blob: b50b0a939785e8d13143becce431d9473ef7aea8 [file] [log] [blame]
//
// Copyright © 2022 Arm Ltd and Contributors. All rights reserved.
// SPDX-License-Identifier: MIT
//
#include "Converter.hpp"
#include <half/half.hpp>
#include <armnnUtils/TensorUtils.hpp>
namespace armnn_driver
{
using namespace android::nn;
using Half = half_float::half;
namespace
{
} // anonymouse namespace
bool Converter::ConvertOperation(const Operation& operation, const Model& model, ConversionData& data)
{
switch (operation.type)
{
case OperationType::ABS:
return ConvertElementwiseUnary(operation, model, data, UnaryOperation::Abs);
case OperationType::ADD:
return ConvertAdd(operation, model, data);
case OperationType::ARGMAX:
return ConvertArgMinMax(operation, model, data, ArgMinMaxFunction::Max);
case OperationType::ARGMIN:
return ConvertArgMinMax(operation, model, data, ArgMinMaxFunction::Min);
case OperationType::AVERAGE_POOL_2D:
return ConvertAveragePool2d(operation, model, data);
case OperationType::BATCH_TO_SPACE_ND:
return ConvertBatchToSpaceNd(operation, model, data);
case OperationType::CAST:
return ConvertCast(operation, model, data);
case OperationType::CONCATENATION:
return ConvertConcatenation(operation, model, data);
case OperationType::CONV_2D:
return ConvertConv2d(operation, model, data);
case OperationType::DEPTH_TO_SPACE:
return ConvertDepthToSpace(operation, model, data);
case OperationType::DEPTHWISE_CONV_2D:
return ConvertDepthwiseConv2d(operation, model, data);
case OperationType::DEQUANTIZE:
return ConvertDequantize(operation, model, data);
case OperationType::DIV:
return ConvertDiv(operation, model, data);
case OperationType::ELU:
return ConvertElu(operation, model, data);
case OperationType::EQUAL:
return ConvertComparison(operation, model, data, ComparisonOperation::Equal);
case OperationType::EXP:
return ConvertElementwiseUnary(operation, model, data, UnaryOperation::Exp);
case OperationType::EXPAND_DIMS:
return ConvertExpandDims(operation, model, data);
case OperationType::FILL:
return ConvertFill(operation, model, data);
case OperationType::FLOOR:
return ConvertFloor(operation, model, data);
case OperationType::FULLY_CONNECTED:
return ConvertFullyConnected(operation, model, data);
case OperationType::GATHER:
return ConvertGather(operation, model, data);
case OperationType::GREATER:
return ConvertComparison(operation, model, data, ComparisonOperation::Greater);
case OperationType::GREATER_EQUAL:
return ConvertComparison(operation, model, data, ComparisonOperation::GreaterOrEqual);
case OperationType::GROUPED_CONV_2D:
return ConvertGroupedConv2d(operation, model, data);
case OperationType::HARD_SWISH:
return ConvertHardSwish(operation, model, data);
case OperationType::INSTANCE_NORMALIZATION:
return ConvertInstanceNormalization(operation, model, data);
case OperationType::L2_NORMALIZATION:
return ConvertL2Normalization(operation, model, data);
case OperationType::L2_POOL_2D:
return ConvertL2Pool2d(operation, model, data);
case OperationType::LESS:
return ConvertComparison(operation, model, data, ComparisonOperation::Less);
case OperationType::LESS_EQUAL:
return ConvertComparison(operation, model, data, ComparisonOperation::LessOrEqual);
case OperationType::LOCAL_RESPONSE_NORMALIZATION:
return ConvertLocalResponseNormalization(operation, model, data);
case OperationType::LOG:
return ConvertElementwiseUnary(operation, model, data, UnaryOperation::Log);
case OperationType::LOGICAL_AND:
return ConvertLogicalBinary(operation, model, data, LogicalBinaryOperation::LogicalAnd);
case OperationType::LOGICAL_NOT:
return ConvertElementwiseUnary(operation, model, data, UnaryOperation::LogicalNot);
case OperationType::LOGICAL_OR:
return ConvertLogicalBinary(operation, model, data, LogicalBinaryOperation::LogicalOr);
case OperationType::LOGISTIC:
return ConvertLogistic(operation, model, data);
case OperationType::LOG_SOFTMAX:
return ConvertLogSoftmax(operation, model, data);
case OperationType::LSTM:
return ConvertLstm(operation, model, data);
case OperationType::MAX_POOL_2D:
return ConvertMaxPool2d(operation, model, data);
case OperationType::MAXIMUM:
return ConvertMaximum(operation, model, data);
case OperationType::MEAN:
return ConvertMean(operation, model, data);
case OperationType::MINIMUM:
return ConvertMinimum(operation, model, data);
case OperationType::MUL:
return ConvertMul(operation, model, data);
case OperationType::NEG:
return ConvertElementwiseUnary(operation, model, data, UnaryOperation::Neg);
case OperationType::NOT_EQUAL:
return ConvertComparison(operation, model, data, ComparisonOperation::NotEqual);
case OperationType::PAD:
return ConvertPad(operation, model, data);
case OperationType::PAD_V2:
return ConvertPadV2(operation, model, data);
case OperationType::PRELU:
return ConvertPrelu(operation, model, data);
case OperationType::QUANTIZE:
return ConvertQuantize(operation, model, data);
case OperationType::QUANTIZED_LSTM:
return ConvertQuantizedLstm(operation, model, data);
case OperationType::QUANTIZED_16BIT_LSTM:
return ConvertQuantized16BitLstm(operation, model, data);
case OperationType::RANK:
return ConvertRank(operation, model, data);
case OperationType::REDUCE_MAX:
return ConvertReduce(operation, model, data, armnn::ReduceOperation::Max);
case OperationType::REDUCE_MIN:
return ConvertReduce(operation, model, data, armnn::ReduceOperation::Min);
case OperationType::REDUCE_SUM:
return ConvertReduce(operation, model, data, armnn::ReduceOperation::Sum);
case OperationType::RELU:
return ConvertReLu(operation, model, data);
case OperationType::RELU1:
return ConvertReLu1(operation, model, data);
case OperationType::RELU6:
return ConvertReLu6(operation, model, data);
case OperationType::RESHAPE:
return ConvertReshape(operation, model, data);
case OperationType::RESIZE_BILINEAR:
return ConvertResize(operation, model, data, ResizeMethod::Bilinear);
case OperationType::RESIZE_NEAREST_NEIGHBOR:
return ConvertResize(operation, model, data, ResizeMethod::NearestNeighbor);
case OperationType::RSQRT:
return ConvertElementwiseUnary(operation, model, data, UnaryOperation::Rsqrt);
case OperationType::SIN:
return ConvertElementwiseUnary(operation, model, data, UnaryOperation::Sin);
case OperationType::SOFTMAX:
return ConvertSoftmax(operation, model, data);
case OperationType::SPACE_TO_BATCH_ND :
return ConvertSpaceToBatchNd(operation, model, data);
case OperationType::SPACE_TO_DEPTH:
return ConvertSpaceToDepth(operation, model, data);
case OperationType::SQRT:
return ConvertSqrt(operation, model, data);
case OperationType::SQUEEZE:
return ConvertSqueeze(operation, model, data);
case OperationType::STRIDED_SLICE:
return ConvertStridedSlice(operation, model, data);
case OperationType::SUB:
return ConvertSub(operation, model, data);
case OperationType::TRANSPOSE:
return ConvertTranspose(operation, model, data);
case OperationType::TRANSPOSE_CONV_2D:
return ConvertTransposeConv2d(operation, model, data);
case OperationType::TANH:
return ConvertTanH(operation, model, data);
default:
VLOG(DRIVER) << "Operation type: " << operation.type << "is not supported in ArmnnDriver";
return false;
}
}
bool Converter::ConvertAdd(const Operation& operation, const Model& model, ConversionData& data)
{
VLOG(DRIVER) << "Converter::ConvertAdd()";
LayerInputHandle input0 = ConvertToLayerInputHandle(operation, 0, model, data);
LayerInputHandle input1 = ConvertToLayerInputHandle(operation, 1, model, data);
if (!input0.IsValid() || !input1.IsValid())
{
return Fail("%s: Operation has invalid inputs", __func__);
}
// The FuseActivation parameter is always the input index 2, and it should be optional
ActivationFn activationFunction;
if (!GetOptionalInputActivation(operation, 2, activationFunction, model, data))
{
return Fail("%s: Operation has invalid inputs", __func__);
}
const Operand* outputOperand = GetOutputOperand(operation, 0, model);
if (!outputOperand)
{
return false;
}
const armnn::TensorInfo& inputInfo0 = input0.GetTensorInfo();
const armnn::TensorInfo& inputInfo1 = input1.GetTensorInfo();
const armnn::TensorInfo& outputInfo = GetTensorInfoForOperand(*outputOperand);
bool isSupported = false;
auto validateFunc = [&](const armnn::TensorInfo& outputInfo, bool& isSupported)
{
FORWARD_LAYER_SUPPORT_FUNC(__func__,
IsAdditionSupported,
data.m_Backends,
isSupported,
inputInfo0,
inputInfo1,
outputInfo);
};
if(!IsDynamicTensor(outputInfo))
{
validateFunc(outputInfo, isSupported);
}
else
{
isSupported = AreDynamicTensorsSupported();
}
if (!isSupported)
{
return false;
}
armnn::IConnectableLayer* const startLayer = data.m_Network->AddAdditionLayer();
bool isReshapeSupported = BroadcastTensor(input0, input1, startLayer, data);
if (!isReshapeSupported)
{
return false;
}
return SetupAndTrackLayerOutputSlot(operation, 0, *startLayer, model,
data, nullptr, validateFunc, activationFunction);
}
bool Converter::ConvertArgMinMax(const Operation& operation,
const Model& model,
ConversionData& data,
armnn::ArgMinMaxFunction argMinMaxFunction)
{
VLOG(DRIVER) << "Converter::ConvertArgMinMax()";
VLOG(DRIVER) << "argMinMaxFunction = " << GetArgMinMaxFunctionAsCString(argMinMaxFunction);
LayerInputHandle input0 = ConvertToLayerInputHandle(operation, 0, model, data);
if (!input0.IsValid())
{
return Fail("%s: Operation has invalid inputs", __func__);
}
int32_t axis;
if (!GetInputScalar(operation, 1, OperandType::INT32, axis, model, data))
{
return Fail("%s: Operation has invalid inputs. Failed to read axis.", __func__);
}
const armnn::TensorInfo& inputInfo = input0.GetTensorInfo();
int rank = static_cast<int>(inputInfo.GetNumDimensions());
if (((axis < -rank) && (axis < 0)) || ((axis >= rank) && (axis > 0)))
{
// Square bracket denotes inclusive n while parenthesis denotes exclusive n
// E.g. Rank 4 tensor can have axis in range [-4, 3)
// -1 == 3, -2 == 2, -3 == 1, -4 == 0
return Fail("%s: Axis must be in range [-n, n)", __func__);
}
const Operand* output = GetOutputOperand(operation, 0, model);
if (!output)
{
return Fail("%s: Could not read output 0", __func__);
}
const armnn::TensorInfo& inputInfo0 = input0.GetTensorInfo();
const armnn::TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
armnn::ArgMinMaxDescriptor descriptor;
descriptor.m_Function = argMinMaxFunction;
descriptor.m_Axis = axis;
bool isSupported = false;
auto validateFunc = [&](const armnn::TensorInfo& outputInfo, bool& isSupported)
{
FORWARD_LAYER_SUPPORT_FUNC(__func__,
IsArgMinMaxSupported,
data.m_Backends,
isSupported,
inputInfo0,
outputInfo,
descriptor);
};
if(IsDynamicTensor(outputInfo))
{
isSupported = AreDynamicTensorsSupported();
}
else
{
validateFunc(outputInfo, isSupported);
}
if (!isSupported)
{
return false;
}
armnn::IConnectableLayer* layer = data.m_Network->AddArgMinMaxLayer(descriptor);
assert(layer != nullptr);
input0.Connect(layer->GetInputSlot(0));
return SetupAndTrackLayerOutputSlot(operation, 0, *layer, model, data, nullptr, validateFunc);
}
bool Converter::ConvertAveragePool2d(const Operation& operation, const Model& model, ConversionData& data)
{
VLOG(DRIVER) << "Converter::ConvertAveragePool2d()";
return ConvertPooling2d(operation, __func__, PoolingAlgorithm::Average, model, data);
}
bool Converter::ConvertBatchToSpaceNd(const Operation& operation, const Model& model, ConversionData& data)
{
VLOG(DRIVER) << "Converter::ConvertBatchToSpaceNd()";
LayerInputHandle input = ConvertToLayerInputHandle(operation, 0, model, data);
if (!input.IsValid())
{
return Fail("%s: Operation has invalid inputs", __func__);
}
const Operand* output = GetOutputOperand(operation, 0, model);
if (!output)
{
return Fail("%s: Could not read output 0", __func__);
}
const armnn::TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
const Operand* blockOperand = GetInputOperand(operation, 1, model);
if (!blockOperand)
{
return Fail("%s: Could not read input 1", __func__);
}
// Convert the block operand to int32
std::vector<int32_t> block;
if (!GetTensorInt32Values(*blockOperand, block, model, data))
{
return Fail("%s: Input 1 has invalid values", __func__);
}
const armnn::TensorInfo& inputInfo = input.GetTensorInfo();
unsigned int rank = inputInfo.GetNumDimensions();
if (rank != 4)
{
Fail("%s: Only inputs with rank equal to 4 are supported", __func__);
}
if (std::any_of(block.cbegin(), block.cend(), [](int32_t i){ return i < 1; }))
{
return Fail("%s: Block sizes for each spatial dimension of the input tensor must be"
" greater than or equal to 1", __func__);
}
armnn::BatchToSpaceNdDescriptor batchToSpaceNdDesc;
batchToSpaceNdDesc.m_BlockShape.assign(block.cbegin(), block.cend());
batchToSpaceNdDesc.m_DataLayout = armnn::DataLayout::NHWC;
if (Is12OrLaterOperand(*output))
{
batchToSpaceNdDesc.m_DataLayout = OptionalDataLayout(operation, 2, model, data);
}
// Setting crops to 0,0 0,0 as it is not supported in Android NN API
batchToSpaceNdDesc.m_Crops = {{0, 0}, {0, 0}};
bool isSupported = false;
auto validateFunc = [&](const armnn::TensorInfo& outputInfo, bool& isSupported)
{
FORWARD_LAYER_SUPPORT_FUNC(__func__,
IsBatchToSpaceNdSupported,
data.m_Backends,
isSupported,
inputInfo,
outputInfo,
batchToSpaceNdDesc);
};
if(!IsDynamicTensor(outputInfo))
{
validateFunc(outputInfo, isSupported);
}
else
{
isSupported = AreDynamicTensorsSupported();
}
if (!isSupported)
{
return false;
}
armnn::IConnectableLayer* const layer = data.m_Network->AddBatchToSpaceNdLayer(batchToSpaceNdDesc);
assert(layer != nullptr);
input.Connect(layer->GetInputSlot(0));
return SetupAndTrackLayerOutputSlot(operation, 0, *layer, model, data, nullptr, validateFunc);
}
bool Converter::ConvertCast(const Operation& operation, const Model& model, ConversionData& data)
{
VLOG(DRIVER) << "Converter::ConvertCast()";
LayerInputHandle input = ConvertToLayerInputHandle(operation, 0, model, data);
if (!input.IsValid())
{
return Fail("%s: Operation has invalid inputs", __func__);
}
const Operand* output = GetOutputOperand(operation, 0, model);
if (!output)
{
return Fail("%s: Could not read output 0", __func__);
}
const TensorInfo& inputInfo = input.GetTensorInfo();
const TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
bool isSupported = false;
auto validateFunc = [&](const armnn::TensorInfo& outputInfo, bool& isSupported)
{
FORWARD_LAYER_SUPPORT_FUNC(__func__,
IsCastSupported,
data.m_Backends,
isSupported,
inputInfo,
outputInfo);
};
if(!IsDynamicTensor(outputInfo))
{
validateFunc(outputInfo, isSupported);
}
else
{
isSupported = AreDynamicTensorsSupported();
}
if (!isSupported)
{
return false;
}
IConnectableLayer* layer = data.m_Network->AddCastLayer();
assert(layer != nullptr);
input.Connect(layer->GetInputSlot(0));
return SetupAndTrackLayerOutputSlot(operation, 0, *layer, model, data, nullptr, validateFunc);
}
bool Converter::ConvertComparison(const Operation& operation,
const Model& model,
ConversionData& data,
ComparisonOperation comparisonOperation)
{
VLOG(DRIVER) << "Converter::ConvertComparison()";
VLOG(DRIVER) << "comparisonOperation = " << GetComparisonOperationAsCString(comparisonOperation);
LayerInputHandle input0 = ConvertToLayerInputHandle(operation, 0, model, data);
LayerInputHandle input1 = ConvertToLayerInputHandle(operation, 1, model, data);
if (!(input0.IsValid() && input1.IsValid()))
{
return Fail("%s: Operation has invalid inputs", __func__);
}
const Operand* output = GetOutputOperand(operation, 0, model);
if (!output)
{
return Fail("%s: Could not read output 0", __func__);
}
const TensorInfo& inputInfo0 = input0.GetTensorInfo();
const TensorInfo& inputInfo1 = input1.GetTensorInfo();
const TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
ComparisonDescriptor descriptor(comparisonOperation);
bool isSupported = false;
auto validateFunc = [&](const armnn::TensorInfo& outputInfo, bool& isSupported)
{
FORWARD_LAYER_SUPPORT_FUNC(__func__,
IsComparisonSupported,
data.m_Backends,
isSupported,
inputInfo0,
inputInfo1,
outputInfo,
descriptor);
};
if(!IsDynamicTensor(outputInfo))
{
validateFunc(outputInfo, isSupported);
}
else
{
isSupported = AreDynamicTensorsSupported();
}
if (!isSupported)
{
return false;
}
IConnectableLayer* layer = data.m_Network->AddComparisonLayer(descriptor);
assert(layer != nullptr);
bool isReshapeSupported = BroadcastTensor(input0, input1, layer, data);
if (!isReshapeSupported)
{
return false;
}
if(IsDynamicTensor(outputInfo))
{
input0.Connect(layer->GetInputSlot(0));
input1.Connect(layer->GetInputSlot(1));
}
return SetupAndTrackLayerOutputSlot(operation, 0, *layer, model, data, nullptr, validateFunc);
}
bool Converter::ConvertConcatenation(const Operation& operation, const Model& model, ConversionData& data)
{
VLOG(DRIVER) << "Converter::ConvertConcatenation()";
// The first N (0..N-1) inputs are tensors. The Nth input is the concatenation axis.
if (operation.inputs.size() <= 1)
{
return Fail("%s: Operation has insufficient arguments", __func__);
}
// Get inputs and outputs
const std::size_t numInputTensors = operation.inputs.size() - 1;
int32_t concatDim;
if (!GetInputScalar(operation, numInputTensors, OperandType::INT32, concatDim, model, data))
{
return Fail("%s: Operation has invalid inputs", __func__);
}
const Operand* outputOperand = GetOutputOperand(operation, 0, model);
if (!outputOperand)
{
return Fail("%s: Operation has no outputs", __func__);
}
armnn::TensorInfo outputInfo = GetTensorInfoForOperand(*outputOperand);
armnn::TensorShape outputShape = outputInfo.GetShape();
const bool isDynamicTensor = IsDynamicTensor(outputInfo);
//
// handle negative concat dims along the lines of tensorflow as described here:
// https://www.tensorflow.org/api_docs/python/tf/concat
// "negative axis refers to axis + rank(values)-th dimension"
//
if (concatDim < 0)
{
concatDim += outputShape.GetNumDimensions();
}
if (concatDim >= static_cast<int32_t>(outputShape.GetNumDimensions()) || concatDim < 0)
{
return Fail("%s: Operation has invalid concat axis: %d", __func__, concatDim);
}
std::vector<LayerInputHandle> inputHandles;
std::vector<armnn::TensorShape> inputShapes;
inputHandles.reserve(numInputTensors);
inputShapes.reserve(numInputTensors);
bool inputsHaveBeenReshaped = false;
unsigned int tensorDimensionsAdded = 0;
for (uint32_t i = 0; i < numInputTensors; ++i)
{
const Operand* operand = GetInputOperand(operation, i, model);
if (!operand)
{
return Fail("%s: Operation has invalid inputs", __func__);
}
LayerInputHandle operandInputHandle = ConvertToLayerInputHandle(operation, i, model, data);
if (!operandInputHandle.IsValid())
{
return Fail("%s: Operation has invalid inputs", __func__);
}
armnn::TensorShape operandShape = GetTensorShapeForOperand(*operand);
if (operandShape.GetNumDimensions() == 0)
{
return Fail("%s: Operands with rank 0 are not supported", __func__);
}
if (RequiresReshape(operandShape))
{
inputsHaveBeenReshaped = true;
armnn::TensorInfo reshapeInfo = operandInputHandle.GetTensorInfo();
// Expand the tensor to three dimensions
if (operandShape.GetNumDimensions() == 2)
{
reshapeInfo.SetShape(armnn::TensorShape({1, operandShape[0], operandShape[1]}));
tensorDimensionsAdded = 1;
}
else
{
reshapeInfo.SetShape(armnn::TensorShape({1, 1, operandShape[0]}));
tensorDimensionsAdded = 2;
}
armnn::ReshapeDescriptor reshapeDescriptor;
reshapeDescriptor.m_TargetShape = reshapeInfo.GetShape();
bool isSupported = false;
FORWARD_LAYER_SUPPORT_FUNC(__func__,
IsReshapeSupported,
data.m_Backends,
isSupported,
operandInputHandle.GetTensorInfo(),
reshapeInfo,
reshapeDescriptor);
if (!isSupported)
{
return false;
}
armnn::IConnectableLayer& newReshape = AddReshapeLayer(*data.m_Network, operandInputHandle, reshapeInfo);
// Point to the reshape operation rather then the input operation
operandShape = reshapeInfo.GetShape();
operandInputHandle = LayerInputHandle(true, &newReshape.GetOutputSlot(0), reshapeInfo);
}
inputShapes.emplace_back(operandShape);
inputHandles.emplace_back(operandInputHandle);
if (!inputHandles.back().IsValid())
{
return Fail("%s: Operation has invalid inputs", __func__);
}
}
ARMNN_ASSERT(inputShapes.size() == inputHandles.size());
if (inputsHaveBeenReshaped)
{
// Adjust the concatenation dimension by the amount of dimensions added (if any)
concatDim += tensorDimensionsAdded;
// Add extra dimensions to the output shape to reflect the addition of the reshape layers
if (tensorDimensionsAdded == 1)
{
if (IsDynamicTensor(outputInfo))
{
outputShape = armnn::TensorShape({1, 0, 0}, {true, false, false});
}
else
{
outputShape = armnn::TensorShape({1, outputShape[0], outputShape[1]});
}
}
else if (tensorDimensionsAdded == 2)
{
if (IsDynamicTensor(outputInfo))
{
outputShape = armnn::TensorShape({1, 1, 0}, {true, true, false});
}
else
{
outputShape = armnn::TensorShape({1, 1, outputShape[0]});
}
}
}
// Check if permutations is required and get the pair of permutations required for the concatenation.
