufferBuilder.CreateVector(tensors.data(), tensors.size()),
flatBufferBuilder.CreateVector<int32_t>(subgraphInputs.data(), subgraphInputs.size()),
flatBufferBuilder.CreateVector<int32_t>(subgraphOutputs.data(), subgraphOutputs.size()),
flatBufferBuilder.CreateVector(operators.data(), operators.size()));
flatbuffers::Offset<flatbuffers::String> modelDescription =
flatBufferBuilder.CreateString("ArmnnDelegate: Add and Div Operator Model");
std::array<flatbuffers::Offset<OperatorCode>, 2> codes;
codes[0] = CreateOperatorCode(flatBufferBuilder, tflite::BuiltinOperator_ADD);
codes[1] = CreateOperatorCode(flatBufferBuilder, tflite::BuiltinOperator_DIV);
flatbuffers::Offset<Model> flatbufferModel =
CreateModel(flatBufferBuilder,
TFLITE_SCHEMA_VERSION,
flatBufferBuilder.CreateVector(codes.data(), codes.size()),
flatBufferBuilder.CreateVector(&subgraph, 1),
modelDescription,
flatBufferBuilder.CreateVector(buffers.data(), buffers.size()));
flatBufferBuilder.Finish(flatbufferModel);
return std::vector<char>(flatBufferBuilder.GetBufferPointer(),
flatBufferBuilder.GetBufferPointer() + flatBufferBuilder.GetSize());
}
void ReduceFp32ToBf16TestImpl()
{
using namespace tflite;
// Set input data
std::vector<int32_t> inputShape{ 1, 5, 5, 1 };
std::vector<int32_t> filterShape{ 1, 3, 3, 1 };
std::vector<int32_t> biasShape{ 1 };
std::vector<int32_t> outputShape{ 1, 3, 3, 1 };
std::vector<float> inputValues =
{
1, 5, 2, 3, 5,
8, 7, 3, 6, 3,
3, 3, 9, 1, 9,
4, 1, 8, 1, 3,
6, 8, 1, 9, 2
};
std::vector<float> filterValues =
{
4, 5, 6,
0, 0, 0,
3, 2, 1
};
std::vector<float> biasValues = { 5 };
std::vector<float> expectedResult =
{
28, 38, 29,
96, 104, 53,
31, 55, 24
};
tflite::Padding padding = Padding_SAME;
std::vector<char> modelBuffer;
modelBuffer = CreateConv2dTfLiteModel<float>(BuiltinOperator_CONV_2D,
::tflite::TensorType_FLOAT32,
2,
2,
1,
1,
padding,
ActivationFunctionType_NONE,
inputShape,
filterShape,
biasShape,
outputShape,
filterValues,
biasValues);
const Model* tfLiteModel = GetModel(modelBuffer.data());
// Create TfLite Interpreters
std::unique_ptr<Interpreter> armnnDelegateInterpreter;
CHECK(InterpreterBuilder(tfLiteModel, ::tflite::ops::builtin::BuiltinOpResolver())
(&armnnDelegateInterpreter) == kTfLiteOk);
CHECK(armnnDelegateInterpreter != nullptr);
CHECK(armnnDelegateInterpreter->AllocateTensors() == kTfLiteOk);
// Create the Armnn Delegate
std::vector<armnn::BackendId> backends = {armnn::Compute::CpuRef};
std::vector<armnn::BackendOptions> backendOptions;
// Enable debug with BF16 enabled
armnn::OptimizerOptions optimizerOptions(false, true, true, false);
armnnDelegate::DelegateOptions delegateOptions(backends, optimizerOptions);
std::unique_ptr<TfLiteDelegate, decltype(&armnnDelegate::TfLiteArmnnDelegateDelete)>
theArmnnDelegate(armnnDelegate::TfLiteArmnnDelegateCreate(delegateOptions),
armnnDelegate::TfLiteArmnnDelegateDelete);
CHECK(theArmnnDelegate != nullptr);
