blob: d08a1af38826eb616fd1dfd3281b62db3ca29bd5 [file] [log] [blame]
//
// Copyright © 2020 Arm Ltd and Contributors. All rights reserved.
// SPDX-License-Identifier: MIT
//
#pragma once
#include "TestUtils.hpp"
#include <armnn_delegate.hpp>
#include <flatbuffers/flatbuffers.h>
#include <tensorflow/lite/interpreter.h>
#include <tensorflow/lite/kernels/register.h>
#include <tensorflow/lite/model.h>
#include <tensorflow/lite/schema/schema_generated.h>
#include <tensorflow/lite/version.h>
#include <doctest/doctest.h>
namespace
{
std::vector<char> CreateLogicalBinaryTfLiteModel(tflite::BuiltinOperator logicalOperatorCode,
tflite::TensorType tensorType,
const std::vector <int32_t>& input0TensorShape,
const std::vector <int32_t>& input1TensorShape,
const std::vector <int32_t>& outputTensorShape,
float quantScale = 1.0f,
int quantOffset = 0)
{
using namespace tflite;
flatbuffers::FlatBufferBuilder flatBufferBuilder;
std::vector<flatbuffers::Offset<tflite::Buffer>> buffers;
buffers.push_back(CreateBuffer(flatBufferBuilder, flatBufferBuilder.CreateVector({})));
auto quantizationParameters =
CreateQuantizationParameters(flatBufferBuilder,
0,
0,
flatBufferBuilder.CreateVector<float>({ quantScale }),
flatBufferBuilder.CreateVector<int64_t>({ quantOffset }));
std::array<flatbuffers::Offset<Tensor>, 3> tensors;
tensors[0] = CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(input0TensorShape.data(),
input0TensorShape.size()),
tensorType,
0,
flatBufferBuilder.CreateString("input_0"),
quantizationParameters);
tensors[1] = CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(input1TensorShape.data(),
input1TensorShape.size()),
tensorType,
0,
flatBufferBuilder.CreateString("input_1"),
quantizationParameters);
tensors[2] = CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(outputTensorShape.data(),
outputTensorShape.size()),
tensorType,
0,
flatBufferBuilder.CreateString("output"),
quantizationParameters);
// create operator
tflite::BuiltinOptions operatorBuiltinOptionsType = tflite::BuiltinOptions_NONE;
flatbuffers::Offset<void> operatorBuiltinOptions = 0;
switch (logicalOperatorCode)
{
case BuiltinOperator_LOGICAL_AND:
{
operatorBuiltinOptionsType = BuiltinOptions_LogicalAndOptions;
operatorBuiltinOptions = CreateLogicalAndOptions(flatBufferBuilder).Union();
break;
}
case BuiltinOperator_LOGICAL_OR:
{
operatorBuiltinOptionsType = BuiltinOptions_LogicalOrOptions;
operatorBuiltinOptions = CreateLogicalOrOptions(flatBufferBuilder).Union();
break;
}
default:
break;
}
const std::vector<int32_t> operatorInputs{ {0, 1} };
const std::vector<int32_t> operatorOutputs{ 2 };
flatbuffers::Offset <Operator> logicalBinaryOperator =
CreateOperator(flatBufferBuilder,
0,
flatBufferBuilder.CreateVector<int32_t>(operatorInputs.data(), operatorInputs.size()),
flatBufferBuilder.CreateVector<int32_t>(operatorOutputs.data(), operatorOutputs.size()),
operatorBuiltinOptionsType,
operatorBuiltinOptions);
const std::vector<int> subgraphInputs{ {0, 1} };
const std::vector<int> subgraphOutputs{ 2 };
flatbuffers::Offset <SubGraph> subgraph =
CreateSubGraph(flatBufferBuilder,
flatBufferBuilder.CreateVector(tensors.data(), tensors.size()),
flatBufferBuilder.CreateVector<int32_t>(subgraphInputs.data(), subgraphInputs.size()),
flatBufferBuilder.CreateVector<int32_t>(subgraphOutputs.data(), subgraphOutputs.size()),
flatBufferBuilder.CreateVector(&logicalBinaryOperator, 1));
flatbuffers::Offset <flatbuffers::String> modelDescription =
flatBufferBuilder.CreateString("ArmnnDelegate: Logical Binary Operator Model");
flatbuffers::Offset <OperatorCode> operatorCode = CreateOperatorCode(flatBufferBuilder, logicalOperatorCode);