// Permutation is required when the concat dimension is 2 for a 4D tensor or 1 for a 3D tensor.
std::pair<armnn::PermutationVector, armnn::PermutationVector> permutationPair =
std::make_pair(IdentityPermutation4D, IdentityPermutation4D);
bool needPermute = CreateConcatPermutationParameters(inputShapes[0].GetNumDimensions(),
concatDim,
permutationPair);
// Only relevant to static tensors as dynamic output tensors will be transposed as a result of inferring from input
if (!isDynamicTensor)
{
if (needPermute)
{
outputShape = armnnUtils::TransposeTensorShape(outputShape, permutationPair.first);
}
outputInfo.SetShape(outputShape);
}
// this is no-op for identity swizzles, otherwise it replaces both
// the handles and shapes with the swizzled layer output handles and shapes
if (!TransposeInputTensors(data, inputHandles, inputShapes, permutationPair.first))
{
return false;
}
// Create an armnn concat layer descriptor - this will also perform validation on the input shapes
armnn::OriginsDescriptor concatDescriptor;
try
{
// The concat descriptor is always created across the only supported concat dimension
// which is 0, 1 or 3 for a 4-D tensor, or 0 or 2 for a 3-D tensor.
concatDescriptor = armnn::CreateDescriptorForConcatenation(inputShapes.begin(),
inputShapes.end(),
concatDim);
} catch (std::exception& error)
{
return Fail("%s: Error preparing concat descriptor. %s", __func__, error.what());
}
// Validate the output shape is correct given the input shapes based on the
// only valid concat dimension which is 0, 1 or 3 for a 4-D tensor, or 0 or 2 for a 3-D tensor.
if (!isDynamicTensor)
{
if (!ValidateConcatOutputShape(inputShapes, outputShape, concatDim))
{
return Fail("%s: Error validating the output shape for concat", __func__);
}
}
std::vector<const armnn::TensorInfo*> inputTensorInfos;
std::transform(inputHandles.begin(), inputHandles.end(), std::back_inserter(inputTensorInfos),
[](const LayerInputHandle& h)->const armnn::TensorInfo*{ return &h.GetTensorInfo(); });
bool isSupported = false;
auto validateFunc = [&](const armnn::TensorInfo& outputInfo, bool& isSupported){
FORWARD_LAYER_SUPPORT_FUNC(__func__, IsConcatSupported, data.m_Backends, isSupported, inputTensorInfos,
outputInfo, concatDescriptor);
};
if (!isDynamicTensor)
{
validateFunc(outputInfo, isSupported);
}
else
{
isSupported = AreDynamicTensorsSupported();
}
if (!isSupported)
{
return false;
}
armnn::IConnectableLayer* layer = data.m_Network->AddConcatLayer(concatDescriptor);
assert(layer != nullptr);
layer->GetOutputSlot(0).SetTensorInfo(outputInfo);
// Connect inputs to the layer
const int numInputSlots = layer->GetNumInputSlots();
assert(static_cast<std::size_t>(numInputSlots) == inputHandles.size());
for (int i = 0; i < numInputSlots; ++i)
{
// connect the input directly to the merge (concat) layer
inputHandles[static_cast<unsigned int>(i)].Connect(layer->GetInputSlot(i));
}
// Transpose the output shape
auto transposeOutputShape = [&](){
armnn::TransposeDescriptor transposeDesc;
transposeDesc.m_DimMappings = permutationPair.second;
armnn::TensorInfo inputTransposeInfo = layer->GetOutputSlot(0).GetTensorInfo();
armnn::TensorInfo outputTransposeInfo = armnnUtils::TransposeTensorShape(inputTransposeInfo,
permutationPair.second);
isSupported = false;
FORWARD_LAYER_SUPPORT_FUNC(__func__,
IsTransposeSupported,
data.m_Backends,
isSupported,
inputTransposeInfo,
outputTransposeInfo,
transposeDesc);
if (!isSupported)
{
return false;
}
// Add permutation layer and connect the output to it, the permutation becomes the output layer
armnn::IConnectableLayer& deswizzleLayer = AddTransposeLayer(*data.m_Network, layer->GetOutputSlot(0),
permutationPair.second);
layer = &deswizzleLayer;
return true;
};
if (needPermute && !isDynamicTensor)
{
transposeOutputShape();
}
if (inputsHaveBeenReshaped)
{
if (isDynamicTensor)
{
// Infer the output shapes of concat if outputs are type 1 dynamic
ARMNN_ASSERT(layer->GetOutputSlot(0).IsTensorInfoSet());
if (!ValidateConcatOutputShape(inputShapes,
layer->GetOutputSlot(0).GetTensorInfo().GetShape(),
concatDim))
{
return Fail("%s: Error validating the output shape for concat", __func__);
}
transposeOutputShape();
}
armnn::TensorInfo afterConcatInfo = layer->GetOutputSlot(0).GetTensorInfo();
// Undo the reshape knowing the amount of dimensions added
if (tensorDimensionsAdded == 1)
{
afterConcatInfo.SetShape(
armnn::TensorShape({afterConcatInfo.GetShape()[1], afterConcatInfo.GetShape()[2]}));
}
else if (tensorDimensionsAdded == 2)
{
afterConcatInfo.SetShape(armnn::TensorShape({afterConcatInfo.GetShape()[2]}));
}
armnn::ReshapeDescriptor reshapeDescriptor;
reshapeDescriptor.m_TargetShape = afterConcatInfo.GetShape();
armnn::TensorInfo concatInfo = layer->GetOutputSlot(0).GetTensorInfo();
isSupported = false;
auto validateReshapeFunc = [&](const armnn::TensorInfo& afterConcatInfo, bool& isSupported){
FORWARD_LAYER_SUPPORT_FUNC(__func__,
IsReshapeSupported,
data.m_Backends,
isSupported,
concatInfo,
afterConcatInfo,
reshapeDescriptor);
};
if (!IsDynamicTensor(afterConcatInfo))
{
validateReshapeFunc(afterConcatInfo, isSupported);
}
else
{
isSupported = AreDynamicTensorsSupported();
}
if (!isSupported)
{
return false;
}
layer = &AddReshapeLayer(*data.m_Network, layer->GetOutputSlot(0), afterConcatInfo);
return SetupAndTrackLayerOutputSlot(operation,
0,
*layer,
model,
data,
nullptr,
validateReshapeFunc);
}
return SetupAndTrackLayerOutputSlot(operation, 0, *layer, model, data, nullptr, validateFunc);
}
bool Converter::ConvertConv2d(const Operation& operation, const Model& model, ConversionData& data)
{
VLOG(DRIVER) << "Converter::ConvertConv2d()";
LayerInputHandle input = ConvertToLayerInputHandle(operation, 0, model, data);
if (!input.IsValid())
{
return Fail("%s: Operation has invalid inputs", __func__);
}
const Operand* output = GetOutputOperand(operation, 0, model);
if (!output)
{
return Fail("%s: Could not read output 0", __func__);
}
const TensorInfo& inputInfo = input.GetTensorInfo();
const TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
Convolution2dDescriptor desc;
desc.m_DataLayout = DataLayout::NHWC;
// Determine whether padding is implicit or explicit
bool implicitPadding = operation.inputs.size() == 7
|| (operation.inputs.size() >= 8
&& GetInputOperand(operation, 7, model)->type == OperandType::BOOL);
if (implicitPadding)
{
desc.m_DataLayout = OptionalDataLayout(operation, 7, model, data);
}
else if (operation.inputs.size() >= 10)
{
desc.m_DataLayout = OptionalDataLayout(operation, 10, model, data);
}
const PermutationVector OHWIToOIHW = {0, 2, 3, 1};
// ArmNN does not currently support non-fixed weights or bias
// The NNAPI filter is always OHWI [depth_out, filter_height, filter_width, depth_in] but ArmNN expects the
// filter's height and width indices to match the input's height and width indices so we permute it to OIHW if
// the DataLayout is NCHW
if (!IsWeightsValid(operation, 1, model) && desc.m_DataLayout == DataLayout::NCHW)
{
return Fail("%s: Operation has unsupported weights OperandLifeTime", __func__);
}
LayerInputHandle weightsInput = (desc.m_DataLayout == DataLayout::NCHW)
? ConvertToLayerInputHandle(operation, 1, model, data, OHWIToOIHW, &input)
: ConvertToLayerInputHandle(operation, 1, model, data, g_DontPermute, &input);
if (!weightsInput.IsValid())
{
return Fail("%s: Operation has invalid inputs", __func__);
}
LayerInputHandle biasInput = ConvertToLayerInputHandle(operation, 2, model, data, g_DontPermute, &input); // 1D
if (!biasInput.IsValid())
{
return Fail("%s: Operation has invalid inputs", __func__);
}
biasInput.SanitizeQuantizationScale(weightsInput, input);
armnn::TensorInfo weightsInfo = weightsInput.GetTensorInfo();
armnn::TensorInfo biasInfo = biasInput.GetTensorInfo();
ActivationFn activation;
if (implicitPadding)
{
::android::nn::PaddingScheme paddingScheme;
if (!GetInputPaddingScheme(operation, 3, paddingScheme, model, data)
|| !GetInputScalar(operation, 4, OperandType::INT32, desc.m_StrideX, model, data)
|| !GetInputScalar(operation, 5, OperandType::INT32, desc.m_StrideY, model, data)
|| !GetInputActivationFunction(operation, 6, activation, model, data)
|| !GetOptionalConvolutionDilationParams(operation, 8, desc, model, data))
{
return Fail("%s: Operation has invalid inputs (implicit padding)", __func__);
}
armnnUtils::DataLayoutIndexed dataLayoutIndexed(desc.m_DataLayout);
unsigned int widthIndex = dataLayoutIndexed.GetWidthIndex();
unsigned int heightIndex = dataLayoutIndexed.GetHeightIndex();
const uint32_t kernelX = weightsInfo.GetShape()[widthIndex];
const uint32_t kernelY = weightsInfo.GetShape()[heightIndex];
const uint32_t inputX = inputInfo.GetShape()[widthIndex];
const uint32_t inputY = inputInfo.GetShape()[heightIndex];
CalcPadding(inputX, kernelX, desc.m_StrideX, desc.m_DilationX, desc.m_PadLeft, desc.m_PadRight, paddingScheme);
CalcPadding(inputY, kernelY, desc.m_StrideY, desc.m_DilationY, desc.m_PadTop, desc.m_PadBottom, paddingScheme);
}
else if (operation.inputs.size() >= 10)
{
// explicit padding
if (!GetInputScalar(operation, 3, OperandType::INT32, desc.m_PadLeft, model, data)
|| !GetInputScalar(operation, 4, OperandType::INT32, desc.m_PadRight, model, data)
|| !GetInputScalar(operation, 5, OperandType::INT32, desc.m_PadTop, model, data)
|| !GetInputScalar(operation, 6, OperandType::INT32, desc.m_PadBottom, model, data)
|| !GetInputScalar(operation, 7, OperandType::INT32, desc.m_StrideX, model, data)
|| !GetInputScalar(operation, 8, OperandType::INT32, desc.m_StrideY, model, data)
|| !GetInputActivationFunction(operation, 9, activation, model, data)
|| !GetOptionalConvolutionDilationParams(operation, 11, desc, model, data))
{
return Fail("%s: Operation has invalid inputs (explicit padding)", __func__);
}
}
else
{
return Fail("%s: Unsupported number of operation inputs", __func__);
}
desc.m_BiasEnabled = true;
Optional<TensorInfo> biases(biasInfo);
bool requiresValidation = true;
const Operand* weightsOperand = GetInputOperand(operation, 1, model);
const Operand* biasOperand = GetInputOperand(operation, 2, model);
if (IsConnectedToDequantize(weightsInput.GetOutputSlot())
|| IsConnectedToDequantize(biasInput.GetOutputSlot()))
{
// Do not require validation for now. There will be an optimization step
// [ConvertConstDequantisationLayersToConstLayers] will convert layers to Constant layers
// then at the end of the optimization there will be layer supported validation.
requiresValidation = false;
VLOG(DRIVER) << "Converter::ConvertConv2d(): Weights and Biases are as INPUTS.";
}
auto validateFunc = [&](const armnn::TensorInfo& outputInfo, bool& isSupported) {
FORWARD_LAYER_SUPPORT_FUNC(__func__,
IsConvolution2dSupported,
data.m_Backends,
isSupported,
inputInfo,
outputInfo,
desc,
weightsInfo,
biases);
};
if (requiresValidation)
{
VLOG(DRIVER) << "Converter::ConvertConv2d(): Requires Validation!";
bool isSupported = false;
if (!IsDynamicTensor(outputInfo))
{
validateFunc(outputInfo, isSupported);
}
else
{
isSupported = AreDynamicTensorsSupported();
}
if (!isSupported)
{
return false;
}
}
armnn::IConnectableLayer* startLayer = data.m_Network->AddConvolution2dLayer(desc);
if (!startLayer)
{
return Fail("%s: AddConvolution2dLayer failed", __func__);
}
input.Connect(startLayer->GetInputSlot(0));
weightsInput.Connect(startLayer->GetInputSlot(1));
biasInput.Connect(startLayer->GetInputSlot(2));
return SetupAndTrackLayerOutputSlot(operation, 0, *startLayer, model, data, nullptr, validateFunc, activation);
}
bool Converter::ConvertDepthToSpace(const Operation& operation, const Model& model, ConversionData& data)
{
VLOG(DRIVER) << "Converter::ConvertDepthToSpace()";
LayerInputHandle input = ConvertToLayerInputHandle(operation, 0, model, data);
if (!input.IsValid() )
{
return Fail("%s: Operation has invalid inputs", __func__);
}
const armnn::TensorInfo& inputInfo = input.GetTensorInfo();
unsigned int rank = inputInfo.GetNumDimensions();
if (rank != 4)
{
return Fail("%s: Only inputs with rank 4 are supported", __func__);
}
const Operand* output = GetOutputOperand(operation, 0, model);
if (!output)
{
return Fail("%s: Could not read output 0", __func__);
}
const armnn::TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
armnn::DepthToSpaceDescriptor descriptor;
GetInputScalar(operation, 1, OperandType::INT32, descriptor.m_BlockSize, model, data);
if (descriptor.m_BlockSize <= 1)
{
return Fail("%s: Block size must be at least 1 in all dimensions");
}
descriptor.m_DataLayout = armnn::DataLayout::NHWC;
if (Is12OrLaterOperand(*output))
{
descriptor.m_DataLayout = OptionalDataLayout(operation, 2, model, data);
}
bool isSupported = false;
auto validateFunc = [&](const armnn::TensorInfo& outputInfo, bool& isSupported)
{
FORWARD_LAYER_SUPPORT_FUNC(__func__,
IsDepthToSpaceSupported,
data.m_Backends,
isSupported,
inputInfo,
outputInfo,
descriptor);
};
if(!IsDynamicTensor(outputInfo))
{
validateFunc(outputInfo, isSupported);
}
else
{
isSupported = AreDynamicTensorsSupported();
}
if (!isSupported)
{
return false;
}
armnn::IConnectableLayer* const layer = data.m_Network->AddDepthToSpaceLayer(descriptor);
assert(layer != nullptr);
input.Connect(layer->GetInputSlot(0));
return SetupAndTrackLayerOutputSlot(operation, 0, *layer, model, data, nullptr, validateFunc);
}
bool Converter::ConvertDepthwiseConv2d(const Operation& operation, const Model& model, ConversionData& data)
{
VLOG(DRIVER) << "Converter::ConvertDepthwiseConv2d()";
LayerInputHandle input = ConvertToLayerInputHandle(operation, 0, model, data);
if (!input.IsValid())
{
return Fail("%s: Operation has invalid inputs", __func__);
}
const Operand* output = GetOutputOperand(operation, 0, model);
if (!output)
{
return Fail("%s: Could not read output 0", __func__);
}
const armnn::TensorInfo& inputInfo = input.GetTensorInfo();
const armnn::TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
// ArmNN does not currently support non-fixed weights or bias
// Find the shape of the weights tensor. In AndroidNN this will be [ 1, H, W, I * M ]
const Operand* weightsOperand = GetInputOperand(operation, 1, model);
if (!weightsOperand)
{
return Fail("%s: Could not read weights", __func__);
}
// Basic sanity check on the weights shape.
// ANEURALNETWORKS_DEPTHWISE_CONV_2D specifies a 4-D tensor, of shape
// [1, filter_height, filter_width, depth_out]
if (weightsOperand->dimensions[0] != 1)
{
return Fail("%s: Filter operand dimension 0 is invalid, should be 1", __func__);
}
armnn::DepthwiseConvolution2dDescriptor desc;
desc.m_DataLayout = armnn::DataLayout::NHWC;
// Determine whether padding is implicit or explicit
bool implicitPadding = operation.inputs.size() == 8
|| (operation.inputs.size() >= 9
&& GetInputOperand(operation, 8, model)->type == OperandType::BOOL);
// Look ahead to find the optional DataLayout, if present
const uint32_t dataLayoutFlagIndex = implicitPadding ? 8 : 11;
desc.m_DataLayout = OptionalDataLayout(operation, dataLayoutFlagIndex, model, data);
armnnUtils::DataLayoutIndexed dataLayoutIndexed(desc.m_DataLayout);
unsigned int widthIndex = dataLayoutIndexed.GetWidthIndex();
unsigned int heightIndex = dataLayoutIndexed.GetHeightIndex();
LayerInputHandle weightsInput = ConvertToLayerInputHandle(operation, 1, model, data, g_DontPermute, &input);
if (!weightsInput.IsValid())
{
return Fail("%s: Operation has invalid inputs", __func__);
}
const Operand* biasOperand = GetInputOperand(operation, 2, model);
if (!biasOperand)
{
return Fail("%s: Could not read bias", __func__);
}
LayerInputHandle biasInput = ConvertToLayerInputHandle(operation, 2, model, data, g_DontPermute, &input); // 1D
if (!biasInput.IsValid())
{
return Fail("%s: Operation has invalid inputs", __func__);
}
biasInput.SanitizeQuantizationScale(weightsInput, input);
armnn::TensorInfo weightsInfo = weightsInput.GetTensorInfo();
armnn::TensorInfo biasInfo = biasInput.GetTensorInfo();
ActivationFn activation;
if (implicitPadding)
{
::android::nn::PaddingScheme paddingScheme;
if (!GetInputPaddingScheme(operation, 3, paddingScheme, model, data)
|| !GetInputScalar(operation, 4, OperandType::INT32, desc.m_StrideX, model, data)
|| !GetInputScalar(operation, 5, OperandType::INT32, desc.m_StrideY, model, data)
|| !GetInputActivationFunction(operation, 7, activation, model, data)
|| !GetOptionalConvolutionDilationParams(operation, 9, desc, model, data))
{
return Fail("%s: Operation has invalid inputs (implicit padding)", __func__);
}
const uint32_t kernelX = weightsInfo.GetShape()[2];
const uint32_t kernelY = weightsInfo.GetShape()[1];
const uint32_t inputX = inputInfo.GetShape()[widthIndex];
const uint32_t inputY = inputInfo.GetShape()[heightIndex];
CalcPadding(inputX, kernelX, desc.m_StrideX, desc.m_DilationX, desc.m_PadLeft, desc.m_PadRight, paddingScheme);
CalcPadding(inputY, kernelY, desc.m_StrideY, desc.m_DilationY, desc.m_PadTop, desc.m_PadBottom, paddingScheme);
}
else if (operation.inputs.size() >= 11)
{
// explicit padding
if (!GetInputScalar(operation, 3, OperandType::INT32, desc.m_PadLeft, model, data)
|| !GetInputScalar(operation, 4, OperandType::INT32, desc.m_PadRight, model, data)
|| !GetInputScalar(operation, 5, OperandType::INT32, desc.m_PadTop, model, data)
|| !GetInputScalar(operation, 6, OperandType::INT32, desc.m_PadBottom, model, data)
|| !GetInputScalar(operation, 7, OperandType::INT32, desc.m_StrideX, model, data)
|| !GetInputScalar(operation, 8, OperandType::INT32, desc.m_StrideY, model, data)
|| !GetInputActivationFunction(operation, 10, activation, model, data)
|| !GetOptionalConvolutionDilationParams(operation, 12, desc, model, data))
{
return Fail("%s: Operation has invalid inputs (explicit padding)", __func__);
}
}
else
{
return Fail("%s: Unsupported number of operation inputs", __func__);
}
desc.m_BiasEnabled = true;
Optional<TensorInfo> biases(biasInfo);
bool requiresValidation = true;
if (IsConnectedToDequantize(weightsInput.GetOutputSlot()) || IsConnectedToDequantize(biasInput.GetOutputSlot()))
{
// Do not require validation for now. There will be an optimization step
// [ConvertConstDequantisationLayersToConstLayers] will convert layers to Constant layers
// then at the end of the optimization there will be layer supported validation.