// Modify armnnDelegateInterpreter to use armnnDelegate
CHECK(armnnDelegateInterpreter->ModifyGraphWithDelegate(theArmnnDelegate.get()) == kTfLiteOk);
// Set input data
armnnDelegate::FillInput(armnnDelegateInterpreter, 0, inputValues);
// Run EnqueueWorkload
CHECK(armnnDelegateInterpreter->Invoke() == kTfLiteOk);
// Compare output data
auto armnnDelegateOutputId = armnnDelegateInterpreter->outputs()[0];
auto armnnDelegateOutputData = armnnDelegateInterpreter->typed_tensor<float>(armnnDelegateOutputId);
armnnDelegate::CompareData(expectedResult.data(), armnnDelegateOutputData, expectedResult.size());
armnnDelegateInterpreter.reset(nullptr);
}
template <typename T>
void DelegateOptionTest(tflite::TensorType tensorType,
const std::vector<armnn::BackendId>& backends,
std::vector<int32_t>& tensorShape,
std::vector<T>& input0Values,
std::vector<T>& input1Values,
std::vector<T>& input2Values,
std::vector<T>& expectedOutputValues,
const armnnDelegate::DelegateOptions& delegateOptions,
float quantScale = 1.0f,
int quantOffset = 0)
{
using namespace tflite;
std::vector<char> modelBuffer = CreateAddDivTfLiteModel(tensorType,
tensorShape,
quantScale,
quantOffset);
const Model* tfLiteModel = GetModel(modelBuffer.data());
// Create TfLite Interpreters
std::unique_ptr<Interpreter> armnnDelegateInterpreter;
CHECK(InterpreterBuilder(tfLiteModel, ::tflite::ops::builtin::BuiltinOpResolver())
(&armnnDelegateInterpreter) == kTfLiteOk);
CHECK(armnnDelegateInterpreter != nullptr);
CHECK(armnnDelegateInterpreter->AllocateTensors() == kTfLiteOk);
std::unique_ptr<Interpreter> tfLiteInterpreter;
CHECK(InterpreterBuilder(tfLiteModel, ::tflite::ops::builtin::BuiltinOpResolver())
(&tfLiteInterpreter) == kTfLiteOk);
CHECK(tfLiteInterpreter != nullptr);
CHECK(tfLiteInterpreter->AllocateTensors() == kTfLiteOk);
// Create the ArmNN Delegate
std::unique_ptr<TfLiteDelegate, decltype(&armnnDelegate::TfLiteArmnnDelegateDelete)>
theArmnnDelegate(armnnDelegate::TfLiteArmnnDelegateCreate(delegateOptions),
armnnDelegate::TfLiteArmnnDelegateDelete);
CHECK(theArmnnDelegate != nullptr);
// Modify armnnDelegateInterpreter to use armnnDelegate
CHECK(armnnDelegateInterpreter->ModifyGraphWithDelegate(theArmnnDelegate.get()) == kTfLiteOk);
// Set input data
armnnDelegate::FillInput(tfLiteInterpreter, 0, input0Values);
armnnDelegate::FillInput(tfLiteInterpreter, 1, input1Values);
armnnDelegate::FillInput(tfLiteInterpreter, 2, input2Values);
armnnDelegate::FillInput(armnnDelegateInterpreter, 0, input0Values);
armnnDelegate::FillInput(armnnDelegateInterpreter, 1, input1Values);
armnnDelegate::FillInput(armnnDelegateInterpreter, 2, input2Values);
// Run EnqueueWorkload
CHECK(tfLiteInterpreter->Invoke() == kTfLiteOk);
CHECK(armnnDelegateInterpreter->Invoke() == kTfLiteOk);
armnnDelegate::CompareOutputData<T>(tfLiteInterpreter, armnnDelegateInterpreter, tensorShape, expectedOutputValues);
armnnDelegateInterpreter.reset(nullptr);
}
} // anonymous namespace