blob: e39e4afcecee27885c47d37cffc72a6b677aa8d2 [file] [log] [blame]
//
// Copyright © 2023 Arm Ltd and Contributors. All rights reserved.
// SPDX-License-Identifier: MIT
//
#pragma once
#include <OpaqueDelegateUtils.hpp>
#include <fmt/format.h>
namespace armnnOpaqueDelegate
{
TfLiteStatus VisitSliceOperator(DelegateData& delegateData,
TfLiteOpaqueContext* tfLiteContext,
TfLiteOpaqueNode* tfLiteNode,
int nodeIndex,
int32_t tfLiteSliceOperatorCode)
{
TF_LITE_ENSURE_STATUS(ValidateNumInputs(tfLiteContext, tfLiteNode, 3, nodeIndex));
TF_LITE_ENSURE_STATUS(ValidateNumOutputs(tfLiteContext, tfLiteNode, 1, nodeIndex));
// Read inputs [input, begin, size]
// Gather input indices and use to get input tensor.
const int* inputTensors;
int numInputs;
if (TfLiteOpaqueNodeInputs(tfLiteNode, &inputTensors, &numInputs) != kTfLiteOk)
{
TF_LITE_OPAQUE_MAYBE_KERNEL_LOG(
tfLiteContext,
"TfLiteArmnnOpaqueDelegate: Unable to gather input tensor indices from node #%d: ",
nodeIndex);
return kTfLiteError;
}
std::vector<const TfLiteOpaqueTensor*> tfLiteInputTensors;
tfLiteInputTensors.reserve(numInputs);
for (int i = 0; i < numInputs; i++)
{
const TfLiteOpaqueTensor* inputTensor = TfLiteOpaqueContextGetOpaqueTensor(tfLiteContext, inputTensors[i]);
tfLiteInputTensors.push_back(inputTensor);
if (!IsValid(tfLiteContext, inputTensor, tfLiteSliceOperatorCode, nodeIndex))
{
return kTfLiteError;
}
}
const armnn::TensorInfo& inputTensorInfo = GetTensorInfoForTfLiteOpaqueTensor(tfLiteInputTensors[0]);
// We save the begin and size tensors in our descriptor. Therefore we have to read those values from inputs
unsigned int inputRank = inputTensorInfo.GetNumDimensions();
auto ReadInt32Input = [&](int inputIndex, std::vector<int32_t>& outputData, const char* name) -> TfLiteStatus
{
if (TfLiteOpaqueTensorType(tfLiteInputTensors[inputIndex]) != kTfLiteInt32)
{
TF_LITE_OPAQUE_MAYBE_KERNEL_LOG(
tfLiteContext,
"TfLiteArmnnOpaqueDelegate: The %s Tensor of the Slice operation needs to "
"be of type int32. Operator: #%d node #%d: ",
name, tfLiteSliceOperatorCode, nodeIndex);
return kTfLiteError;
}
uint32_t rank = TfLiteOpaqueTensorNumDims(tfLiteInputTensors[inputIndex]);
if (rank != 1)
{
TF_LITE_OPAQUE_MAYBE_KERNEL_LOG(
tfLiteContext,
"TfLiteArmnnOpaqueDelegate: The %s Tensor of the Slice operation needs to "
"be a 1D-Tensor. Operator: #%d node #%d: ",
name, tfLiteSliceOperatorCode, nodeIndex);
return kTfLiteError;
}
uint32_t numValues = TfLiteOpaqueTensorDim(tfLiteInputTensors[inputIndex], 0);
if (numValues != inputRank)
{
TF_LITE_OPAQUE_MAYBE_KERNEL_LOG(
tfLiteContext,
"TfLiteArmnnOpaqueDelegate: The number of values in the %s Tensor of the "
"Slice operation needs to be equal to the rank of the Input Tensor. Operator: #%d node #%d: ",
name, tfLiteSliceOperatorCode, nodeIndex);
return kTfLiteError;
}
// return tensor data
auto* tensorDataPtr = static_cast<int32_t*>(TfLiteOpaqueTensorData(tfLiteInputTensors[inputIndex]));