requiresValidation = false;
VLOG(DRIVER) << "Converter::ConvertDepthwiseConv2d(): Weights and Biases are as INPUTS.";
}
auto validateFunc = [&](const armnn::TensorInfo& outputInfo, bool& isSupported) {
FORWARD_LAYER_SUPPORT_FUNC(__func__,
IsDepthwiseConvolutionSupported,
data.m_Backends,
isSupported,
inputInfo,
outputInfo,
desc,
weightsInfo,
biases);
};
if (requiresValidation)
{
VLOG(DRIVER) << "Converter::ConvertDepthwiseConv2d(): Requires Validation!";
bool isSupported = false;
if (!IsDynamicTensor(outputInfo))
{
validateFunc(outputInfo, isSupported);
}
else
{
isSupported = AreDynamicTensorsSupported();
}
if (!isSupported)
{
return false;
}
}
armnn::IConnectableLayer* startLayer = data.m_Network->AddDepthwiseConvolution2dLayer(desc);
if (!startLayer)
{
return Fail("%s: AddDepthwiseConvolution2dLayer failed", __func__);
}
input.Connect(startLayer->GetInputSlot(0));
// Connect weights and bias inputs
weightsInput.Connect(startLayer->GetInputSlot(1));
biasInput.Connect(startLayer->GetInputSlot(2));
return SetupAndTrackLayerOutputSlot(operation, 0, *startLayer, model, data, nullptr, validateFunc, activation);
}
bool Converter::ConvertDequantize(const Operation& operation, const Model& model, ConversionData& data)
{
VLOG(DRIVER) << "Converter::ConvertDequantize()";
LayerInputHandle input = ConvertToLayerInputHandle(operation, 0, model, data);
if (!input.IsValid())
{
return Fail("%s: Operation has invalid input", __func__);
}
const armnn::TensorInfo& inputInfo = input.GetTensorInfo();
const armnn::Optional<unsigned int>& quantizationDim = inputInfo.GetQuantizationDim();
if (quantizationDim.has_value() && quantizationDim.value() != 0)
{
return Fail("%s: Operation has quantization dimension different than 0", __func__);
}
const Operand* const outputOperand = GetOutputOperand(operation, 0, model);
if (!outputOperand)
{
return Fail("%s: Operation has invalid outputs", __func__);
}
const armnn::TensorInfo& outputInfo = GetTensorInfoForOperand(*outputOperand);
bool isSupported = false;
auto validateFunc = [&](const armnn::TensorInfo& outputInfo, bool& isSupported)
{
FORWARD_LAYER_SUPPORT_FUNC(__func__,
IsDequantizeSupported,
data.m_Backends,
isSupported,
inputInfo,
outputInfo);
};
if(IsDynamicTensor(outputInfo))
{
isSupported = AreDynamicTensorsSupported();
}
else
{
validateFunc(outputInfo, isSupported);
}
if (!isSupported)
{
return false;
}
armnn::IConnectableLayer* const layer = data.m_Network->AddDequantizeLayer();
assert(layer != nullptr);
input.Connect(layer->GetInputSlot(0));
return SetupAndTrackLayerOutputSlot(operation, 0, *layer, model, data, nullptr, validateFunc);
}
bool Converter::ConvertDiv(const Operation& operation, const Model& model, ConversionData& data)
{
VLOG(DRIVER) << "Converter::ConvertDiv()";
LayerInputHandle input0 = ConvertToLayerInputHandle(operation, 0, model, data);
LayerInputHandle input1 = ConvertToLayerInputHandle(operation, 1, model, data);
if (!input0.IsValid() || !input1.IsValid())
{
return Fail("%s: Operation has invalid inputs", __func__);
}
// The FuseActivation parameter is always the input index 2
// and it should be optional
ActivationFn activationFunction;
if (!GetOptionalInputActivation(operation, 2, activationFunction, model, data))
{
return Fail("%s: Operation has invalid inputs", __func__);
}
const Operand* output = GetOutputOperand(operation, 0, model);
if (!output)
{
return Fail("%s: Could not read output 0", __func__);
}
const armnn::TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
bool isSupported = false;
auto validateFunc = [&](const armnn::TensorInfo& outputInfo, bool& isSupported)
{
FORWARD_LAYER_SUPPORT_FUNC(__func__,
IsDivisionSupported,
data.m_Backends,
isSupported,
input0.GetTensorInfo(),
input1.GetTensorInfo(),
outputInfo);
};
if(!IsDynamicTensor(outputInfo))
{
validateFunc(outputInfo, isSupported);
}
else
{
isSupported = AreDynamicTensorsSupported();
}
if (!isSupported)
{
return false;
}
armnn::IConnectableLayer* const startLayer = data.m_Network->AddDivisionLayer();
bool isReshapeSupported = BroadcastTensor(input0, input1, startLayer, data);
if (!isReshapeSupported)
{
return false;
}
return SetupAndTrackLayerOutputSlot(operation, 0, *startLayer, model,
data, nullptr, validateFunc, activationFunction);
}
bool Converter::ConvertElementwiseUnary(const Operation& operation,
const Model& model,
ConversionData& data,
UnaryOperation unaryOperation)
{
VLOG(DRIVER) << "Converter::ConvertElementwiseUnary()";
VLOG(DRIVER) << "unaryOperation = " << GetUnaryOperationAsCString(unaryOperation);
LayerInputHandle input = ConvertToLayerInputHandle(operation, 0, model, data);
if (!input.IsValid())
{
return Fail("%s: Operation has invalid input", __func__);
}
const Operand* output = GetOutputOperand(operation, 0, model);
if (!output)
{
return Fail("%s: Could not read output 0", __func__);
}
const TensorInfo& inputInfo = input.GetTensorInfo();
const TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
ElementwiseUnaryDescriptor descriptor(unaryOperation);
bool isSupported = false;
auto validateFunc = [&](const armnn::TensorInfo& outputInfo, bool& isSupported)
{
FORWARD_LAYER_SUPPORT_FUNC(__func__,
IsElementwiseUnarySupported,
data.m_Backends,
isSupported,
inputInfo,
outputInfo,
descriptor);
};
if(!IsDynamicTensor(outputInfo))
{
validateFunc(outputInfo, isSupported);
}
else
{
isSupported = AreDynamicTensorsSupported();
}
if (!isSupported)
{
return false;
}
IConnectableLayer* layer = data.m_Network->AddElementwiseUnaryLayer(descriptor);
assert(layer != nullptr);
input.Connect(layer->GetInputSlot(0));
return SetupAndTrackLayerOutputSlot(operation, 0, *layer, model, data, nullptr, validateFunc);
}
bool Converter::ConvertElu(const Operation& operation, const Model& model, ConversionData& data)
{
VLOG(DRIVER) << "Converter::ConvertElu()";
LayerInputHandle input0 = ConvertToLayerInputHandle(operation, 0, model, data);
if (!input0.IsValid())
{
return Fail("%s: Operation has invalid inputs", __func__);
}
// Determine data type of input tensor
OperandType inputType;
if (!GetOperandType(operation, 0, model, inputType))
{
return Fail("%s: Operation has invalid inputs", __func__);
}
ActivationDescriptor desc;
desc.m_Function = ActivationFunction::Elu;
// Read alpha
if (inputType == OperandType::TENSOR_FLOAT16)
{
Half alpha;
if (!GetInputScalar(operation, 1, OperandType::FLOAT16, alpha, model, data))
{
return Fail("%s: Operation has invalid inputs (FLOAT16)", __func__);
}
desc.m_A = static_cast<float>(alpha);
}
else if (inputType == OperandType::TENSOR_FLOAT32)
{
if (!GetInputScalar(operation, 1, OperandType::FLOAT32, desc.m_A, model, data))
{
return Fail("%s: Operation has invalid inputs (FLOAT32)", __func__);
}
}
else
{
return Fail("%s: Unsupported input tensor type: %d", __func__, inputType);
}
return ::ConvertToActivation(operation, __func__, desc, model, data);
}
bool Converter::ConvertExpandDims(const Operation& operation, const Model& model, ConversionData& data)
{
VLOG(DRIVER) << "Converter::ConvertExpandDims()";
LayerInputHandle input = ConvertToLayerInputHandle(operation, 0, model, data);
if (!input.IsValid())
{
return Fail("%s: Operation has invalid input", __func__);
}
const Operand* output = GetOutputOperand(operation, 0, model);
if (!output)
{
return Fail("%s: Operation has invalid output", __func__);
}
const TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
int32_t axis;
if (!GetInputScalar(operation, 1, OperandType::INT32, axis, model, data))
{
return Fail("%s: failed to get axis input value", __func__);
}
TensorShape targetShape;
try
{
targetShape = armnnUtils::ExpandDims(input.GetTensorInfo().GetShape(), axis);
}
catch (const std::exception& e)
{
return Fail("%s: %s", __func__, e.what());
}
ReshapeDescriptor reshapeDescriptor;
reshapeDescriptor.m_TargetShape = targetShape;
bool isSupported = false;
auto validateFunc = [&](const armnn::TensorInfo& outputInfo, bool& isSupported)
{
FORWARD_LAYER_SUPPORT_FUNC(__func__,
IsReshapeSupported,
data.m_Backends,
isSupported,
input.GetTensorInfo(),
outputInfo,
reshapeDescriptor);
};
if(!IsDynamicTensor(outputInfo))
{
if (targetShape != outputInfo.GetShape())
{
return Fail("%s: Shape of the output operand does not match the resolved expanded shape", __func__);
}
validateFunc(outputInfo, isSupported);
}
else
{
isSupported = AreDynamicTensorsSupported();
}
if (!isSupported)
{
return false;
}
IConnectableLayer* layer = data.m_Network->AddReshapeLayer(reshapeDescriptor);
assert(layer != nullptr);
input.Connect(layer->GetInputSlot(0));
return SetupAndTrackLayerOutputSlot(operation, 0, *layer, model, data, nullptr, validateFunc);
}
bool Converter::ConvertFill(const Operation& operation, const Model& model, ConversionData& data)
{
VLOG(DRIVER) << "Converter::ConvertFill()";
LayerInputHandle input = ConvertToLayerInputHandle(operation, 0, model, data);
if (!input.IsValid())
{
return Fail("%s: Operation has invalid inputs", __func__);
}
const Operand* output = GetOutputOperand(operation, 0, model);
if (!output)
{
return Fail("%s: Could not read output", __func__);
}
const TensorInfo& inputInfo = input.GetTensorInfo();
const TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
if (IsDynamicTensor(outputInfo))
{
return Fail("%s: Dynamic output tensors are not supported", __func__);
}
// Determine data type of output tensor
OperandType outputType = output->type;
FillDescriptor descriptor;
// Read the scalar fill value
if (outputType == OperandType::TENSOR_FLOAT16)
{
Half value;
if (!GetInputScalar(operation, 1, OperandType::FLOAT16, value, model, data))
{
return Fail("%s: Operation has invalid inputs %d", __func__, outputType);
}
descriptor.m_Value = static_cast<float>(value);
}
else if (outputType == OperandType::TENSOR_FLOAT32)
{
if (!GetInputScalar(operation, 1, OperandType::FLOAT32, descriptor.m_Value, model, data))
{
return Fail("%s: Operation has invalid inputs %d", __func__, outputType);
}
}
else if (outputType == OperandType::TENSOR_INT32)
{
int32_t value;
if (!GetInputScalar(operation, 1, OperandType::INT32, value, model, data))
{
return Fail("%s: Operation has invalid inputs %d", __func__, outputType);
}
descriptor.m_Value = static_cast<float>(value);
}
else
{
return Fail("%s: Unsupported input tensor type: %d", __func__, outputType);
}
bool isSupported = false;
FORWARD_LAYER_SUPPORT_FUNC(__func__,
IsFillSupported,
data.m_Backends,
isSupported,
inputInfo,
outputInfo,
descriptor);
if (!isSupported)
{
return false;
}
IConnectableLayer* const layer = data.m_Network->AddFillLayer(descriptor);
assert(layer != nullptr);
input.Connect(layer->GetInputSlot(0));
return SetupAndTrackLayerOutputSlot(operation, 0, *layer, model, data);
}
bool Converter::ConvertFloor(const Operation& operation, const Model& model, ConversionData& data)
{
VLOG(DRIVER) << "Converter::ConvertFloor()";
LayerInputHandle input = ConvertToLayerInputHandle(operation, 0, model, data);
if (!input.IsValid())
{
return Fail("%s: Operation has invalid inputs", __func__);
}
const Operand* const outputOperand = GetOutputOperand(operation, 0, model);
if (!outputOperand)
{
return Fail("%s: Operation has invalid outputs", __func__);
}
const armnn::TensorInfo& outputInfo = GetTensorInfoForOperand(*outputOperand);
bool isSupported = false;
auto validateFunc = [&](const armnn::TensorInfo& outputInfo, bool& isSupported)
{
FORWARD_LAYER_SUPPORT_FUNC(__func__,
IsFloorSupported,
data.m_Backends,
isSupported,
input.GetTensorInfo(),
outputInfo);
};
if(!IsDynamicTensor(outputInfo))
{
validateFunc(outputInfo, isSupported);
}
else
{
isSupported = AreDynamicTensorsSupported();
}
if (!isSupported)
{
return false;
}
armnn::IConnectableLayer* layer = data.m_Network->AddFloorLayer();
assert(layer != nullptr);
input.Connect(layer->GetInputSlot(0));
return SetupAndTrackLayerOutputSlot(operation, 0, *layer, model, data, nullptr, validateFunc);
}
bool Converter::ConvertFullyConnected(const Operation& operation, const Model& model, ConversionData& data)
{
VLOG(DRIVER) << "Converter::ConvertFullyConnected()";
LayerInputHandle input = ConvertToLayerInputHandle(operation, 0, model, data);
if (!input.IsValid())
{
return Fail("%s: Operation has invalid inputs", __func__);
}
const Operand* output = GetOutputOperand(operation, 0, model);
if (!output)
{
return Fail("%s: Could not read output 0", __func__);
}
const armnn::TensorInfo& inputInfo = input.GetTensorInfo();
const armnn::TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
LayerInputHandle weightsInput = LayerInputHandle();
const Operand* weightsOperand = GetInputOperand(operation, 1, model);
if (!weightsOperand)
{
return Fail("%s: Could not read weights", __func__);
}
// If weights are constant a separate constant layer will be created to store data.
// Otherwise handle non const weights as inputs.
weightsInput = ConvertToLayerInputHandle(operation, 1, model, data);
if (!weightsInput.IsValid())
{
return Fail("%s: Operation has invalid inputs", __func__);
}
LayerInputHandle biasInput = LayerInputHandle();
const Operand* biasOperand = GetInputOperand(operation, 2, model);
if (!biasOperand)
{
return Fail("%s: Could not read bias", __func__);
}
// If bias are constant a separate constant layer will be created to store data.
// Otherwise handle non const bias as inputs.
biasInput = ConvertToLayerInputHandle(operation, 2, model, data); // 1D
if (!biasInput.IsValid())
{
return Fail("%s: Operation has invalid inputs", __func__);
}
armnn::TensorInfo weightsInfo = weightsInput.GetTensorInfo();
armnn::TensorInfo reshapedInfo = inputInfo;
try
{
reshapedInfo.SetShape(FlattenFullyConnectedInput(inputInfo.GetShape(), weightsInfo.GetShape()));
}
catch (const std::exception& e)
{
return Fail("%s: %s", __func__, e.what());
}
// Ensuring that the bias value is within 1% of the weights input (small float differences can exist)
armnn::TensorInfo biasInfo = biasInput.GetTensorInfo();
SanitizeBiasQuantizationScale(biasInfo, weightsInfo, reshapedInfo);
ActivationFn activationFunction;
if (!GetInputActivationFunction(operation, 3, activationFunction, model, data))
{
return Fail("%s: Operation has invalid inputs", __func__);
}
armnn::FullyConnectedDescriptor desc;
desc.m_TransposeWeightMatrix = true;
desc.m_BiasEnabled = true;
desc.m_ConstantWeights = IsOperandConstant(*weightsOperand);
bool isSupported = false;
auto validateFunc = [&](const armnn::TensorInfo& outputInfo, bool& isSupported)
{
if (!VerifyFullyConnectedShapes(reshapedInfo.GetShape(),
weightsInfo.GetShape(),
outputInfo.GetShape(),
desc.m_TransposeWeightMatrix))
{
isSupported = false;
Fail("%s: Expected outputShape does not match actual outputShape", __func__);
return;
}
FORWARD_LAYER_SUPPORT_FUNC(__func__,
IsFullyConnectedSupported,
data.m_Backends,
isSupported,
reshapedInfo,
outputInfo,
weightsInfo,
biasInfo,
desc);
};
if(!IsDynamicTensor(outputInfo))
{
validateFunc(outputInfo, isSupported);
}
else
{
isSupported = AreDynamicTensorsSupported();
}
if (!isSupported)
{
return false;
}
// Add FullyConnected layer. Weights and bias will be connected as constant layers or non const inputs.
armnn::IConnectableLayer* startLayer = data.m_Network->AddFullyConnectedLayer(desc);
if (inputInfo.GetNumDimensions() > 2U)
{
armnn::ReshapeDescriptor reshapeDescriptor;
reshapeDescriptor.m_TargetShape = reshapedInfo.GetShape();
armnn::IConnectableLayer* reshapeLayer = data.m_Network->AddReshapeLayer(reshapeDescriptor);
assert(reshapeLayer != nullptr);
input.Connect(reshapeLayer->GetInputSlot(0));
reshapeLayer->GetOutputSlot(0).SetTensorInfo(reshapedInfo);
reshapeLayer->GetOutputSlot(0).Connect(startLayer->GetInputSlot(0));
}
else
{
input.Connect(startLayer->GetInputSlot(0));
}
// Connect weights and bias inputs
weightsInput.Connect(startLayer->GetInputSlot(1));
biasInput.Connect(startLayer->GetInputSlot(2));
return SetupAndTrackLayerOutputSlot(operation, 0, *startLayer, model,
data, nullptr, validateFunc, activationFunction);
}
bool Converter::ConvertGather(const Operation& operation, const Model& model, ConversionData& data)
{
VLOG(DRIVER) << "Converter::ConvertGather()";
LayerInputHandle input = ConvertToLayerInputHandle(operation, 0, model, data);
if (!input.IsValid())
{
return Fail("%s: Operation has invalid input", __func__);
}
auto inputDimensions = input.GetTensorInfo().GetNumDimensions();
LayerInputHandle indices = ConvertToLayerInputHandle(operation, 2, model, data);
if (!indices.IsValid())
{
return Fail("%s: Operation has invalid indices", __func__);
}
auto indicesDimensions = indices.GetTensorInfo().GetNumDimensions();
const Operand* output = GetOutputOperand(operation, 0, model);
if (!output)
{
return Fail("%s: Operation has invalid output", __func__);
}
const TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
auto outputDimensions = outputInfo.GetNumDimensions();
if (outputDimensions != inputDimensions + indicesDimensions - 1)
{
return Fail("%s: Operation has invalid output dimensions: %d. Output must be an (%d + %d - 1)-D tensor",
__func__, outputDimensions, inputDimensions, indicesDimensions);
}
int32_t axis;
if (!GetInputScalar(operation, 1, OperandType::INT32, axis, model, data))
{
return Fail("%s: Operation has invalid or unsupported axis operand", __func__);
}
if (((axis < -inputDimensions) && (axis < 0)) || ((axis >= inputDimensions) && (axis > 0)))
{
return Fail("%s: Operation has invalid axis: %d. It is out of bounds [-%d, %d))", __func__, axis,
inputDimensions, inputDimensions);
}
GatherDescriptor desc;
desc.m_Axis = axis;
bool isSupported = false;
auto validateFunc = [&](const armnn::TensorInfo& outputInfo, bool& isSupported)
{
FORWARD_LAYER_SUPPORT_FUNC(__func__,
IsGatherSupported,
data.m_Backends,
isSupported,
input.GetTensorInfo(),
indices.GetTensorInfo(),
outputInfo,
desc);
};
if(!IsDynamicTensor(outputInfo))
{
validateFunc(outputInfo, isSupported);
}
else
{
isSupported = AreDynamicTensorsSupported();
}
if (!isSupported)
{
return false;
}
IConnectableLayer* layer = data.m_Network->AddGatherLayer(desc);
assert(layer != nullptr);
input.Connect(layer->GetInputSlot(0));
indices.Connect(layer->GetInputSlot(1));
return SetupAndTrackLayerOutputSlot(operation, 0, *layer, model, data, nullptr, validateFunc);
}
bool Converter::ConvertGroupedConv2d(const Operation& operation, const Model& model, ConversionData& data)
{
VLOG(DRIVER) << "Converter::ConvertGroupedConv2d()";
//
// Parse data
//
LayerInputHandle input = ConvertToLayerInputHandle(operation, 0, model, data);
if (!input.IsValid())
{
return Fail("%s: Operation has invalid inputs", __func__);
}
const TensorInfo& inputInfo = input.GetTensorInfo();
const Operand* output = GetOutputOperand(operation, 0, model);
if (!output)
{
return Fail("%s: Could not read output 0", __func__);
}
TensorInfo outputInfo = GetTensorInfoForOperand(*output);
// Look ahead to determine data layout
DataLayout dataLayout = DataLayout::NHWC;
if (operation.inputs.size() == 12)
{
dataLayout = OptionalDataLayout(operation, 11, model, data);
}
else
{
dataLayout = OptionalDataLayout(operation, 8, model, data);
}
// NOTE:
// NNAPI weights are always OHWI, i.e. [depth_out, filter_height, filter_width, depth_group],
// but Arm NN expects the filter's height and width indices to match the input's height and
// width indices so when the DataLayout is NCHW, we need to permute the weights to OIHW
const PermutationVector ohwiToOihw = { 0u, 2u, 3u, 1u };
const ConstTensorPin weightsPin = (dataLayout == DataLayout::NCHW) ?