flatbuffers::Offset <Model> flatbufferModel =
CreateModel(flatBufferBuilder,
TFLITE_SCHEMA_VERSION,
flatBufferBuilder.CreateVector(&operatorCode, 1),
flatBufferBuilder.CreateVector(&subgraph, 1),
modelDescription,
flatBufferBuilder.CreateVector(buffers.data(), buffers.size()));
flatBufferBuilder.Finish(flatbufferModel);
return std::vector<char>(flatBufferBuilder.GetBufferPointer(),
flatBufferBuilder.GetBufferPointer() + flatBufferBuilder.GetSize());
}
template <typename T>
void LogicalBinaryTest(tflite::BuiltinOperator logicalOperatorCode,
tflite::TensorType tensorType,
std::vector<armnn::BackendId>& backends,
std::vector<int32_t>& input0Shape,
std::vector<int32_t>& input1Shape,
std::vector<int32_t>& expectedOutputShape,
std::vector<T>& input0Values,
std::vector<T>& input1Values,
std::vector<T>& expectedOutputValues,
float quantScale = 1.0f,
int quantOffset = 0)
{
using namespace tflite;
std::vector<char> modelBuffer = CreateLogicalBinaryTfLiteModel(logicalOperatorCode,
tensorType,
input0Shape,
input1Shape,
expectedOutputShape,
quantScale,
quantOffset);
const Model* tfLiteModel = GetModel(modelBuffer.data());
// Create TfLite Interpreters
std::unique_ptr<Interpreter> armnnDelegateInterpreter;
CHECK(InterpreterBuilder(tfLiteModel, ::tflite::ops::builtin::BuiltinOpResolver())
(&armnnDelegateInterpreter) == kTfLiteOk);
CHECK(armnnDelegateInterpreter != nullptr);
CHECK(armnnDelegateInterpreter->AllocateTensors() == kTfLiteOk);
std::unique_ptr<Interpreter> tfLiteInterpreter;
CHECK(InterpreterBuilder(tfLiteModel, ::tflite::ops::builtin::BuiltinOpResolver())
(&tfLiteInterpreter) == kTfLiteOk);
CHECK(tfLiteInterpreter != nullptr);
CHECK(tfLiteInterpreter->AllocateTensors() == kTfLiteOk);
// Create the ArmNN Delegate
armnnDelegate::DelegateOptions delegateOptions(backends);
std::unique_ptr<TfLiteDelegate, decltype(&armnnDelegate::TfLiteArmnnDelegateDelete)>
theArmnnDelegate(armnnDelegate::TfLiteArmnnDelegateCreate(delegateOptions),
armnnDelegate::TfLiteArmnnDelegateDelete);
CHECK(theArmnnDelegate != nullptr);
// Modify armnnDelegateInterpreter to use armnnDelegate
CHECK(armnnDelegateInterpreter->ModifyGraphWithDelegate(theArmnnDelegate.get()) == kTfLiteOk);
// Set input data for the armnn interpreter
armnnDelegate::FillInput(armnnDelegateInterpreter, 0, input0Values);
armnnDelegate::FillInput(armnnDelegateInterpreter, 1, input1Values);
// Set input data for the tflite interpreter
armnnDelegate::FillInput(tfLiteInterpreter, 0, input0Values);
armnnDelegate::FillInput(tfLiteInterpreter, 1, input1Values);
// Run EnqueWorkload
CHECK(tfLiteInterpreter->Invoke() == kTfLiteOk);
CHECK(armnnDelegateInterpreter->Invoke() == kTfLiteOk);
// Compare output data, comparing Boolean values is handled differently and needs to call the CompareData function
// directly. This is because Boolean types get converted to a bit representation in a vector.
auto tfLiteDelegateOutputId = tfLiteInterpreter->outputs()[0];
auto tfLiteDelegateOutputData = tfLiteInterpreter->typed_tensor<T>(tfLiteDelegateOutputId);
auto armnnDelegateOutputId = armnnDelegateInterpreter->outputs()[0];
auto armnnDelegateOutputData = armnnDelegateInterpreter->typed_tensor<T>(armnnDelegateOutputId);
armnnDelegate::CompareData(expectedOutputValues, armnnDelegateOutputData, expectedOutputValues.size());
armnnDelegate::CompareData(expectedOutputValues, tfLiteDelegateOutputData, expectedOutputValues.size());
armnnDelegate::CompareData(tfLiteDelegateOutputData, armnnDelegateOutputData, expectedOutputValues.size());
armnnDelegateInterpreter.reset(nullptr);
tfLiteInterpreter.reset(nullptr);
}
} // anonymous namespace