outputData.assign(tensorDataPtr, tensorDataPtr + numValues);
return kTfLiteOk;
};
std::vector<int32_t> signedBegin;
if (ReadInt32Input(1, signedBegin, "Begin") != kTfLiteOk)
{
return kTfLiteError;
}
std::vector<int32_t> signedSize;
if (ReadInt32Input(2, signedSize, "Size") != kTfLiteOk)
{
return kTfLiteError;
}
std::vector<uint32_t> begin({ signedBegin.begin(), signedBegin.end() });
std::vector<uint32_t> size(signedSize.size());
for (unsigned int i = 0; i < signedSize.size(); ++i)
{
int signedValue = signedSize[i];
if (signedValue < -1 || signedValue > TfLiteOpaqueTensorDim(tfLiteInputTensors[0], i) - signedBegin[i])
{
TF_LITE_OPAQUE_MAYBE_KERNEL_LOG(
tfLiteContext,
"TfLiteArmnnDelegate: Invalid value for Size. Size must be in range [-1, inputDimSize - begin] "
"[-1, %d] inclusive but was %d Operator: #%d node #%d: ",
TfLiteOpaqueTensorDim(tfLiteInputTensors[0], i) - signedBegin[i], signedValue,
tfLiteSliceOperatorCode, nodeIndex);
return kTfLiteError;
}
if (signedValue == -1)
{
size[i] = TfLiteOpaqueTensorDim(tfLiteInputTensors[0], i) - signedBegin[i];
}
else
{
size[i] = static_cast<uint32_t>(signedValue);
}
}
// Write all data to the descriptor
armnn::SliceDescriptor descriptor(begin, size);
// Validate output
// Gather output indices and use to get output tensor.
const int* outputTensors;
int numOutputs;
if (TfLiteOpaqueNodeOutputs(tfLiteNode, &outputTensors, &numOutputs) != kTfLiteOk)
{
TF_LITE_OPAQUE_MAYBE_KERNEL_LOG(
tfLiteContext,
"TfLiteArmnnOpaqueDelegate: Unable to gather output tensor indices from node #%d: ",
nodeIndex);
return kTfLiteError;
}
const TfLiteOpaqueTensor* tfLiteOutputTensor = TfLiteOpaqueContextGetOpaqueTensor(tfLiteContext, outputTensors[0]);
if (!IsValid(tfLiteContext, tfLiteOutputTensor, tfLiteSliceOperatorCode, nodeIndex))
{
return kTfLiteError;
}
const armnn::TensorInfo& outputTensorInfo = GetTensorInfoForTfLiteOpaqueTensor(tfLiteOutputTensor, true);
bool isSupported = false;
armnn::BackendId setBackend;
auto validateFunc = [&](const armnn::TensorInfo& outInfo, bool& isSupported)
{
FORWARD_LAYER_OPAQUE_SUPPORT_FUNC("SLICE",
tfLiteContext,
IsSliceSupported,
delegateData.m_Backends,
isSupported,
setBackend,
inputTensorInfo,
outInfo,
descriptor);
};
if (!delegateData.m_Network)
{
validateFunc(outputTensorInfo, isSupported);
return isSupported ? kTfLiteOk : kTfLiteError;
}
auto layerName = fmt::format("Slice:{}", nodeIndex);
// Add a Slice layer
armnn::IConnectableLayer* layer = delegateData.m_Network->AddSliceLayer(descriptor, layerName.c_str());
layer->SetBackendId(setBackend);
ARMNN_ASSERT(layer != nullptr);
armnn::IOutputSlot& outputSlot = layer->GetOutputSlot(0);
outputSlot.SetTensorInfo(outputTensorInfo);
// try to connect the Constant Inputs if there are any
if(ProcessInputs(layer,delegateData, tfLiteContext, tfLiteNode) != kTfLiteOk )
{
return kTfLiteError;
}
// Connect
return Connect(layer, tfLiteContext, tfLiteNode, delegateData);
}
} // namespace armnnOpaqueDelegate