ConvertOperationInputToConstTensorPin(operation, 1,
model, data, ohwiToOihw) :
ConvertOperationInputToConstTensorPin(operation, 1, model, data);
const ConstTensorPin biasesPin =
ConvertOperationInputToConstTensorPin(operation, 2, model, data);
if (!weightsPin.IsValid() || !biasesPin.IsValid())
{
return Fail("%s: Operation has invalid inputs", __func__);
}
ConstTensor weights = weightsPin.GetConstTensor();
ConstTensor biases = biasesPin.GetConstTensor();
SanitizeBiasQuantizationScale(biases.GetInfo(), weights.GetInfo(), inputInfo);
const TensorShape& inputShape = inputInfo.GetShape();
const TensorShape& outputShape = outputInfo.GetShape();
const TensorShape& weightsShape = weights.GetShape();
const TensorShape& biasesShape = biases.GetShape();
armnnUtils::DataLayoutIndexed dataLayoutIndexed(dataLayout);
const unsigned int channelsIndex = dataLayoutIndexed.GetChannelsIndex();
const unsigned int heightIndex = dataLayoutIndexed.GetHeightIndex();
const unsigned int widthIndex = dataLayoutIndexed.GetWidthIndex();
Convolution2dDescriptor desc;
desc.m_DataLayout = dataLayout;
desc.m_BiasEnabled = true;
int numGroups;
ActivationFn activation;
if (operation.inputs.size() == 12)
{
if (!GetInputScalar(operation, 3, OperandType::INT32, desc.m_PadLeft, model, data) ||
!GetInputScalar(operation, 4, OperandType::INT32, desc.m_PadRight, model, data) ||
!GetInputScalar(operation, 5, OperandType::INT32, desc.m_PadTop, model, data) ||
!GetInputScalar(operation, 6, OperandType::INT32, desc.m_PadBottom, model, data) ||
!GetInputScalar(operation, 7, OperandType::INT32, desc.m_StrideX, model, data) ||
!GetInputScalar(operation, 8, OperandType::INT32, desc.m_StrideY, model, data) ||
!GetInputScalar(operation, 9, OperandType::INT32, numGroups, model, data) ||
!GetInputActivationFunction(operation, 10, activation, model, data))
{
return Fail("%s: Operation has invalid inputs (explicit padding)", __func__);
}
}
else if (operation.inputs.size() == 9)
{
::android::nn::PaddingScheme paddingScheme;
if (!GetInputPaddingScheme(operation, 3, paddingScheme, model, data) ||
!GetInputScalar(operation, 4, OperandType::INT32, desc.m_StrideX, model, data) ||
!GetInputScalar(operation, 5, OperandType::INT32, desc.m_StrideY, model, data) ||
!GetInputScalar(operation, 6, OperandType::INT32, numGroups, model, data) ||
!GetInputActivationFunction(operation, 7, activation, model, data))
{
return Fail("%s: Operation has invalid inputs (implicit padding)", __func__);
}
const uint32_t inputX = inputInfo.GetShape()[widthIndex];
const uint32_t inputY = inputInfo.GetShape()[heightIndex];
const uint32_t kernelX = weightsShape[widthIndex];
const uint32_t kernelY = weightsShape[heightIndex];
CalcPadding(inputX, kernelX, desc.m_StrideX, desc.m_PadLeft, desc.m_PadRight, paddingScheme);
CalcPadding(inputY, kernelY, desc.m_StrideY, desc.m_PadTop, desc.m_PadBottom, paddingScheme);
}
else
{
return Fail("%s: Unsupported number of operation inputs", __func__);
}
// Equivalent to outputShape[channelsIndex], but we can't know the outputShape in the case of dynamic tensors
const unsigned int outputChannels = weightsShape[0];
const unsigned int channelsPerGroup = weightsShape[channelsIndex];
const unsigned int channelMultiplier = outputChannels / numGroups;
//
// Validate all relevant inputs
//
if (numGroups <= 0)
{
return Fail("%s: Number of groups must be greater than 0. Got: %d", __func__, numGroups);
}
if (outputChannels % numGroups != 0u)
{
return Fail("%s: Output channels must be divisible by the number of groups", __func__);
}
//
// Set up Splitter layer
//
unsigned int splitterDimSizes[4] = { inputShape[0], inputShape[1], inputShape[2], inputShape[3] };
splitterDimSizes[channelsIndex] /= numGroups; // split in depth
TensorInfo splitterOutputInfo(4,
splitterDimSizes,
inputInfo.GetDataType(),
inputInfo.GetQuantizationScale(),
inputInfo.GetQuantizationOffset());
std::vector<std::reference_wrapper<TensorInfo>> splitterOutputInfos(numGroups, std::ref(splitterOutputInfo));
ViewsDescriptor splitterDesc(numGroups);
for (unsigned int group = 0u; group < numGroups; ++group)
{
splitterDesc.SetViewOriginCoord(group, channelsIndex, splitterDimSizes[channelsIndex] * group);
for (unsigned int dimIdx = 0u; dimIdx < 4u; dimIdx++)
{
splitterDesc.SetViewSize(group, dimIdx, splitterDimSizes[dimIdx]);
}
}
bool isSupported = false;
FORWARD_LAYER_SUPPORT_FUNC(__func__,
IsSplitterSupported,
data.m_Backends,
isSupported,
inputInfo,
splitterOutputInfos,
splitterDesc);
if (!isSupported)
{
return false;
}
IConnectableLayer* splitterLayer = data.m_Network->AddSplitterLayer(splitterDesc);
if (!splitterLayer)
{
return Fail("%s: Failed to add SplitterLayer", __func__);
}
input.Connect(splitterLayer->GetInputSlot(0));
for (unsigned int group = 0u; group < splitterLayer->GetNumOutputSlots(); ++group)
{
splitterLayer->GetOutputSlot(group).SetTensorInfo(splitterOutputInfo);
}
//
// Set up Convolution2d layers for each group
//
// Set up group tensor shapes
TensorShape groupInputShape(inputShape);
groupInputShape[channelsIndex] = channelsPerGroup;
TensorShape groupWeightsShape(weightsShape);
groupWeightsShape[0] /= channelMultiplier * numGroups;
TensorShape groupBiasesShape({ 1 });
// Set up group tensor infos
TensorInfo groupInputInfo(inputInfo);
groupInputInfo.SetShape(groupInputShape);
const TensorInfo& weightsInfo = weights.GetInfo();
TensorInfo groupWeightsInfo(weightsInfo);
groupWeightsInfo.SetShape(groupWeightsShape);
const TensorInfo& biasesInfo = biases.GetInfo();
TensorInfo groupBiasesInfo(biasesInfo);
groupBiasesInfo.SetShape(groupBiasesShape);
TensorInfo groupOutputInfo(outputInfo);
TensorShape groupOutputShape(outputShape);
const bool isDynamic = IsDynamicTensor(outputInfo);
if (!isDynamic)
{
groupOutputShape[channelsIndex] = 1;
}
groupOutputInfo.SetShape(groupOutputShape);
const unsigned int weightsDataTypeSize = GetDataTypeSize(groupWeightsInfo.GetDataType());
const unsigned int biasesDataTypeSize = GetDataTypeSize(groupBiasesInfo.GetDataType());
std::vector<IConnectableLayer*> convLayers(numGroups * channelMultiplier, nullptr);
for (unsigned int group = 0u; group < numGroups; ++group)
{
for (unsigned int m = 0u; m < channelMultiplier; ++m)
{
auto index = group * channelMultiplier + m;
const unsigned int weightsDataOffset = groupWeightsShape.GetNumElements() * index * weightsDataTypeSize;
const unsigned int biasesDataOffset = groupBiasesShape.GetNumElements() * index * biasesDataTypeSize;
if (weightsInfo.HasPerAxisQuantization())
{
// Extract per-axis quantization scales for group weights
const std::vector<float>& weightsQuantScales = weightsInfo.GetQuantizationScales();
groupWeightsInfo.SetQuantizationScales(
std::vector<float>(weightsQuantScales.begin() + index,
weightsQuantScales.begin() + index + groupWeightsShape[0]));
// Extract per-axis quantization scales for group biases
const std::vector<float>& biasesQuantScales = biasesInfo.GetQuantizationScales();
groupBiasesInfo.SetQuantizationScales(
std::vector<float>(biasesQuantScales.begin() + index,
biasesQuantScales.begin() + index + groupWeightsShape[0]));
}
// Extract weights and biases data for current group convolution
ConstTensor groupWeights(groupWeightsInfo,
static_cast<const void *>(reinterpret_cast<const char *>(weights.GetMemoryArea()) +
weightsDataOffset));
ConstTensor groupBiases(groupBiasesInfo,
static_cast<const void *>(reinterpret_cast<const char *>(biases.GetMemoryArea()) +
biasesDataOffset));
isSupported = false;
auto validateFunc = [&](const armnn::TensorInfo& outputInfo, bool& isSupported)
{
FORWARD_LAYER_SUPPORT_FUNC(__func__,
IsConvolution2dSupported,
data.m_Backends,
isSupported,
groupInputInfo,
outputInfo,
desc,
groupWeightsInfo,
Optional<TensorInfo>(groupBiasesInfo));
};
if(!isDynamic)
{
validateFunc(groupOutputInfo, isSupported);
}
else
{
isSupported = AreDynamicTensorsSupported();
}
if (!isSupported)
{
return false;
}
ARMNN_NO_DEPRECATE_WARN_BEGIN
IConnectableLayer* convLayer =
data.m_Network->AddConvolution2dLayer(desc, groupWeights, Optional<ConstTensor>(groupBiases));
ARMNN_NO_DEPRECATE_WARN_END
if (!convLayer)
{
return Fail("%s: AddConvolution2dLayer failed", __func__);
}
splitterLayer->GetOutputSlot(group).Connect(convLayer->GetInputSlot(0));
convLayer->GetOutputSlot(0).SetTensorInfo(groupOutputInfo);
if(isDynamic)
{
convLayer->GetOutputSlot(0).IsTensorInfoSet();
validateFunc(convLayer->GetOutputSlot(0).GetTensorInfo(), isSupported);
outputInfo = convLayer->GetOutputSlot(0).GetTensorInfo();
if (!isSupported)
{
return false;
}
}
convLayers[index] = convLayer;
}
}
//
// Set up Concat layer
//
ConcatDescriptor concatDescriptor;
// Equivalent to outputShape[channelsIndex], but we can't know the outputShape in the case of dynamic tensors
concatDescriptor = ConcatDescriptor(weightsShape[0]);
for (unsigned int group = 0u; group < numGroups; ++group)
{
for (unsigned int m = 0u; m < channelMultiplier; ++m)
{
auto index = group * channelMultiplier + m;
concatDescriptor.SetViewOriginCoord(index, channelsIndex, index);
concatDescriptor.SetConcatAxis(channelsIndex);
}
}
isSupported = false;
FORWARD_LAYER_SUPPORT_FUNC(__func__,
IsConcatSupported,
data.m_Backends,
isSupported,
std::vector<const TensorInfo*>(numGroups * channelMultiplier, &groupOutputInfo),
outputInfo,
concatDescriptor);
if (!isSupported)
{
return false;
}
IConnectableLayer* concatLayer = data.m_Network->AddConcatLayer(concatDescriptor);
if (!concatLayer)
{
return Fail("%s: AddConcatLayer failed", __func__);
}
for (unsigned int group = 0u; group < numGroups; ++group)
{
for (unsigned int m = 0u; m < channelMultiplier; ++m)
{
auto index = group * channelMultiplier + m;
convLayers[index]->GetOutputSlot(0).Connect(concatLayer->GetInputSlot(index));
}
}
concatLayer->GetOutputSlot(0).SetTensorInfo(outputInfo);
return SetupAndTrackLayerOutputSlot(operation, 0, *concatLayer, model,
data, nullptr, nullptr, activation);
}
bool Converter::ConvertHardSwish(const Operation& operation, const Model& model, ConversionData& data)
{
VLOG(DRIVER) << "Converter::ConvertHardSwish()";
ActivationDescriptor desc;
desc.m_Function = ActivationFunction::HardSwish;
return ::ConvertToActivation(operation, __func__, desc, model, data);
}
bool Converter::ConvertInstanceNormalization(const Operation& operation, const Model& model, ConversionData& data)
{
VLOG(DRIVER) << "Converter::ConvertInstanceNormalization()";
LayerInputHandle input = ConvertToLayerInputHandle(operation, 0, model, data);
if (!input.IsValid())
{
return Fail("%s: Operation has an invalid input 0", __func__);
}
const Operand* output = GetOutputOperand(operation, 0, model);
if (!output)
{
return Fail("%s: Operation has an invalid output", __func__);
}
const TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
// Determine data type of input tensor
OperandType inputType;
if (!GetOperandType(operation, 0, model, inputType))
{
return Fail("%s: Operation has invalid inputs", __func__);
}
InstanceNormalizationDescriptor desc;
// Read gamma, beta & epsilon
if (inputType == OperandType::TENSOR_FLOAT16)
{
Half fp16Gamma;
Half fp16Beta;
Half fp16Epsilon;
if (!GetInputScalar(operation, 1, OperandType::FLOAT16, fp16Gamma, model, data) ||
!GetInputScalar(operation, 2, OperandType::FLOAT16, fp16Beta, model, data) ||
!GetInputScalar(operation, 3, OperandType::FLOAT16, fp16Epsilon, model, data))
{
return Fail("%s: Operation has invalid inputs (FLOAT16)", __func__);
}
desc.m_Gamma = static_cast<float>(fp16Gamma);
desc.m_Beta = static_cast<float>(fp16Beta);
desc.m_Eps = static_cast<float>(fp16Epsilon);
}
else if (inputType == OperandType::TENSOR_FLOAT32)
{
if (!GetInputScalar(operation, 1, OperandType::FLOAT32, desc.m_Gamma, model, data) ||
!GetInputScalar(operation, 2, OperandType::FLOAT32, desc.m_Beta, model, data) ||
!GetInputScalar(operation, 3, OperandType::FLOAT32, desc.m_Eps, model, data))
{
return Fail("%s: Operation has invalid inputs (FLOAT32)", __func__);
}
}
else
{
return Fail("%s: Unsupported input tensor type: %d", __func__, inputType);
}
desc.m_DataLayout = OptionalDataLayout(operation, 4, model, data);
bool isSupported = false;
auto validateFunc = [&](const armnn::TensorInfo& outputInfo, bool& isSupported)
{
FORWARD_LAYER_SUPPORT_FUNC(__func__,
IsInstanceNormalizationSupported,
data.m_Backends,
isSupported,
input.GetTensorInfo(),
outputInfo,
desc);
};
if(IsDynamicTensor(outputInfo))
{
isSupported = AreDynamicTensorsSupported();
}
else
{
validateFunc(outputInfo, isSupported);
}
if (!isSupported)
{
return false;
}
IConnectableLayer* layer = data.m_Network->AddInstanceNormalizationLayer(desc);
input.Connect(layer->GetInputSlot(0));
return SetupAndTrackLayerOutputSlot(operation, 0, *layer, model, data, nullptr, validateFunc);
}
bool Converter::ConvertL2Normalization(const Operation& operation, const Model& model, ConversionData& data)
{
VLOG(DRIVER) << "Converter::ConvertL2Normalization()";
if (operation.inputs.size() != 1)
{
return Fail("%s: Optional inputs are not supported", __func__);
}
LayerInputHandle input = ConvertToLayerInputHandle(operation, 0, model, data);
if (!input.IsValid())
{
return Fail("%s: Operation has invalid inputs", __func__);
}
const Operand* output = GetOutputOperand(operation, 0, model);
if (!output)
{
return Fail("%s: Could not read output 0", __func__);
}
const armnn::TensorInfo& inputInfo = input.GetTensorInfo();
const armnn::TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
if (outputInfo.GetNumDimensions() != 4u)
{
return Fail("%s: Tensor Rank other than 4 is not supported", __func__);
}
armnn::L2NormalizationDescriptor desc;
desc.m_DataLayout = armnn::DataLayout::NHWC;
bool isSupported = false;
auto validateFunc = [&](const armnn::TensorInfo& outputInfo, bool& isSupported)
{
FORWARD_LAYER_SUPPORT_FUNC(__func__,
IsL2NormalizationSupported,
data.m_Backends,
isSupported,
inputInfo,
outputInfo,
desc);
};
if(!IsDynamicTensor(outputInfo))
{
validateFunc(outputInfo, isSupported);
}
else
{
isSupported = AreDynamicTensorsSupported();
}
if (!isSupported)
{
return false;
}
armnn::IConnectableLayer* layer = data.m_Network->AddL2NormalizationLayer(desc);
assert(layer != nullptr);
input.Connect(layer->GetInputSlot(0));
return SetupAndTrackLayerOutputSlot(operation, 0, *layer, model, data, nullptr, validateFunc);
}
bool Converter::ConvertL2Pool2d(const Operation& operation, const Model& model, ConversionData& data)
{
VLOG(DRIVER) << "Converter::ConvertL2Pool2d()";
return ConvertPooling2d(operation, __func__, PoolingAlgorithm::L2, model, data);
}
bool Converter::ConvertLocalResponseNormalization(const Operation& operation,
const Model& model,
ConversionData& data)
{
VLOG(DRIVER) << "Converter::ConvertLocalResponseNormalization()";
if (operation.inputs.size() != 5)
{
return Fail("%s: Optional inputs are not supported", __func__);
}
LayerInputHandle input = ConvertToLayerInputHandle(operation, 0, model, data);
if (!input.IsValid())
{
return Fail("%s: Operation has invalid inputs", __func__);
}
const Operand* output = GetOutputOperand(operation, 0, model);
if (!output)
{
return Fail("%s: Could not read output 0", __func__);
}
const armnn::TensorInfo& inputInfo = input.GetTensorInfo();
const armnn::TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
if (outputInfo.GetNumDimensions() != 4u)
{
return Fail("%s: Tensor Rank other than 4 is not supported", __func__);
}
armnn::NormalizationDescriptor descriptor;
descriptor.m_DataLayout = armnn::DataLayout::NHWC;
descriptor.m_NormChannelType = armnn::NormalizationAlgorithmChannel::Across;
descriptor.m_NormMethodType = armnn::NormalizationAlgorithmMethod::LocalBrightness;
if (!input.IsValid() ||
!GetInputScalar(operation, 1, OperandType::INT32, descriptor.m_NormSize, model, data) ||
!GetInputFloat32(operation, 2, descriptor.m_K, model, data) ||
!GetInputFloat32(operation, 3, descriptor.m_Alpha, model, data) ||
!GetInputFloat32(operation, 4, descriptor.m_Beta, model, data))
{
return Fail("%s: Operation has invalid inputs", __func__);
}
// ArmNN expects normSize to be the full size of the normalization
// window rather than the radius as in AndroidNN.
descriptor.m_NormSize = 1 + (2 * descriptor.m_NormSize);
bool isSupported = false;
auto validateFunc = [&](const armnn::TensorInfo& outputInfo, bool& isSupported)
{
FORWARD_LAYER_SUPPORT_FUNC(__func__,
IsNormalizationSupported,
data.m_Backends,
isSupported,
inputInfo,
outputInfo,
descriptor);
};
if(!IsDynamicTensor(outputInfo))
{
validateFunc(outputInfo, isSupported);
}
else
{
isSupported = AreDynamicTensorsSupported();
}
if (!isSupported)
{
return false;
}
armnn::IConnectableLayer* layer = data.m_Network->AddNormalizationLayer(descriptor);
assert(layer != nullptr);
input.Connect(layer->GetInputSlot(0));
return SetupAndTrackLayerOutputSlot(operation, 0, *layer, model, data, nullptr, validateFunc);
}
bool Converter::ConvertLogicalBinary(const Operation& operation,
const Model& model,
ConversionData& data,
armnn::LogicalBinaryOperation logicalOperation)
{
VLOG(DRIVER) << "Converter::ConvertLogicalBinary()";
VLOG(DRIVER) << "ConvertLogicalBinary()";
VLOG(DRIVER) << "logicalOperation = " << GetLogicalBinaryOperationAsCString(logicalOperation);
LayerInputHandle input0 = ConvertToLayerInputHandle(operation, 0, model, data);
LayerInputHandle input1 = ConvertToLayerInputHandle(operation, 1, model, data);
if (!(input0.IsValid() && input1.IsValid()))
{
return Fail("%s: Operation has invalid inputs", __func__);
}
const Operand* output = GetOutputOperand(operation, 0, model);
if (!output)
{
return Fail("%s: Could not read output 0", __func__);
}
const TensorInfo& inputInfo0 = input0.GetTensorInfo();
const TensorInfo& inputInfo1 = input1.GetTensorInfo();
const TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
LogicalBinaryDescriptor descriptor(logicalOperation);
bool isSupported = false;
auto validateFunc = [&](const armnn::TensorInfo& outputInfo, bool& isSupported)
{
FORWARD_LAYER_SUPPORT_FUNC(__func__,
IsLogicalBinarySupported,
data.m_Backends,
isSupported,
inputInfo0,
inputInfo1,
outputInfo,
descriptor);
};
if(!IsDynamicTensor(outputInfo))
{
validateFunc(outputInfo, isSupported);
}
else
{
isSupported = AreDynamicTensorsSupported();
}
if (!isSupported)
{
return false;
}
IConnectableLayer* layer = data.m_Network->AddLogicalBinaryLayer(descriptor);
assert(layer != nullptr);
bool isReshapeSupported = BroadcastTensor(input0, input1, layer, data);
if (!isReshapeSupported)
{
return false;
}
return SetupAndTrackLayerOutputSlot(operation, 0, *layer, model, data, nullptr, validateFunc);
}
bool Converter::ConvertLogistic(const Operation& operation, const Model& model, ConversionData& data)
{
VLOG(DRIVER) << "Converter::ConvertLogistic()";
armnn::ActivationDescriptor desc;
desc.m_Function = armnn::ActivationFunction::Sigmoid;
return ConvertToActivation(operation, __func__, desc, model, data);
}
bool Converter::ConvertLogSoftmax(const Operation& operation, const Model& model, ConversionData& data)
{
VLOG(DRIVER) << "Converter::ConvertLogSoftmax()";
LayerInputHandle input = ConvertToLayerInputHandle(operation, 0, model, data);
if (!input.IsValid())
{
return Fail("%s: Failed to read input 0", __func__);
}
const Operand* output = GetOutputOperand(operation, 0, model);
if (!output)
{
return Fail("%s: Failed to read output", __func__);
}
const TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
// Determine data type of input tensor
OperandType inputType;
if (!GetOperandType(operation, 0, model, inputType))
{
return Fail("%s: Operation has invalid inputs", __func__);
}
LogSoftmaxDescriptor descriptor;
// Read beta
if (inputType == OperandType::TENSOR_FLOAT16)
{
Half fp16Beta;
if (!GetInputScalar(operation, 1, OperandType::FLOAT16, fp16Beta, model, data))
{
return Fail("%s: Failed to read input 1 (FLOAT16)", __func__);
}
descriptor.m_Beta = static_cast<float>(fp16Beta);
}
else if (inputType == OperandType::TENSOR_FLOAT32)
{
if (!GetInputScalar(operation, 1, OperandType::FLOAT32, descriptor.m_Beta, model, data))
{
return Fail("%s: Failed to read input 1 (FLOAT32)", __func__);
}
}
else
{
return Fail("%s: Unsupported input tensor type: %d", __func__, inputType);
}
// Read axis
if (!GetInputInt32(operation, 2, descriptor.m_Axis, model, data))
{
return Fail("%s: Failed to read input 2", __func__);
}
bool isSupported = false;
auto validateFunc = [&](const armnn::TensorInfo& outputInfo, bool& isSupported)
{
FORWARD_LAYER_SUPPORT_FUNC(__func__,
IsLogSoftmaxSupported,
data.m_Backends,
isSupported,
input.GetTensorInfo(),
outputInfo,
descriptor);
};
if(IsDynamicTensor(outputInfo))
{
isSupported = AreDynamicTensorsSupported();
}
else
{
validateFunc(outputInfo, isSupported);
}
if (!isSupported)
{
return false;
}
IConnectableLayer* layer = data.m_Network->AddLogSoftmaxLayer(descriptor);
if (!layer)
{
return Fail("%s: AddLogSoftmaxLayer() returned nullptr", __func__);
}
input.Connect(layer->GetInputSlot(0));
return SetupAndTrackLayerOutputSlot(operation, 0, *layer, model, data, nullptr, validateFunc);
}
bool Converter::ConvertLstm(const Operation& operation, const Model& model, ConversionData& data)
{
VLOG(DRIVER) << "Converter::ConvertLstm()";
// Inputs:
// 00: The input: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [batch_size, input_size], where
// “batch_size” corresponds to the batching dimension, and “input_size” is the size of the input.
LayerInputHandle input = ConvertToLayerInputHandle(operation, 0, model, data);
if (!input.IsValid())
{
return Fail("%s: Could not read input 0: input", __func__);
}
// 18: The output state: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [batch_size, output_size].
LayerInputHandle outputStateIn = ConvertToLayerInputHandle(operation, 18, model, data);
if (!outputStateIn.IsValid())
{
return Fail("%s: Could not read input 18: outputStateIn", __func__);
}
// 19: The cell state: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [batch_size, num_units].
LayerInputHandle cellStateIn = ConvertToLayerInputHandle(operation, 19, model, data);
if (!cellStateIn.IsValid())
{
return Fail("%s: Could not read input 19: cellStateIn", __func__);
}
// Get the mandatory input tensors:
// 02: The input-to-forget weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape
// [num_units, input_size].
const ConstTensorPin inputToForgetWeightsPin =
(DequantizeAndMakeConstTensorPin(operation, model, data, 2));
// 03: The input-to-cell weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape
// [num_units, input_size].
const ConstTensorPin inputToCellWeightsPin =
(DequantizeAndMakeConstTensorPin(operation, model, data, 3));
// 04: The input-to-output weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape
// [num_units, input_size].
const ConstTensorPin inputToOutputWeightsPin =
(DequantizeAndMakeConstTensorPin(operation, model, data, 4));
// 06: The recurrent-to-forget weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape
// [num_units, output_size].
const ConstTensorPin recurrentToForgetWeightsPin =
(DequantizeAndMakeConstTensorPin(operation, model, data, 6));
// 07: The recurrent-to-cell weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape
// [num_units, output_size].
const ConstTensorPin recurrentToCellWeightsPin =
(DequantizeAndMakeConstTensorPin(operation, model, data, 7));
// 08: The recurrent-to-output weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape
// [num_units, output_size].
const ConstTensorPin recurrentToOutputWeightsPin =
(DequantizeAndMakeConstTensorPin(operation, model, data, 8));
// 13: The forget gate bias: A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units].
const ConstTensorPin forgetGateBiasPin =
ConvertOperationInputToConstTensorPin(operation, 13, model, data);
// 14: The cell bias: A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units].
const ConstTensorPin cellBiasPin =
ConvertOperationInputToConstTensorPin(operation, 14, model, data);
// 15: The output gate bias: A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units].
const ConstTensorPin outputGateBiasPin =
ConvertOperationInputToConstTensorPin(operation, 15, model, data);
if (!inputToForgetWeightsPin.IsValid() ||
!inputToCellWeightsPin.IsValid() ||
!inputToOutputWeightsPin.IsValid() ||
!recurrentToForgetWeightsPin.IsValid() ||
!recurrentToCellWeightsPin.IsValid() ||
!recurrentToOutputWeightsPin.IsValid() ||
!forgetGateBiasPin.IsValid() ||
!cellBiasPin.IsValid() ||
!outputGateBiasPin.IsValid())
{
return Fail("%s: Operation has invalid tensor inputs", __func__);
}
// Get the optional input tensors:
// 01: The input-to-input weights: Optional. A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape
// [num_units, input_size], where “num_units” corresponds to the number of cell units.
const ConstTensorPin inputToInputWeightsPin =
(DequantizeAndMakeConstTensorPin(operation, model, data, 1, true));
// 05: The recurrent-to-input weights: Optional. A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape
// [num_units, output_size], where “output_size” corresponds to either the number of cell units (i.e.,
// “num_units”), or the second dimension of the “projection_weights”, if defined.
const ConstTensorPin recurrentToInputWeightsPin =
(DequantizeAndMakeConstTensorPin(operation, model, data, 5, true));
// 09: The cell-to-input weights: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units].
const ConstTensorPin cellToInputWeightsPin =
(DequantizeAndMakeConstTensorPin(operation, model, data, 9, true));
// 10: The cell-to-forget weights: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units].
const ConstTensorPin cellToForgetWeightsPin =
(DequantizeAndMakeConstTensorPin(operation, model, data, 10, true));
// 11: The cell-to-output weights: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units].
const ConstTensorPin cellToOutputWeightsPin =
(DequantizeAndMakeConstTensorPin(operation, model, data, 11, true));
// 12: The input gate bias: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units].
const ConstTensorPin inputGateBiasPin =
ConvertOperationInputToConstTensorPin(operation,
12,
model,
data,
g_DontPermute,
nullptr,
true);
// 16: The projection weights: Optional. A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape
// [output_size, num_units].
const ConstTensorPin projectionWeightsPin =
(DequantizeAndMakeConstTensorPin(operation, model, data, 16, true));
// 17: The projection bias: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [output_size].
const ConstTensorPin projectionBiasPin =
ConvertOperationInputToConstTensorPin(operation,
17,
model,
data,
g_DontPermute,
nullptr,
true);
if ((!inputToInputWeightsPin.IsValid() && !inputToInputWeightsPin.IsOptional()) ||
(!recurrentToInputWeightsPin.IsValid() && !recurrentToInputWeightsPin.IsOptional()) ||
(!cellToInputWeightsPin.IsValid() && !cellToInputWeightsPin.IsOptional()) ||
(!cellToForgetWeightsPin.IsValid() && !cellToForgetWeightsPin.IsOptional()) ||
(!cellToOutputWeightsPin.IsValid() && !cellToOutputWeightsPin.IsOptional()) ||
(!inputGateBiasPin.IsValid() && !inputGateBiasPin.IsOptional()) ||
(!projectionWeightsPin.IsValid() && !projectionWeightsPin.IsOptional()) ||
(!projectionBiasPin.IsValid() && !projectionBiasPin.IsOptional()))
{
return Fail("%s: Operation has invalid tensor inputs", __func__);
}
// Get the mandatory input scalars (actually 1-D tensors of size 1):
// 20: The activation function: A value indicating the activation function:
// 0: None; 1: Relu; 3: Relu6; 4: Tanh; 6: Sigmoid.
// 21: The clipping threshold: for the cell state, such that values are bound within [-cell_clip, cell_clip].
// If set to 0.0 then clipping is disabled.
// 22: The clipping threshold: for the output from the projection layer, such that values are bound within
// [-proj_clip, proj_clip]. If set to 0.0 then clipping is disabled.
ActivationFn activation = ActivationFn::kActivationNone;
float cellClip;
float projClip;
if (!GetInputActivationFunctionFromTensor(operation, 20, activation, model, data) ||
!GetInputScalar(operation, 21, OperandType::FLOAT32, cellClip, model, data) ||
!GetInputScalar(operation, 22, OperandType::FLOAT32, projClip, model, data))
{
return Fail("%s: Operation has invalid scalar inputs", __func__);
}
// Get the normalization tensors
// 23: The input layer normalization weights. A 1-D tensor of shape [num_units].
// Used to rescale normalized inputs to activation at input gate.
const ConstTensorPin inputLayerNormWeightsPin
(DequantizeAndMakeConstTensorPin(operation, model, data, 23, true));
// 24: The forget layer normalization weights. A 1-D tensor of shape [num_units].
// Used to rescale normalized inputs to activation at forget gate.
const ConstTensorPin forgetLayerNormWeightsPin =
ConvertOperationInputToConstTensorPin(operation,
24,
model,
data,
g_DontPermute,
nullptr,
true);
// 25: The cell layer normalization weights. A 1-D tensor of shape [num_units].
// Used to rescale normalized inputs to activation at cell gate.
const ConstTensorPin cellLayerNormWeightsPin =
ConvertOperationInputToConstTensorPin(operation,
25,
model,
data,
g_DontPermute,
nullptr,
true);
// 26: The output layer normalization weights. A 1-D tensor of shape [num_units].
// Used to rescale normalized inputs to activation at output gate.
const ConstTensorPin outputLayerNormWeightsPin =
ConvertOperationInputToConstTensorPin(operation,
26,
model,
data,
g_DontPermute,
nullptr,
true);
// Outputs:
// 00: The scratch buffer: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [batch_size, num_units * 4]
// with CIFG, or [batch_size, num_units * 3] without CIFG.
const Operand* scratchBuffer = GetOutputOperand(operation, 0, model);
if (!scratchBuffer)
{
return Fail("%s: Could not read output 0: scratchBuffer", __func__);
}
// 01: The output state (out): A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [batch_size, output_size].
const Operand* outputStateOut = GetOutputOperand(operation, 1, model);
if (!outputStateOut)
{
return Fail("%s: Could not read output 1: outputStateOut", __func__);
}
// 02: The cell state (out): A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [batch_size, num_units].
const Operand* cellStateOut = GetOutputOperand(operation, 2, model);
if (!cellStateOut)
{
return Fail("%s: Could not read output 2: cellStateOut", __func__);
}
// 03: The output: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [batch_size, output_size]. This is
// effectively the same as the current “output state (out)” value.
const Operand* output = GetOutputOperand(operation, 3, model);
if (!output)
{
return Fail("%s: Could not read output 3: output", __func__);
}
// set the params structure for the AddLstmLayer call
LstmInputParams params;
params.m_InputToInputWeights = inputToInputWeightsPin.GetConstTensorPtr();
params.m_InputToForgetWeights = inputToForgetWeightsPin.GetConstTensorPtr();
params.m_InputToCellWeights = inputToCellWeightsPin.GetConstTensorPtr();
params.m_InputToOutputWeights = inputToOutputWeightsPin.GetConstTensorPtr();
params.m_RecurrentToInputWeights = recurrentToInputWeightsPin.GetConstTensorPtr();
params.m_RecurrentToForgetWeights = recurrentToForgetWeightsPin.GetConstTensorPtr();
params.m_RecurrentToCellWeights = recurrentToCellWeightsPin.GetConstTensorPtr();
params.m_RecurrentToOutputWeights = recurrentToOutputWeightsPin.GetConstTensorPtr();
params.m_CellToInputWeights = cellToInputWeightsPin.GetConstTensorPtr();
params.m_CellToForgetWeights = cellToForgetWeightsPin.GetConstTensorPtr();
params.m_CellToOutputWeights = cellToOutputWeightsPin.GetConstTensorPtr();
params.m_InputGateBias = inputGateBiasPin.GetConstTensorPtr();
params.m_ForgetGateBias = forgetGateBiasPin.GetConstTensorPtr();
params.m_CellBias = cellBiasPin.GetConstTensorPtr();
params.m_OutputGateBias = outputGateBiasPin.GetConstTensorPtr();
params.m_ProjectionWeights = projectionWeightsPin.GetConstTensorPtr();
params.m_ProjectionBias = projectionBiasPin.GetConstTensorPtr();
params.m_InputLayerNormWeights = inputLayerNormWeightsPin.GetConstTensorPtr();
params.m_ForgetLayerNormWeights = forgetLayerNormWeightsPin.GetConstTensorPtr();
params.m_CellLayerNormWeights = cellLayerNormWeightsPin.GetConstTensorPtr();
params.m_OutputLayerNormWeights = outputLayerNormWeightsPin.GetConstTensorPtr();
// set the layer descriptor
LstmDescriptor desc;
desc.m_ActivationFunc = activation;
desc.m_ClippingThresCell = cellClip;
desc.m_ClippingThresProj = projClip;
desc.m_CifgEnabled = (params.m_InputToInputWeights == nullptr ||
params.m_RecurrentToInputWeights == nullptr ||
params.m_InputGateBias == nullptr);
desc.m_PeepholeEnabled = (params.m_CellToForgetWeights != nullptr ||
params.m_CellToOutputWeights != nullptr);
desc.m_ProjectionEnabled = (params.m_ProjectionWeights != nullptr);
desc.m_LayerNormEnabled = (params.m_InputLayerNormWeights != nullptr ||
params.m_ForgetLayerNormWeights != nullptr ||
params.m_CellLayerNormWeights != nullptr ||
params.m_OutputLayerNormWeights != nullptr);
// validate the optional input groups
if (desc.m_CifgEnabled &&
(params.m_InputToInputWeights != nullptr ||
params.m_RecurrentToInputWeights != nullptr ||
params.m_InputGateBias != nullptr))
{
return Fail("%s: All, or none, of input-to-input weights, recurrent-to-input weights,"
" and input gate bias must be provided", __func__);
}
if (!desc.m_ProjectionEnabled && params.m_ProjectionBias != nullptr)
{
return Fail("%s: projection bias should not be provided without projection weights", __func__);
}
if (desc.m_PeepholeEnabled &&
(params.m_CellToForgetWeights == nullptr ||
params.m_CellToOutputWeights == nullptr ||
(!desc.m_CifgEnabled && params.m_CellToInputWeights == nullptr)))
{
return Fail("%s: All, or none, of cell-to-forget weights and cell-to-output weights must be provided"
" and, if CIFG is not enabled, cell-to-input weights must also be provided", __func__);
}
if (desc.m_LayerNormEnabled &&
(params.m_ForgetLayerNormWeights == nullptr ||
params.m_CellLayerNormWeights == nullptr ||
params.m_OutputLayerNormWeights == nullptr ||
(!desc.m_CifgEnabled && params.m_InputLayerNormWeights == nullptr)))
{
return Fail("%s: All, or none, of forget-norm weights, cell-norm weights and output-norm weights must be"
" provided and, if CIFG is not enabled, input-norm weights must also be provided", __func__);
}
// Check if the layer is supported
// Inputs
const TensorInfo& inputInfo = input.GetTensorInfo();
const TensorInfo& outputStateInInfo = outputStateIn.GetTensorInfo();
const TensorInfo& cellStateInInfo = cellStateIn.GetTensorInfo();
// Outputs
const TensorInfo& scratchBufferInfo = GetTensorInfoForOperand(*scratchBuffer);
const TensorInfo& outputStateOutInfo = GetTensorInfoForOperand(*outputStateOut);
const TensorInfo& cellStateOutInfo = GetTensorInfoForOperand(*cellStateOut);
const TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
// Basic parameters
LstmInputParamsInfo paramsInfo;
paramsInfo.m_InputToForgetWeights = &(params.m_InputToForgetWeights->GetInfo());
paramsInfo.m_InputToCellWeights = &(params.m_InputToCellWeights->GetInfo());
paramsInfo.m_InputToOutputWeights = &(params.m_InputToOutputWeights->GetInfo());
paramsInfo.m_RecurrentToForgetWeights = &(params.m_RecurrentToForgetWeights->GetInfo());
paramsInfo.m_RecurrentToCellWeights = &(params.m_RecurrentToCellWeights->GetInfo());
paramsInfo.m_RecurrentToOutputWeights = &(params.m_RecurrentToOutputWeights->GetInfo());
paramsInfo.m_ForgetGateBias = &(params.m_ForgetGateBias->GetInfo());
paramsInfo.m_CellBias = &(params.m_CellBias->GetInfo());
paramsInfo.m_OutputGateBias = &(params.m_OutputGateBias->GetInfo());
// Optional parameters
if (!desc.m_CifgEnabled)
{
paramsInfo.m_InputToInputWeights = &(params.m_InputToInputWeights->GetInfo());
paramsInfo.m_RecurrentToInputWeights = &(params.m_RecurrentToInputWeights->GetInfo());
if (params.m_CellToInputWeights != nullptr)
{
paramsInfo.m_CellToInputWeights = &(params.m_CellToInputWeights->GetInfo());
}
paramsInfo.m_InputGateBias = &(params.m_InputGateBias->GetInfo());
}
if (desc.m_ProjectionEnabled)
{
paramsInfo.m_ProjectionWeights = &(params.m_ProjectionWeights->GetInfo());
if (params.m_ProjectionBias != nullptr)
{
paramsInfo.m_ProjectionBias = &(params.m_ProjectionBias->GetInfo());
}
}
if (desc.m_PeepholeEnabled)
{
paramsInfo.m_CellToForgetWeights = &(params.m_CellToForgetWeights->GetInfo());
paramsInfo.m_CellToOutputWeights = &(params.m_CellToOutputWeights->GetInfo());
}
if (desc.m_LayerNormEnabled)
{
if(!desc.m_CifgEnabled)
{
paramsInfo.m_InputLayerNormWeights = &(params.m_InputLayerNormWeights->GetInfo());
}
paramsInfo.m_ForgetLayerNormWeights = &(params.m_ForgetLayerNormWeights->GetInfo());
paramsInfo.m_CellLayerNormWeights = &(params.m_CellLayerNormWeights->GetInfo());
paramsInfo.m_OutputLayerNormWeights = &(params.m_OutputLayerNormWeights->GetInfo());
}
bool isSupported = false;
auto validateFunc = [&](const armnn::TensorInfo& outputInfo, bool& isSupported)
{
FORWARD_LAYER_SUPPORT_FUNC(__func__,
IsLstmSupported,
data.m_Backends,
isSupported,
inputInfo,
outputStateInInfo,
cellStateInInfo,
scratchBufferInfo,
outputStateOutInfo,
cellStateOutInfo,
outputInfo,
desc,
paramsInfo);
};
bool isDynamic = false;
if (!IsDynamicTensor(outputStateOutInfo) &&
!IsDynamicTensor(scratchBufferInfo) &&
!IsDynamicTensor(cellStateOutInfo) &&
!IsDynamicTensor(outputInfo))
{
validateFunc(outputInfo, isSupported);
}
else
{
isDynamic = true;
isSupported = AreDynamicTensorsSupported();
}
if (!isSupported)
{
return false;
}
// Add the layer
IConnectableLayer* layer = data.m_Network->AddLstmLayer(desc, params, "Lstm");
input.Connect(layer->GetInputSlot(0));
outputStateIn.Connect(layer->GetInputSlot(1));
cellStateIn.Connect(layer->GetInputSlot(2));
if (!isDynamic)
{
return (
SetupAndTrackLayerOutputSlot(operation, 0, *layer, 0, model, data) &&
SetupAndTrackLayerOutputSlot(operation, 1, *layer, 1, model, data) &&
SetupAndTrackLayerOutputSlot(operation, 2, *layer, 2, model, data) &&
SetupAndTrackLayerOutputSlot(operation, 3, *layer, 3, model, data));
}
else
{
return (
SetupAndTrackLayerOutputSlot(operation, 0, *layer, 0, model, data) &&
SetupAndTrackLayerOutputSlot(operation, 1, *layer, 1, model, data) &&
SetupAndTrackLayerOutputSlot(operation, 2, *layer, 2, model, data) &&
SetupAndTrackLayerOutputSlot(
operation, 3, *layer, 3, model, data, nullptr, validateFunc, ActivationFn::kActivationNone, true));
}
}
bool Converter::ConvertMaxPool2d(const Operation& operation, const Model& model, ConversionData& data)
{
VLOG(DRIVER) << "Converter::ConvertMaxPool2d()";
return ConvertPooling2d(operation, __func__, PoolingAlgorithm::Max, model, data);
}
bool Converter::ConvertMaximum(const Operation& operation, const Model& model, ConversionData& data)
{
VLOG(DRIVER) << "Converter::ConvertMaximum()";
LayerInputHandle input0 = ConvertToLayerInputHandle(operation, 0, model, data);
LayerInputHandle input1 = ConvertToLayerInputHandle(operation, 1, model, data);
if (!input0.IsValid() || !input1.IsValid())
{
return Fail("%s: Operation has invalid inputs", __func__);
}
const Operand* outputOperand = GetOutputOperand(operation, 0, model);
if (!outputOperand)
{
return Fail("%s: Could not read output", __func__);
}
const TensorInfo& outInfo = GetTensorInfoForOperand(*outputOperand);
bool isSupported = false;
auto validateFunc = [&](const armnn::TensorInfo& outInfo, bool& isSupported)
{
FORWARD_LAYER_SUPPORT_FUNC(__func__,
IsMaximumSupported,
data.m_Backends,
isSupported,
input0.GetTensorInfo(),
input1.GetTensorInfo(),
outInfo);
};
if(IsDynamicTensor(outInfo))
{
isSupported = AreDynamicTensorsSupported();
}
else
{
validateFunc(outInfo, isSupported);
}
if (!isSupported)
{
return false;
}
IConnectableLayer* layer = data.m_Network->AddMaximumLayer();
assert(layer != nullptr);
bool isReshapeSupported = BroadcastTensor(input0, input1, layer, data);
if (!isReshapeSupported)
{
return false;
}
return SetupAndTrackLayerOutputSlot(operation, 0, *layer, model, data, nullptr, validateFunc);
}
bool Converter::ConvertMean(const Operation& operation, const Model& model, ConversionData& data)
{
VLOG(DRIVER) << "Converter::ConvertMean()";
LayerInputHandle input = ConvertToLayerInputHandle(operation, 0, model, data);
if (!input.IsValid())
{
return Fail("%s: Operation has invalid inputs", __func__);
}
const Operand* output = GetOutputOperand(operation, 0, model);
if (!output)
{
return Fail("%s: Could not read output 0", __func__);
}
const armnn::TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
const Operand* axisOperand = GetInputOperand(operation, 1, model);
if (!axisOperand)
{
return Fail("%s: Could not read input 1", __func__);
}
std::vector<int32_t> axis;
if (!GetTensorInt32Values(*axisOperand, axis, model, data))
{
return Fail("%s: Input 1 has invalid values", __func__);
}
const armnn::TensorInfo& inputInfo = input.GetTensorInfo();
// Convert the axis to unsigned int and remove duplicates.
unsigned int rank = inputInfo.GetNumDimensions();
std::set<unsigned int> uniqueAxis;
std::transform(axis.begin(), axis.end(),
std::inserter(uniqueAxis, uniqueAxis.begin()),
[rank](int i) -> unsigned int { return (i + rank) % rank; });
// Get the "keep dims" flag.
int32_t keepDims = 0;
if (!GetInputInt32(operation, 2, keepDims, model, data))
{
return Fail("%s: Could not read input 2", __func__);
}
armnn::MeanDescriptor descriptor;
descriptor.m_Axis.assign(uniqueAxis.begin(), uniqueAxis.end());
descriptor.m_KeepDims = keepDims > 0;
bool isSupported = false;
auto validateFunc = [&](const armnn::TensorInfo& outputInfo, bool& isSupported)
{
FORWARD_LAYER_SUPPORT_FUNC(__func__,
IsMeanSupported,
data.m_Backends,
isSupported,
inputInfo,
outputInfo,
descriptor);
};
if(!IsDynamicTensor(outputInfo))
{
validateFunc(outputInfo, isSupported);
}
else
{
isSupported = AreDynamicTensorsSupported();
}
if (!isSupported)
{
return false;
}
armnn::IConnectableLayer* const layer = data.m_Network->AddMeanLayer(descriptor);
assert(layer != nullptr);
input.Connect(layer->GetInputSlot(0));
return SetupAndTrackLayerOutputSlot(operation, 0, *layer, model, data, nullptr, validateFunc);
}
bool Converter::ConvertMinimum(const Operation& operation, const Model& model, ConversionData& data)
{
VLOG(DRIVER) << "Converter::ConvertMinimum()";
LayerInputHandle input0 = ConvertToLayerInputHandle(operation, 0, model, data);
LayerInputHandle input1 = ConvertToLayerInputHandle(operation, 1, model, data);
if (!input0.IsValid() || !input1.IsValid())
{
return Fail("%s: Operation has invalid inputs", __func__);
}
const Operand* output = GetOutputOperand(operation, 0, model);
if (!output)
{
return Fail("%s: Could not read output 0", __func__);
}
const TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
bool isSupported = false;
auto validateFunc = [&](const armnn::TensorInfo& outputInfo, bool& isSupported)
{
FORWARD_LAYER_SUPPORT_FUNC(__func__,
IsMinimumSupported,
data.m_Backends,
isSupported,
input0.GetTensorInfo(),
input1.GetTensorInfo(),
outputInfo);
};
if(IsDynamicTensor(outputInfo))
{
isSupported = AreDynamicTensorsSupported();
}
else
{
validateFunc(outputInfo, isSupported);
}
if (!isSupported)
{
return false;
}
IConnectableLayer* const layer = data.m_Network->AddMinimumLayer();
assert(layer != nullptr);
bool isReshapeSupported = BroadcastTensor(input0, input1, layer, data);
if (!isReshapeSupported)
{
return false;
}
return SetupAndTrackLayerOutputSlot(operation, 0, *layer, model, data, nullptr, validateFunc);
}
bool Converter::ConvertMul(const Operation& operation, const Model& model, ConversionData& data)
{
VLOG(DRIVER) << "Converter::ConvertMul()";
LayerInputHandle input0 = ConvertToLayerInputHandle(operation, 0, model, data);
LayerInputHandle input1 = ConvertToLayerInputHandle(operation, 1, model, data);
if (!input0.IsValid() || !input1.IsValid())
{
return Fail("%s: Operation has invalid inputs", __func__);
}
// The FuseActivation parameter is always the input index 2
// and it should be optional
ActivationFn activationFunction;
if (!GetOptionalInputActivation(operation, 2, activationFunction, model, data))
{
return Fail("%s: Operation has invalid inputs", __func__);
}
const Operand* outputOperand = GetOutputOperand(operation, 0, model);
if (outputOperand == nullptr)
{
return false;
}
const armnn::TensorInfo& outputInfo = GetTensorInfoForOperand(*outputOperand);
bool isSupported = false;
auto validateFunc = [&](const armnn::TensorInfo& outputInfo, bool& isSupported)
{
FORWARD_LAYER_SUPPORT_FUNC(__func__,
IsMultiplicationSupported,
data.m_Backends,
isSupported,
input0.GetTensorInfo(),
input1.GetTensorInfo(),
outputInfo);
};
if(!IsDynamicTensor(outputInfo))
{
validateFunc(outputInfo, isSupported);
}
else
{
isSupported = AreDynamicTensorsSupported();
}
if (!isSupported)
{
return false;
}
armnn::IConnectableLayer* const startLayer = data.m_Network->AddMultiplicationLayer();
bool isReshapeSupported = BroadcastTensor(input0, input1, startLayer, data);
if (!isReshapeSupported)
{
return false;
}
return SetupAndTrackLayerOutputSlot(operation, 0, *startLayer, model,
data, nullptr, validateFunc, activationFunction);
}
bool Converter::ConvertPad(const Operation& operation, const Model& model, ConversionData& data)
{
VLOG(DRIVER) << "Converter::ConvertPad()";
LayerInputHandle input = ConvertToLayerInputHandle(operation, 0, model, data);
if (!input.IsValid())
{
return Fail("%s: Operation has invalid inputs", __func__);
}
const armnn::TensorInfo& inputInfo = input.GetTensorInfo();
unsigned int rank = inputInfo.GetNumDimensions();
armnn::PadDescriptor descriptor;
if (!ConvertPaddings(operation, model, data, rank, descriptor))
{
return Fail("%s: Could not convert paddings", __func__);
}
// For a ANEURALNETWORKS_TENSOR_QUANT8_ASYMM and ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED tensor,
// the scale and zeroPoint must be the same as input0
// Before Android Q, the pad value for ANEURALNETWORKS_TENSOR_QUANT8_ASYMM was undefined. Since Android Q the pad
// value must be "logical zero" we set it to be equal to the QuantizationOffset so effectively it ends up as
// (QuantizationOffset - QuantizationOffset) * scale = 0.
if (inputInfo.GetDataType() == armnn::DataType::QAsymmU8 || inputInfo.GetDataType() == armnn::DataType::QAsymmS8)
{
descriptor.m_PadValue = inputInfo.GetQuantizationOffset();
}
const Operand* output = GetOutputOperand(operation, 0, model);
if (!output)
{
return Fail("%s: Could not read output", __func__);
}
const armnn::TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
bool isSupported = false;
auto validateFunc = [&](const armnn::TensorInfo& outputInfo, bool& isSupported)
{
FORWARD_LAYER_SUPPORT_FUNC(__func__,
IsPadSupported,
data.m_Backends,
isSupported,
inputInfo,
outputInfo,
descriptor);
};
if(!IsDynamicTensor(outputInfo))
{
validateFunc(outputInfo, isSupported);
}
else
{
isSupported = AreDynamicTensorsSupported();
}
if (!isSupported)
{
return false;
}
armnn::IConnectableLayer* const layer = data.m_Network->AddPadLayer(descriptor);
assert(layer != nullptr);
input.Connect(layer->GetInputSlot(0));
return SetupAndTrackLayerOutputSlot(operation, 0, *layer, model, data, nullptr, validateFunc);
}
bool Converter::ConvertPadV2(const Operation& operation, const Model& model, ConversionData& data)
{
VLOG(DRIVER) << "Converter::ConvertPadV2()";
LayerInputHandle input = ConvertToLayerInputHandle(operation, 0, model, data);
if (!input.IsValid())
{
return Fail("%s: Could not read input 0", __func__);
}
const Operand* output = GetOutputOperand(operation, 0, model);
if (!output)
{
return Fail("%s: Could not read output", __func__);
}
const TensorInfo& inputInfo = input.GetTensorInfo();
unsigned int rank = inputInfo.GetNumDimensions();
PadDescriptor descriptor;
if (!ConvertPaddings(operation, model, data, rank, descriptor))
{
return Fail("%s: Could not convert paddings", __func__);
}
const TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
// Determine type of padding value
OperandType operandType0;
OperandType operandType2;
if (!GetOperandType(operation, 0, model, operandType0) ||
!GetOperandType(operation, 2, model, operandType2))
{
return Fail("%s: Operation has invalid inputs", __func__);
}
// Read value to use for padding
if (operandType0 == OperandType::TENSOR_FLOAT16 && operandType2 == OperandType::FLOAT16)
{
Half f16PadValue;
if (!GetInputScalar(operation, 2, operandType2, f16PadValue, model, data))
{
return Fail("%s: Could not read input 2 (FLOAT16)", __func__);
}
descriptor.m_PadValue = f16PadValue;
}
else if (operandType0 == OperandType::TENSOR_FLOAT32 && operandType2 == OperandType::FLOAT32)
{
if (!GetInputFloat32(operation, 2, descriptor.m_PadValue, model, data))
{
return Fail("%s: Could not read input 2 (FLOAT32)", __func__);
}
}
else if (isQuantizedOperand(operandType0) && operandType2 == OperandType::INT32)
{
int32_t intPadValue = 0;
if (!GetInputInt32(operation, 2, intPadValue, model, data))
{
return Fail("%s: Could not read input 2 (INT32)", __func__);
}
descriptor.m_PadValue = intPadValue;
}
else
{
return Fail("%s: Operation has invalid inputs: type mismatch", __func__);
}
bool isSupported = false;
auto validateFunc = [&](const armnn::TensorInfo& outputInfo, bool& isSupported)
{
FORWARD_LAYER_SUPPORT_FUNC(__func__,
IsPadSupported,
data.m_Backends,
isSupported,
inputInfo,
outputInfo,
descriptor);
};
if(IsDynamicTensor(outputInfo))
{
isSupported = AreDynamicTensorsSupported();
}
else
{
validateFunc(outputInfo, isSupported);
}
if (!isSupported)
{
return false;
}
IConnectableLayer* const layer = data.m_Network->AddPadLayer(descriptor);
assert(layer != nullptr);
input.Connect(layer->GetInputSlot(0));
return SetupAndTrackLayerOutputSlot(operation, 0, *layer, model, data, nullptr, validateFunc);
}
bool Converter::ConvertPrelu(const Operation& operation, const Model& model, ConversionData& data)
{
VLOG(DRIVER) << "Converter::ConvertPrelu()";
LayerInputHandle input = ConvertToLayerInputHandle(operation, 0, model, data);
LayerInputHandle alpha = ConvertToLayerInputHandle(operation, 1, model, data);
if (!input.IsValid() || !alpha.IsValid())
{
return Fail("%s: Operation has invalid inputs", __func__);
}
const Operand* output = GetOutputOperand(operation, 0, model);
if (!output)
{
return Fail("%s: Could not read output", __func__);
}
const TensorInfo& inputInfo = input.GetTensorInfo();
const TensorInfo& alphaInfo = alpha.GetTensorInfo();
const TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
bool isSupported = false;
auto validateFunc = [&](const armnn::TensorInfo& outputInfo, bool& isSupported)
{
FORWARD_LAYER_SUPPORT_FUNC(__func__,
IsPreluSupported,
data.m_Backends,
isSupported,
inputInfo,
alphaInfo,
outputInfo);
};
if(IsDynamicTensor(outputInfo))
{
isSupported = AreDynamicTensorsSupported();
}
else
{
validateFunc(outputInfo, isSupported);
}
if (!isSupported)
{
return false;
}
IConnectableLayer* const layer = data.m_Network->AddPreluLayer();
if (!layer)
{
return Fail("%s: AddPreluLayer failed", __func__);
}
bool isReshapeSupported = BroadcastTensor(input, alpha, layer, data);
if (!isReshapeSupported)
{
return false;
}
return SetupAndTrackLayerOutputSlot(operation, 0, *layer, model, data, nullptr, validateFunc);
}
bool Converter::ConvertQuantize(const Operation& operation, const Model& model, ConversionData& data)
{
VLOG(DRIVER) << "Converter::ConvertQuantize()";
LayerInputHandle input = ConvertToLayerInputHandle(operation, 0, model, data);
if (!input.IsValid())
{
return Fail("%s: Operation has invalid input", __func__);
}
const Operand* const outputOperand = GetOutputOperand(operation, 0, model);
if (!outputOperand)
{
return Fail("%s: Operation has invalid outputs", __func__);
}
const TensorInfo& outputInfo = GetTensorInfoForOperand(*outputOperand);
bool isSupported = false;
auto validateFunc = [&](const armnn::TensorInfo& outputInfo, bool& isSupported)
{
FORWARD_LAYER_SUPPORT_FUNC(__func__,
IsQuantizeSupported,
data.m_Backends,
isSupported,
input.GetTensorInfo(),
outputInfo);
};
if(IsDynamicTensor(outputInfo))
{
isSupported = AreDynamicTensorsSupported();
}
else
{
validateFunc(outputInfo, isSupported);
}
if (!isSupported)
{
return false;
}
IConnectableLayer* const layer = data.m_Network->AddQuantizeLayer();
assert(layer != nullptr);
input.Connect(layer->GetInputSlot(0));
return SetupAndTrackLayerOutputSlot(operation, 0, *layer, model, data, nullptr, validateFunc);
}
bool Converter::ConvertQuantizedLstm(const Operation& operation, const Model& model, ConversionData& data)
{
VLOG(DRIVER) << "Converter::ConvertQuantizedLstm()";
VLOG(DRIVER) << "ConvertQuantizedLstm()";
//Inputs:
// 0: The input: A 2-D tensor of type ANEURALNETWORKS_TENSOR_QUANT8_ASYMM and shape [numBatches, inputSize]
// specifying the input to the LSTM cell. Tensor is quantized with a fixed quantization range of -1, 127/128.
LayerInputHandle input = ConvertToLayerInputHandle(operation, 0, model, data);
if (!input.IsValid())
{
return Fail("%s: Could not read input 0: input", __func__);
}
// 18: The output state: A 2-D tensor of ANEURALNETWORKS_TENSOR_QUANT8_ASYMM, of shape [batch_size, output_size].
LayerInputHandle outputStatePrevTimeStep = ConvertToLayerInputHandle(operation, 18, model, data);
if (!outputStatePrevTimeStep.IsValid())
{
return Fail("%s: Could not read input 18: outputStatePrevTimeStep", __func__);
}
// 19: The cell state: A 2-D tensor of ANEURALNETWORKS_TENSOR_QUANT16_SYMM, of shape [batch_size, num_units].
LayerInputHandle cellStatePrevTimeStep = ConvertToLayerInputHandle(operation, 19, model, data);
if (!cellStatePrevTimeStep.IsValid())
{
return Fail("%s: Could not read input 19: cellStatePrevTimeStep", __func__);
}
// Get the mandatory input tensors:
// 02: The input-to-forget weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_QUANT8_SYMM, of shape
// [num_units, input_size].
const ConstTensorPin inputToForgetWeightsPin =
ConvertOperationInputToConstTensorPin(operation, 2, model, data);
// 03: The input-to-cell weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_QUANT8_SYMM, of shape
// [num_units, input_size].
const ConstTensorPin inputToCellWeightsPin =
ConvertOperationInputToConstTensorPin(operation, 3, model, data);
// 04: The input-to-output weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_QUANT8_SYMM, of shape
// [num_units, input_size].
const ConstTensorPin inputToOutputWeightsPin =
ConvertOperationInputToConstTensorPin(operation, 4, model, data);
// 06: The recurrent-to-forget weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_QUANT8_SYMM, of shape
// [num_units, output_size].
const ConstTensorPin recurrentToForgetWeightsPin =
ConvertOperationInputToConstTensorPin(operation, 6, model, data);
// 07: The recurrent-to-cell weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_QUANT8_SYMM, of shape
// [num_units, output_size].
const ConstTensorPin recurrentToCellWeightsPin =
ConvertOperationInputToConstTensorPin(operation, 7, model, data);
// 08: The recurrent-to-output weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_QUANT8_SYMM, of shape
// [num_units, output_size].
const ConstTensorPin recurrentToOutputWeightsPin =
ConvertOperationInputToConstTensorPin(operation, 8, model, data);
// 13: The forget gate bias: A 1-D tensor of ANEURALNETWORKS_TENSOR_INT32, of shape [num_units].
const ConstTensorPin forgetGateBiasPin =
ConvertOperationInputToConstTensorPin(operation, 13, model, data);
// 14: The cell bias: A 1-D tensor of ANEURALNETWORKS_TENSOR_INT32, of shape [num_units].
const ConstTensorPin cellBiasPin =
ConvertOperationInputToConstTensorPin(operation, 14, model, data);
// 15: The output gate bias: A 1-D tensor of ANEURALNETWORKS_TENSOR_INT32, of shape [num_units].
const ConstTensorPin outputGateBiasPin =
ConvertOperationInputToConstTensorPin(operation, 15, model, data);
if (!inputToForgetWeightsPin.IsValid() ||
!inputToCellWeightsPin.IsValid() ||
!inputToOutputWeightsPin.IsValid() ||
!recurrentToForgetWeightsPin.IsValid() ||
!recurrentToCellWeightsPin.IsValid() ||
!recurrentToOutputWeightsPin.IsValid() ||
!forgetGateBiasPin.IsValid() ||
!cellBiasPin.IsValid() ||
!outputGateBiasPin.IsValid())
{
return Fail("%s: Operation has invalid tensor inputs", __func__);
}
// Get the optional input tensors:
// 01: The input-to-input weights: Optional. A 2-D tensor of ANEURALNETWORKS_TENSOR_QUANT8_SYMM, of shape
// [num_units, input_size], where “num_units” corresponds to the number of cell units.
const ConstTensorPin inputToInputWeightsPin =
ConvertOperationInputToConstTensorPin(operation,
1,
model,
data,
g_DontPermute,
nullptr,
true);
// 05: The recurrent-to-input weights: Optional. A 2-D tensor of ANEURALNETWORKS_TENSOR_QUANT8_SYMM, of shape
// [num_units, output_size], where “output_size” corresponds to either the number of cell units (i.e.,
// “num_units”), or the second dimension of the “projection_weights”, if defined.
const ConstTensorPin recurrentToInputWeightsPin =
ConvertOperationInputToConstTensorPin(operation,
5,
model,
data,
g_DontPermute,
nullptr,
true);
// 09: The cell-to-input weights: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_QUANT16_SYMM, of shape
// [num_units].
const ConstTensorPin cellToInputWeightsPin =
ConvertOperationInputToConstTensorPin(operation,
9,
model,
data,
g_DontPermute,
nullptr,
true);
// 10: The cell-to-forget weights: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_QUANT16_SYMM, of shape
// [num_units].
const ConstTensorPin cellToForgetWeightsPin =
ConvertOperationInputToConstTensorPin(operation,
10,
model,
data,
g_DontPermute,
nullptr,
true);
// 11: The cell-to-output weights: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_QUANT16_SYMM, of shape
// [num_units].
const ConstTensorPin cellToOutputWeightsPin =
ConvertOperationInputToConstTensorPin(operation,
11,
model,
data,
g_DontPermute,
nullptr,
true);
// 12: The input gate bias: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_INT32, of shape [num_units].
const ConstTensorPin inputGateBiasPin =
ConvertOperationInputToConstTensorPin(operation,
12,
model,
data,
g_DontPermute,
nullptr,
true);
// 16: The projection weights: Optional. A 2-D tensor of ANEURALNETWORKS_TENSOR_QUANT8_SYMM, of shape
// [output_size, num_units].
const ConstTensorPin projectionWeightsPin =
ConvertOperationInputToConstTensorPin(operation,
16,
model,
data,
g_DontPermute,
nullptr,
true);
// 17: The projection bias: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_INT32, of shape [output_size].
const ConstTensorPin projectionBiasPin =
ConvertOperationInputToConstTensorPin(operation,
17,
model,
data,
g_DontPermute,
nullptr,
true);
if ((!inputToInputWeightsPin.IsValid() && !inputToInputWeightsPin.IsOptional())
|| (!recurrentToInputWeightsPin.IsValid() && !recurrentToInputWeightsPin.IsOptional())
|| (!cellToInputWeightsPin.IsValid() && !cellToInputWeightsPin.IsOptional())
|| (!cellToForgetWeightsPin.IsValid() && !cellToForgetWeightsPin.IsOptional())
|| (!cellToOutputWeightsPin.IsValid() && !cellToOutputWeightsPin.IsOptional())
|| (!inputGateBiasPin.IsValid() && !inputGateBiasPin.IsOptional())
|| (!projectionWeightsPin.IsValid() && !projectionWeightsPin.IsOptional())
|| (!projectionBiasPin.IsValid() && !projectionBiasPin.IsOptional()))
{
return Fail("%s: Operation has invalid tensor inputs", __func__);
}
// Get the optional normalization tensors
// 20: The input layer normalization weights. A 1-D tensor of shape [num_units] ANEURALNETWORKS_TENSOR_QUANT16_SYMM.
// Used to rescale normalized inputs to activation at input gate.
const ConstTensorPin inputLayerNormWeightsPin =
ConvertOperationInputToConstTensorPin(operation,
20,
model,
data,
g_DontPermute,
nullptr,
true);
// 21: The forget layer normalization weights. A 1-D tensor of shape [num_units] ANEURALNETWORKS_TENSOR_QUANT16_SYMM
// Used to rescale normalized inputs to activation at forget gate.
const ConstTensorPin forgetLayerNormWeightsPin =
ConvertOperationInputToConstTensorPin(operation,
21,
model,
data,
g_DontPermute,
nullptr,
true);
// 22: The cell layer normalization weights. A 1-D tensor of shape [num_units] ANEURALNETWORKS_TENSOR_QUANT16_SYMM.
// Used to rescale normalized inputs to activation at cell gate.
const ConstTensorPin cellLayerNormWeightsPin =
ConvertOperationInputToConstTensorPin(operation,
22,
model,
data,
g_DontPermute,
nullptr,
true);
// 23: The output layer normalization weights. A 1-D tensor of shape [num_units].
// Used to rescale normalized inputs to activation at output gate.
const ConstTensorPin outputLayerNormWeightsPin =
ConvertOperationInputToConstTensorPin(operation,
23,
model,
data,
g_DontPermute,
nullptr,
true);
if ((!inputLayerNormWeightsPin.IsValid() && !inputLayerNormWeightsPin.IsOptional())
|| (!forgetLayerNormWeightsPin.IsValid() && !forgetLayerNormWeightsPin.IsOptional())
|| (!cellLayerNormWeightsPin.IsValid() && !cellLayerNormWeightsPin.IsOptional())
|| (!outputLayerNormWeightsPin.IsValid() && !outputLayerNormWeightsPin.IsOptional()))
{
return Fail("%s: Operation has invalid tensor inputs", __func__);
}
// Get the optional input scalars:
// 24: The cell clip: If provided the cell state is clipped by this value prior to the cell output activation.
// 25: The projection clip: If provided and projection is enabled, this is used for clipping the projected values.
// Get the mandatory input scalars:
// 26: The scale of the intermediate result of matmul, i.e. input to layer normalization, at input gate.
// 27: The scale of the intermediate result of matmul, i.e. input to layer normalization, at forget gate.
// 28: The scale of the intermediate result of matmul, i.e. input to layer normalization, at cell gate.
// 29: The scale of the intermediate result of matmul, i.e. input to layer normalization, at output gate.
// 30: The zero point of the hidden state, i.e. input to projection.
// 31: The scale of the hidden state, i.e. input to projection.
float cellClip, projClip, matMulInputGate, matMulForgetGate, matMulCellGate, matMulOutputGate, projInputScale;
int projInputZeroPoint;
if (!GetInputScalar(operation, 24, OperandType::FLOAT32, cellClip, model, data, true) ||
!GetInputScalar(operation, 25, OperandType::FLOAT32, projClip, model, data, true) ||
!GetInputScalar(operation, 26, OperandType::FLOAT32, matMulInputGate, model, data) ||
!GetInputScalar(operation, 27, OperandType::FLOAT32, matMulForgetGate, model, data) ||
!GetInputScalar(operation, 28, OperandType::FLOAT32, matMulCellGate, model, data) ||
!GetInputScalar(operation, 29, OperandType::FLOAT32, matMulOutputGate, model, data) ||
!GetInputScalar(operation, 30, OperandType::INT32, projInputZeroPoint, model, data) ||
!GetInputScalar(operation, 31, OperandType::FLOAT32, projInputScale, model, data))
{
return Fail("%s: Operation has invalid scalar inputs", __func__);
}
// Outputs:
// 0: The output state (out): A 2-D tensor of ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED, of shape [batch_size,
// output_size].
const Operand* outputStateOut = GetOutputOperand(operation, 0, model);
if (!outputStateOut)
{
return Fail("%s: Could not read output 0: outputStateOut", __func__);
}
// 1: The cell state (out): A 2-D tensor of ANEURALNETWORKS_TENSOR_QUANT16_SYMM, of shape [batch_size, num_units].
const Operand* cellStateOut = GetOutputOperand(operation, 1, model);
if (!cellStateOut)
{
return Fail("%s: Could not read output 1: cellStateOut", __func__);
}
// 2: The output: A 2-D tensor of ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED, of shape [batch_size, output_size].
// This is effectively the same as the current “output state (out)” value.
const Operand* output = GetOutputOperand(operation, 2, model);
if (!output)
{
return Fail("%s: Could not read output 2: output", __func__);
}
// set the params structure for the AddLstmLayer call
LstmInputParams params;
params.m_InputToInputWeights = inputToInputWeightsPin.GetConstTensorPtr();
params.m_InputToForgetWeights = inputToForgetWeightsPin.GetConstTensorPtr();
params.m_InputToCellWeights = inputToCellWeightsPin.GetConstTensorPtr();
params.m_InputToOutputWeights = inputToOutputWeightsPin.GetConstTensorPtr();
params.m_RecurrentToInputWeights = recurrentToInputWeightsPin.GetConstTensorPtr();
params.m_RecurrentToForgetWeights = recurrentToForgetWeightsPin.GetConstTensorPtr();
params.m_RecurrentToCellWeights = recurrentToCellWeightsPin.GetConstTensorPtr();
params.m_RecurrentToOutputWeights = recurrentToOutputWeightsPin.GetConstTensorPtr();
params.m_CellToInputWeights = cellToInputWeightsPin.GetConstTensorPtr();
params.m_CellToForgetWeights = cellToForgetWeightsPin.GetConstTensorPtr();
params.m_CellToOutputWeights = cellToOutputWeightsPin.GetConstTensorPtr();
params.m_InputGateBias = inputGateBiasPin.GetConstTensorPtr();
params.m_ForgetGateBias = forgetGateBiasPin.GetConstTensorPtr();
params.m_CellBias = cellBiasPin.GetConstTensorPtr();
params.m_OutputGateBias = outputGateBiasPin.GetConstTensorPtr();
params.m_ProjectionWeights = projectionWeightsPin.GetConstTensorPtr();
params.m_ProjectionBias = projectionBiasPin.GetConstTensorPtr();
params.m_InputLayerNormWeights = inputLayerNormWeightsPin.GetConstTensorPtr();
params.m_ForgetLayerNormWeights = forgetLayerNormWeightsPin.GetConstTensorPtr();
params.m_CellLayerNormWeights = cellLayerNormWeightsPin.GetConstTensorPtr();
params.m_OutputLayerNormWeights = outputLayerNormWeightsPin.GetConstTensorPtr();
// set the layer descriptor
QLstmDescriptor desc;
desc.m_CellClip = cellClip;
desc.m_ProjectionClip = projClip;
desc.m_CifgEnabled = (params.m_InputToInputWeights == nullptr ||
params.m_RecurrentToInputWeights == nullptr ||
params.m_InputGateBias == nullptr);
desc.m_PeepholeEnabled = (params.m_CellToForgetWeights != nullptr ||
params.m_CellToOutputWeights != nullptr);
desc.m_ProjectionEnabled = (params.m_ProjectionWeights != nullptr);
desc.m_LayerNormEnabled = (params.m_InputLayerNormWeights != nullptr ||
params.m_ForgetLayerNormWeights != nullptr ||
params.m_CellLayerNormWeights != nullptr ||
params.m_OutputLayerNormWeights != nullptr);
desc.m_InputIntermediateScale = matMulInputGate;
desc.m_ForgetIntermediateScale = matMulForgetGate;
desc.m_CellIntermediateScale = matMulCellGate;
desc.m_OutputIntermediateScale = matMulOutputGate;
desc.m_HiddenStateScale = projInputScale;
desc.m_HiddenStateZeroPoint = projInputZeroPoint;
// validate the optional input groups
if (desc.m_CifgEnabled &&
(params.m_InputToInputWeights != nullptr ||
params.m_RecurrentToInputWeights != nullptr ||
params.m_InputGateBias != nullptr))
{
return Fail("%s: All, or none, of input-to-input weights, recurrent-to-input weights,"
" and input gate bias must be provided", __func__);
}
if (!desc.m_ProjectionEnabled && params.m_ProjectionBias != nullptr)
{
return Fail("%s: projection bias should not be provided without projection weights", __func__);
}
if (desc.m_PeepholeEnabled &&
(params.m_CellToForgetWeights == nullptr ||
params.m_CellToOutputWeights == nullptr ||
(!desc.m_CifgEnabled && params.m_CellToInputWeights == nullptr)))
{
return Fail("%s: All, or none, of cell-to-forget weights and cell-to-output weights must be provided"
" and, if CIFG is not enabled, cell-to-input weights must also be provided", __func__);
}
if (desc.m_LayerNormEnabled &&
(params.m_ForgetLayerNormWeights == nullptr ||
params.m_CellLayerNormWeights == nullptr ||
params.m_OutputLayerNormWeights == nullptr ||
(!desc.m_CifgEnabled && params.m_InputLayerNormWeights == nullptr)))
{
return Fail("%s: All, or none, of forget-norm weights, cell-norm weights and output-norm weights must be"
" provided and, if CIFG is not enabled, input-norm weights must also be provided", __func__);
}
// Basic parameters
LstmInputParamsInfo paramsInfo;
paramsInfo.m_InputToForgetWeights = &(params.m_InputToForgetWeights->GetInfo());
paramsInfo.m_InputToCellWeights = &(params.m_InputToCellWeights->GetInfo());
paramsInfo.m_InputToOutputWeights = &(params.m_InputToOutputWeights->GetInfo());
paramsInfo.m_RecurrentToForgetWeights = &(params.m_RecurrentToForgetWeights->GetInfo());
paramsInfo.m_RecurrentToCellWeights = &(params.m_RecurrentToCellWeights->GetInfo());
paramsInfo.m_RecurrentToOutputWeights = &(params.m_RecurrentToOutputWeights->GetInfo());
paramsInfo.m_ForgetGateBias = &(params.m_ForgetGateBias->GetInfo());
paramsInfo.m_CellBias = &(params.m_CellBias->GetInfo());
paramsInfo.m_OutputGateBias = &(params.m_OutputGateBias->GetInfo());
// Inputs
const TensorInfo& inputInfo = input.GetTensorInfo();
const TensorInfo& outputStatePrevTimeStepInfo = outputStatePrevTimeStep.GetTensorInfo();
const TensorInfo& cellStatePrevTimeStepInfo = cellStatePrevTimeStep.GetTensorInfo();
// Outputs
TensorInfo outputStateOutInfo = GetTensorInfoForOperand(*outputStateOut);
TensorInfo outputInfo = GetTensorInfoForOperand(*output);
const TensorInfo& cellStateOutInfo = GetTensorInfoForOperand(*cellStateOut);
// Optional parameters
if (!desc.m_CifgEnabled)
{
paramsInfo.m_InputToInputWeights = &(params.m_InputToInputWeights->GetInfo());
paramsInfo.m_RecurrentToInputWeights = &(params.m_RecurrentToInputWeights->GetInfo());
if (desc.m_PeepholeEnabled)
{
paramsInfo.m_CellToInputWeights = &(params.m_CellToInputWeights->GetInfo());
}
paramsInfo.m_InputGateBias = &(params.m_InputGateBias->GetInfo());
}
if (desc.m_ProjectionEnabled)
{
paramsInfo.m_ProjectionWeights = &(params.m_ProjectionWeights->GetInfo());
if (params.m_ProjectionBias != nullptr)
{
paramsInfo.m_ProjectionBias = &(params.m_ProjectionBias->GetInfo());
}
}
else
{
// If Projection is disabled, override non-const outputs to change the quant info with hidden params, then
// create a new const TensorInfo based on this
outputStateOutInfo.SetQuantizationScale(projInputScale);
outputStateOutInfo.SetQuantizationOffset(projInputZeroPoint);
outputInfo.SetQuantizationScale(projInputScale);
outputInfo.SetQuantizationOffset(projInputZeroPoint);
}
const TensorInfo constOutputStateOutInfo(outputStateOutInfo);
const TensorInfo constOutputInfo(outputInfo);
if (desc.m_PeepholeEnabled)
{
paramsInfo.m_CellToForgetWeights = &(params.m_CellToForgetWeights->GetInfo());
paramsInfo.m_CellToOutputWeights = &(params.m_CellToOutputWeights->GetInfo());
}
if (desc.m_LayerNormEnabled)
{
if(!desc.m_CifgEnabled)
{
paramsInfo.m_InputLayerNormWeights = &(params.m_InputLayerNormWeights->GetInfo());
}
paramsInfo.m_ForgetLayerNormWeights = &(params.m_ForgetLayerNormWeights->GetInfo());
paramsInfo.m_CellLayerNormWeights = &(params.m_CellLayerNormWeights->GetInfo());
paramsInfo.m_OutputLayerNormWeights = &(params.m_OutputLayerNormWeights->GetInfo());
}
// Check if the layer is supported
bool isSupported = false;
auto validateFunc = [&](const armnn::TensorInfo& cellStateOutInfo, bool& isSupported)
{
FORWARD_LAYER_SUPPORT_FUNC(__func__,
IsQLstmSupported,
data.m_Backends,
isSupported,
inputInfo,
outputStatePrevTimeStepInfo,
cellStatePrevTimeStepInfo,
constOutputStateOutInfo,
cellStateOutInfo,
constOutputInfo,
desc,
paramsInfo);
};
bool isDynamic = false;
if (!IsDynamicTensor(constOutputStateOutInfo) &&
!IsDynamicTensor(cellStateOutInfo) &&
!IsDynamicTensor(constOutputInfo))
{
validateFunc(outputInfo, isSupported);
}
else
{
isDynamic = true;
isSupported = AreDynamicTensorsSupported();
}
if (!isSupported)
{
return false;
}
// Add the layer
IConnectableLayer* layer = data.m_Network->AddQLstmLayer(desc, params, "QLstm");
input.Connect(layer->GetInputSlot(0));
outputStatePrevTimeStep.Connect(layer->GetInputSlot(1));
cellStatePrevTimeStep.Connect(layer->GetInputSlot(2));
if (!isDynamic)
{
return ( SetupAndTrackLayerOutputSlot(
operation, 0, *layer, 0, model, data, &constOutputStateOutInfo) &&
SetupAndTrackLayerOutputSlot(operation, 1, *layer, 1, model, data) &&
SetupAndTrackLayerOutputSlot(operation, 2, *layer, 2, model, data, &constOutputInfo));
}
else
{
return ( SetupAndTrackLayerOutputSlot(
operation, 0, *layer, 0, model, data, &constOutputStateOutInfo) &&
SetupAndTrackLayerOutputSlot(
operation, 1, *layer, 1, model, data, nullptr, validateFunc,
ActivationFn::kActivationNone, true) &&
SetupAndTrackLayerOutputSlot(operation, 2, *layer, 2, model, data, &constOutputInfo));
}
}
bool Converter::ConvertQuantized16BitLstm(const Operation& operation, const Model& model, ConversionData& data)
{
VLOG(DRIVER) << "Converter::ConvertQuantized16BitLstm()";
VLOG(DRIVER) << "Policy::ConvertQuantized16BitLstm()";
//Inputs:
// 0: The input: A 2-D tensor of type ANEURALNETWORKS_TENSOR_QUANT8_ASYMM and shape [numBatches, inputSize]
// specifying the input to the LSTM cell. Tensor is quantized with a fixed quantization range of -1, 127/128.
LayerInputHandle input = ConvertToLayerInputHandle(operation, 0, model, data);
if (!input.IsValid())
{
return Fail("%s: Could not read input 0: input", __func__);
}
//13: The previous cell state: A 2-D tensor of type ANEURALNETWORKS_TENSOR_QUANT16_SYMM and shape
// [numBatches, outputSize] specifying the cell state from the previous time step of the LSTM cell.
// It is quantized using a quantization range of -2^4, 2^4 * 32767/32768.
LayerInputHandle previousCellStateIn = ConvertToLayerInputHandle(operation, 13, model, data);
if (!previousCellStateIn.IsValid())
{
return Fail("%s: Could not read input 13: previousCellStateIn", __func__);
}
// 14: The previous output state: A 2-D tensor of type ANEURALNETWORKS_TENSOR_QUANT8_ASYMM and shape
// [numBathes, outputSize] specifying the output of the LSTM cell from previous time-step. Tensor
// is quantized with a fixed quantization range of -1, 127/128.
LayerInputHandle previousOutputIn = ConvertToLayerInputHandle(operation, 14, model, data);
if (!previousOutputIn.IsValid())
{
return Fail("%s: Could not read input 14: previousOutputIn", __func__);
}
// Get the input tensors:
// 1: The input-to-input weights. A 2-D tensor of type ANEURALNETWORKS_TENSOR_QUANT8_ASYMM and shape
// [outputSize, inputSize] specifying input-to-input part of weights for fully-connected layer inside the
// LSTM cell. Quantization zero point and scale must be the same across all the weights.
const ConstTensorPin inputToInputWeightsPin =
ConvertOperationInputToConstTensorPin(operation, 1, model, data);
// 2: The input-to-forget weights. A 2-D tensor of type ANEURALNETWORKS_TENSOR_QUANT8_ASYMM and shape
// [outputSize, inputSize] specifying input-to-forget part of weights for fully-connected layer inside the
// LSTM cell. Quantization zero point and scale must be the same across all the weights.
const ConstTensorPin inputToForgetWeightsPin =
ConvertOperationInputToConstTensorPin(operation, 2, model, data);
// 3: The input-to-cell weights. A 2-D tensor of type ANEURALNETWORKS_TENSOR_QUANT8_ASYMM and shape
// [outputSize, inputSize] specifying input-to-cell part of weights for fully-connected layer inside the
// LSTM cell. Quantization zero point and scale must be the same across all the weights.
const ConstTensorPin inputToCellWeightsPin =
ConvertOperationInputToConstTensorPin(operation, 3, model, data);
// 4: The input-to-output weights. A 2-D tensor of type ANEURALNETWORKS_TENSOR_QUANT8_ASYMM and shape
// [outputSize, inputSize] specifying input-to-output part of weights for fully-connected layer inside the
// LSTM cell. Quantization zero point and scale must be the same across all the weights.
const ConstTensorPin inputToOutputWeightsPin =
ConvertOperationInputToConstTensorPin(operation, 4, model, data);
// 5: The recurrent-to-input weights. A 2-D tensor of type ANEURALNETWORKS_TENSOR_QUANT8_ASYMM and shape
// [outputSize, outputSize] specifying recurrent-to-input part of weights for fully-connected layer inside
// the LSTM cell. Quantization zero point and scale must be the same across all the weights.
const ConstTensorPin recurrentToInputWeightsPin =
ConvertOperationInputToConstTensorPin(operation, 5, model, data);
// 6: The recurrent-to-forget weights. A 2-D tensor of type ANEURALNETWORKS_TENSOR_QUANT8_ASYMM and shape
// [outputSize, outputSize] specifying recurrent-to-forget part of weights for fully-connected layer inside
// the LSTM cell. Quantization zero point and scale must be the same across all the weights.
const ConstTensorPin recurrentToForgetWeightsPin =
ConvertOperationInputToConstTensorPin(operation, 6, model, data);
// 7: The recurrent-to-cell weights. A 2-D tensor of type ANEURALNETWORKS_TENSOR_QUANT8_ASYMM and shape
// [outputSize, outputSize] specifying recurrent-to-cell part of weights for fully-connected layer inside
// the LSTM cell. Quantization zero point and scale must be the same across all the weights.
const ConstTensorPin recurrentToCellWeightsPin =
ConvertOperationInputToConstTensorPin(operation, 7, model, data);
// 8: The recurrent-to-output weights. A 2-D tensor of type ANEURALNETWORKS_TENSOR_QUANT8_ASYMM and shape
// [outputSize, outputSize] specifying recurrent-to-output part of weights for fully-connected layer inside
// the LSTM cell. Quantization zero point and scale must be the same across all the weights.
const ConstTensorPin recurrentToOutputWeightsPin =
ConvertOperationInputToConstTensorPin(operation, 8, model, data);
// 9: The input gate bias. A 1-D tensor of type ANEURALNETWORKS_TENSOR_INT32 and shape [outputSize] specifying the
// bias for the fully-connected layer inside the LSTM cell. Bias is quantized with scale being a product
// of input and weights scales and zeroPoint equal to 0.
const ConstTensorPin inputGateBiasPin =
ConvertOperationInputToConstTensorPin(operation, 9, model, data);
// 10: The forget gate bias. A 1-D tensor of type ANEURALNETWORKS_TENSOR_INT32 and shape [outputSize] specifying
// the bias for the fully-connected layer inside the LSTM cell. Bias is quantized with scale being a product
// of input and weights scales and zeroPoint equal to 0.
const ConstTensorPin forgetGateBiasPin =
ConvertOperationInputToConstTensorPin(operation, 10, model, data);
// 11:The cell bias. A 1-D tensor of type ANEURALNETWORKS_TENSOR_INT32 and shape [outputSize] specifying the bias
// for the fully-connected layer inside the LSTM cell. Bias is quantized with scale being a product of input
// and weights scales and zeroPoint equal to 0.
const ConstTensorPin cellBiasPin =
ConvertOperationInputToConstTensorPin(operation, 11, model, data);
// 12:The output gate bias. A 1-D tensor of type ANEURALNETWORKS_TENSOR_INT32 and shape [outputSize] specifying
// the bias for the fully-connected layer inside the LSTM cell. Bias is quantized with scale being a product
// of input and weights scales and zeroPoint equal to 0.
const ConstTensorPin outputGateBiasPin =
ConvertOperationInputToConstTensorPin(operation, 12, model, data);
if (!inputToInputWeightsPin.IsValid() ||
!inputToForgetWeightsPin.IsValid() ||
!inputToCellWeightsPin.IsValid() ||
!inputToOutputWeightsPin.IsValid() ||
!recurrentToInputWeightsPin.IsValid() ||
!recurrentToForgetWeightsPin.IsValid() ||
!recurrentToCellWeightsPin.IsValid() ||
!recurrentToOutputWeightsPin.IsValid() ||
!inputGateBiasPin.IsValid() ||
!forgetGateBiasPin.IsValid() ||
!cellBiasPin.IsValid() ||
!outputGateBiasPin.IsValid())
{
return Fail("%s: Operation has invalid tensor inputs", __func__);
}
// Outputs:
// 0: The cell state: A 2-D tensor of type ANEURALNETWORKS_TENSOR_QUANT16_SYMM and shape [numBatches, outputSize]
// which contains a cell state from the current time step. Tensor is quantized using a quantization range
// of -2^4, 2^4 * 32767/32768.
const Operand* cellStateOut = GetOutputOperand(operation, 0, model);
if (!cellStateOut)
{
return Fail("%s: Could not read output 0: cellStateOut", __func__);
}
// 1: The output: A 2-D tensor of type ANEURALNETWORKS_TENSOR_QUANT8_ASYMM and shape [numBathes, outputSize] which
// contains the output value. Tensor is quantized with a fixed quantization range of -1, 127/128.
const Operand* output = GetOutputOperand(operation, 1, model);
if (!output)
{
return Fail("%s: Could not read output 1: output", __func__);
}
// Inputs
const TensorInfo& inputInfo = input.GetTensorInfo();
const TensorInfo& previousCellStateInInfo = previousCellStateIn.GetTensorInfo();
const TensorInfo& previousOutputInInfo = previousOutputIn.GetTensorInfo();
// Outputs
const TensorInfo& cellStateOutInfo = GetTensorInfoForOperand(*cellStateOut);
const TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
// Dynamic tensors currently not supported
if (IsDynamicTensor(cellStateOutInfo) || IsDynamicTensor(outputInfo))
{
return Fail("%s: Dynamic output tensors are not supported", __func__);
}
QuantizedLstmInputParams params;
params.m_InputToInputWeights = inputToInputWeightsPin.GetConstTensorPtr();
params.m_InputToForgetWeights = inputToForgetWeightsPin.GetConstTensorPtr();
params.m_InputToCellWeights = inputToCellWeightsPin.GetConstTensorPtr();
params.m_InputToOutputWeights = inputToOutputWeightsPin.GetConstTensorPtr();
params.m_RecurrentToInputWeights = recurrentToInputWeightsPin.GetConstTensorPtr();
params.m_RecurrentToForgetWeights = recurrentToForgetWeightsPin.GetConstTensorPtr();
params.m_RecurrentToCellWeights = recurrentToCellWeightsPin.GetConstTensorPtr();
params.m_RecurrentToOutputWeights = recurrentToOutputWeightsPin.GetConstTensorPtr();
params.m_InputGateBias = inputGateBiasPin.GetConstTensorPtr();
params.m_ForgetGateBias = forgetGateBiasPin.GetConstTensorPtr();
params.m_CellBias = cellBiasPin.GetConstTensorPtr();
params.m_OutputGateBias = outputGateBiasPin.GetConstTensorPtr();
QuantizedLstmInputParamsInfo paramsInfo;
paramsInfo.m_InputToInputWeights = &(params.m_InputToInputWeights->GetInfo());
paramsInfo.m_InputToForgetWeights = &(params.m_InputToForgetWeights->GetInfo());
paramsInfo.m_InputToCellWeights = &(params.m_InputToCellWeights->GetInfo());
paramsInfo.m_InputToOutputWeights = &(params.m_InputToOutputWeights->GetInfo());
paramsInfo.m_RecurrentToInputWeights = &(params.m_RecurrentToInputWeights->GetInfo());
paramsInfo.m_RecurrentToForgetWeights = &(params.m_RecurrentToForgetWeights->GetInfo());
paramsInfo.m_RecurrentToCellWeights = &(params.m_RecurrentToCellWeights->GetInfo());
paramsInfo.m_RecurrentToOutputWeights = &(params.m_RecurrentToOutputWeights->GetInfo());
paramsInfo.m_InputGateBias = &(params.m_InputGateBias->GetInfo());
paramsInfo.m_ForgetGateBias = &(params.m_ForgetGateBias->GetInfo());
paramsInfo.m_CellBias = &(params.m_CellBias->GetInfo());
paramsInfo.m_OutputGateBias = &(params.m_OutputGateBias->GetInfo());
bool isSupported = false;
auto validateFunc = [&](const armnn::TensorInfo& outputInfo, bool& isSupported)
{
FORWARD_LAYER_SUPPORT_FUNC(__func__,
IsQuantizedLstmSupported,
data.m_Backends,
isSupported,
inputInfo,
previousCellStateInInfo,
previousOutputInInfo,
cellStateOutInfo,
outputInfo,
paramsInfo);
};
bool isDynamic = false;
if (!IsDynamicTensor(cellStateOutInfo) &&
!IsDynamicTensor(outputInfo))
{
validateFunc(outputInfo, isSupported);
}
else
{
isDynamic = true;
isSupported = AreDynamicTensorsSupported();
}
if (!isSupported)
{
return false;
}
IConnectableLayer* const layer = data.m_Network->AddQuantizedLstmLayer(params, "QuantizedLstm");
input.Connect(layer->GetInputSlot(0));
previousCellStateIn.Connect(layer->GetInputSlot(1));
previousOutputIn.Connect(layer->GetInputSlot(2));
if (!isDynamic)
{
return (SetupAndTrackLayerOutputSlot(operation, 0, *layer, 0, model, data) &&
SetupAndTrackLayerOutputSlot(operation, 1, *layer, 1, model, data));
}
else
{
return (SetupAndTrackLayerOutputSlot(operation, 0, *layer, 0, model, data) &&
SetupAndTrackLayerOutputSlot(
operation, 1, *layer, 1, model, data, nullptr, validateFunc, ActivationFn::kActivationNone, true));
}
}
bool Converter::ConvertRank(const Operation& operation, const Model& model, ConversionData& data)
{
VLOG(DRIVER) << "Converter::ConvertRank()";
const Operand* inputOperand = GetInputOperand(operation, 0, model);
const Operand* outputOperand = GetOutputOperand(operation, 0, model);
if (inputOperand == nullptr || outputOperand == nullptr)
{
return Fail("%s: Operation has invalid inputs", __func__);
}
const Shape inputOperandShape = GetOperandShape(*inputOperand);
const Shape outputOperandShape = GetOperandShape(*outputOperand);
LayerInputHandle input = ConvertToLayerInputHandle(operation, 0, model, data);
if (!input.IsValid())
{
return Fail("%s: Could not read input 0", __func__);
}
armnn::TensorInfo outInfo = GetTensorInfoForOperand(*outputOperand);
if (IsDynamicTensor(outInfo))
{
return Fail("%s: Dynamic output tensors are not supported", __func__);
}
bool isSupported = false;
FORWARD_LAYER_SUPPORT_FUNC(__func__,
IsRankSupported,
data.m_Backends,
isSupported,
input.GetTensorInfo(),
outInfo);
if (!isSupported)
{
return false;
}
armnn::IConnectableLayer* layer = data.m_Network->AddRankLayer();
assert(layer != nullptr);
input.Connect(layer->GetInputSlot(0));
return SetupAndTrackLayerOutputSlot(operation, 0, *layer, model, data, &outInfo);
}
bool Converter::ConvertReLu(const Operation& operation, const Model& model, ConversionData& data)
{
VLOG(DRIVER) << "Converter::ConvertReLu()";
armnn::ActivationDescriptor desc;
desc.m_Function = armnn::ActivationFunction::ReLu;
LayerInputHandle input = ConvertToLayerInputHandle(operation, 0, model, data);
if (!input.IsValid())
{
return Fail("%s: Input 0 is invalid", "operationName");
}
const Operand* outputOperand = GetOutputOperand(operation, 0, model);
if (!outputOperand)
{
return false;
}
const armnn::TensorInfo& outInfo = GetTensorInfoForOperand(*outputOperand);
bool isSupported = false;
auto validateFunc = [&](const armnn::TensorInfo& outInfo, bool& isSupported)
{
FORWARD_LAYER_SUPPORT_FUNC(__func__,
IsActivationSupported,
data.m_Backends,
isSupported,
input.GetTensorInfo(),
outInfo,
desc);
};
if(IsDynamicTensor(outInfo))
{
isSupported = AreDynamicTensorsSupported();
}
else
{
validateFunc(outInfo, isSupported);
}
if (!isSupported)
{
return false;
}
armnn::IConnectableLayer* layer = data.m_Network->AddActivationLayer(desc);
ARMNN_ASSERT(layer != nullptr);
input.Connect(layer->GetInputSlot(0));
return SetupAndTrackLayerOutputSlot(operation, 0, *layer, model, data, nullptr, validateFunc);
}
bool Converter::ConvertReLu1(const Operation& operation, const Model& model, ConversionData& data)
{
VLOG(DRIVER) << "Converter::ConvertReLu1()";
armnn::ActivationDescriptor desc;
desc.m_Function = armnn::ActivationFunction::BoundedReLu;
desc.m_A = 1.0f;
desc.m_B = -1.0f;
return ConvertToActivation(operation, __func__, desc, model, data);
}
bool Converter::ConvertReLu6(const Operation& operation, const Model& model, ConversionData& data)
{
VLOG(DRIVER) << "Converter::ConvertReLu6()";
armnn::ActivationDescriptor desc;
desc.m_Function = armnn::ActivationFunction::BoundedReLu;
desc.m_A = 6.0f;
return ConvertToActivation(operation, __func__, desc, model, data);
}
bool Converter::ConvertReshape(const Operation& operation, const Model& model, ConversionData& data)
{
VLOG(DRIVER) << "Converter::ConvertReshape()";
const Operand* inputOperand = GetInputOperand(operation, 0, model);
const Operand* requestedShapeOperand = GetInputOperand(operation, 1, model);
const Operand* outputOperand = GetOutputOperand(operation, 0, model);
if (inputOperand == nullptr
|| requestedShapeOperand == nullptr
|| outputOperand == nullptr)
{
return Fail("%s: Operation has invalid inputs", __func__);
}
if (requestedShapeOperand->dimensions.size() != 1)
{
return Fail("%s: Input 1 expected to be one-dimensional (found %i dimensions)",
__func__, requestedShapeOperand->dimensions.size());
}
std::vector<int32_t> targetDimensions;
if (!GetTensorInt32Values(*requestedShapeOperand, targetDimensions, model, data))
{
return Fail("%s: Could not read values of input 1", __func__);
}
const Shape inputOperandShape = GetOperandShape(*inputOperand);
Shape requestedShape;
// targetDimensions may contain special values (e.g. -1). reshapePrepare() is an AndroidNN provided utility
// function that resolves these values into a fully specified tensor shape.
if (!reshapePrepare(inputOperandShape, targetDimensions.data(), targetDimensions.size(), &requestedShape))
{
return Fail("%s: Failed to resolve the requested shape", __func__);
}
LayerInputHandle input = ConvertToLayerInputHandle(operation, 0, model, data);
if (!input.IsValid())
{
return Fail("%s: Could not read input 0", __func__);
}
armnn::ReshapeDescriptor reshapeDescriptor;
reshapeDescriptor.m_TargetShape = armnn::TensorShape(requestedShape.dimensions.size(),
requestedShape.dimensions.data());
const armnn::TensorInfo& outputInfo = GetTensorInfoForOperand(*outputOperand);
bool isSupported = false;
auto validateFunc = [&](const armnn::TensorInfo& outputInfo, bool& isSupported)
{
FORWARD_LAYER_SUPPORT_FUNC(__func__,
IsReshapeSupported,
data.m_Backends,
isSupported,
input.GetTensorInfo(),
outputInfo,
reshapeDescriptor);
};
if(!IsDynamicTensor(outputInfo))
{
validateFunc(outputInfo, isSupported);
}
else
{
isSupported = AreDynamicTensorsSupported();
}
if (!isSupported)
{
return false;
}
armnn::IConnectableLayer* layer = data.m_Network->AddReshapeLayer(reshapeDescriptor);
assert(layer != nullptr);
input.Connect(layer->GetInputSlot(0));
return SetupAndTrackLayerOutputSlot(operation, 0, *layer, model, data, nullptr, validateFunc);
}
bool Converter::ConvertResize(const Operation& operation,
const Model& model,
ConversionData& data,
ResizeMethod resizeMethod)
{
VLOG(DRIVER) << "Converter::ConvertResize()";
VLOG(DRIVER) << "resizeMethod = " << GetResizeMethodAsCString(resizeMethod);
LayerInputHandle input = ConvertToLayerInputHandle(operation, 0, model, data);
if (!input.IsValid())
{
return Fail("%s: Could not read input 0", __func__);
}
const Operand* output = GetOutputOperand(operation, 0, model);
if (!output)
{
return Fail("%s: Could not read output 0", __func__);
}
const TensorInfo& inputInfo = input.GetTensorInfo();
const TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
ResizeDescriptor descriptor;
descriptor.m_Method = resizeMethod;
descriptor.m_DataLayout = OptionalDataLayout(operation, 3, model, data);
OperandType operandType1;
OperandType operandType2;
if (!GetOperandType(operation, 1, model, operandType1) ||
!GetOperandType(operation, 2, model, operandType2))
{
return Fail("%s: Operation has invalid inputs", __func__);
}
if (operandType1 != operandType2)
{
return Fail("%s: Operation has invalid inputs. Type of input 1 and 2 should be the same", __func__);
}
if (operandType1 == OperandType::INT32)
{
// Case 1: resizing by shape
int32_t targetWidth = 0;
int32_t targetHeight = 0;
if (!GetInputInt32(operation, 1, targetWidth, model, data) ||
!GetInputInt32(operation, 2, targetHeight, model, data))
{
return Fail("%s: Operation has invalid inputs for resizing by shape", __func__);
}
if (targetWidth < 0 || targetHeight < 0)
{
return Fail("%s: Operation has invalid inputs for resizing by shape. "
"Target width/height cannot be < 0", __func__);
}
descriptor.m_TargetWidth = static_cast<uint32_t>(targetWidth);
descriptor.m_TargetHeight = static_cast<uint32_t>(targetHeight);
}
else if (operandType1 == OperandType::FLOAT32)
{
// Case 2: resizing by scale
float widthScale = 1.0f;
float heightScale = 1.0f;
if (!GetInputFloat32(operation, 1, widthScale, model, data) ||
!GetInputFloat32(operation, 2, heightScale, model, data))
{
return Fail("%s: Operation has invalid inputs for resizing by scale", __func__);
}
const TensorShape& inputShape = inputInfo.GetShape();
armnnUtils::DataLayoutIndexed dataLayoutIndexed(descriptor.m_DataLayout);
float width = inputShape[dataLayoutIndexed.GetWidthIndex()];
float height = inputShape[dataLayoutIndexed.GetHeightIndex()];
descriptor.m_TargetWidth = std::floor(width * widthScale);
descriptor.m_TargetHeight = std::floor(height * heightScale);
}
else if (operandType1 == OperandType::FLOAT16)
{
Half widthScale;
Half heightScale;
if (!GetInputScalar(operation, 1, OperandType::FLOAT16, widthScale, model, data) ||
!GetInputScalar(operation, 2, OperandType::FLOAT16, heightScale, model, data))
{
return Fail("%s: Operation has invalid inputs for resizing by scale", __func__);
}
const TensorShape& inputShape = inputInfo.GetShape();
armnnUtils::DataLayoutIndexed dataLayoutIndexed(descriptor.m_DataLayout);
Half width = static_cast<Half>(inputShape[dataLayoutIndexed.GetWidthIndex()]);
Half height = static_cast<Half>(inputShape[dataLayoutIndexed.GetHeightIndex()]);
descriptor.m_TargetWidth = std::floor(width * widthScale);
descriptor.m_TargetHeight = std::floor(height * heightScale);
}
else
{
return Fail("%s: Operand has invalid data type for resizing by scale", __func__);
}
descriptor.m_AlignCorners = GetOptionalBool(operation, 4, model, data);
descriptor.m_HalfPixelCenters = GetOptionalBool(operation, 5, model, data);
bool isSupported = false;
auto validateFunc = [&](const armnn::TensorInfo& outputInfo, bool& isSupported)
{
FORWARD_LAYER_SUPPORT_FUNC(__func__,
IsResizeSupported,
data.m_Backends,
isSupported,
inputInfo,
outputInfo,
descriptor);
};
if(IsDynamicTensor(outputInfo))
{
isSupported = AreDynamicTensorsSupported();
}
else
{
validateFunc(outputInfo, isSupported);
}
if (!isSupported)
{
return false;
}
IConnectableLayer* layer = data.m_Network->AddResizeLayer(descriptor);
assert(layer != nullptr);
input.Connect(layer->GetInputSlot(0));
return SetupAndTrackLayerOutputSlot(operation, 0, *layer, model, data, nullptr, validateFunc);
}
bool Converter::ConvertSpaceToBatchNd(const Operation& operation, const Model& model, ConversionData& data)
{
VLOG(DRIVER) << "Converter::ConvertSpaceToBatchNd()";
LayerInputHandle input = ConvertToLayerInputHandle(operation, 0, model, data);
if(!input.IsValid())
{
return Fail("%s: Operation has invalid inputs", __func__);
}
const armnn::TensorInfo &inputInfo = input.GetTensorInfo();
unsigned int rank = inputInfo.GetNumDimensions();
unsigned int spatialDim = rank - 2;
if(rank != 4)
{
Fail("%s: Only inputs with rank 4 are supported", __func__);
}
const Operand *output = GetOutputOperand(operation, 0, model);
if(!output)
{
return Fail("%s: Could not read output 0", __func__);
}
const armnn::TensorInfo &outputInfo = GetTensorInfoForOperand(*output);
const Operand *blockShapeOperand = GetInputOperand(operation, 1, model);
const Operand *paddingsOperand = GetInputOperand(operation, 2, model);
armnn::TensorShape blockShapeOperandShape = GetTensorShapeForOperand(*blockShapeOperand);
if(blockShapeOperandShape.GetNumDimensions() != 1 || blockShapeOperandShape.GetNumElements() != spatialDim)
{
return Fail("%s: Operation has invalid block shape operand: expected shape [%d]", __func__, spatialDim);
}
std::vector<int32_t> blockShape;
if(!GetTensorInt32Values(*blockShapeOperand, blockShape, model, data))
{
return Fail("%s: Operation has an invalid or unsupported block size operand", __func__);
}
if(std::any_of(blockShape.cbegin(), blockShape.cend(), [](int32_t i)
{ return i < 1; }))
{
return Fail("%s: Block shape must be at least 1 in all dimensions.", __func__);
}
armnn::TensorShape paddingsOperandShape = GetTensorShapeForOperand(*paddingsOperand);
if(paddingsOperandShape.GetNumDimensions() != 2 || paddingsOperandShape.GetNumElements() != 2 * spatialDim)
{
return Fail("%s: Operation has invalid paddings operand: expected shape [%d, 2]", __func__, spatialDim);
}
std::vector<std::pair<unsigned int, unsigned int>> paddingList;
std::vector<int32_t> paddings;
if(!GetTensorInt32Values(*paddingsOperand, paddings, model, data))
{
return Fail("%s: Operation has an invalid or unsupported paddings operand", __func__);
}
for (unsigned int i = 0; i < paddings.size() - 1; i += 2)
{
int paddingBeforeInput = paddings[i];
int paddingAfterInput = paddings[i + 1];
if(paddingBeforeInput < 0 || paddingAfterInput < 0)
{
return Fail("%s: Operation has invalid paddings operand, invalid padding values.", __func__);
}
paddingList.emplace_back((unsigned int) paddingBeforeInput, (unsigned int) paddingAfterInput);
}
armnn::SpaceToBatchNdDescriptor descriptor;
descriptor.m_DataLayout = armnn::DataLayout::NHWC;
descriptor.m_BlockShape.assign(blockShape.cbegin(), blockShape.cend());
descriptor.m_PadList.assign(paddingList.cbegin(), paddingList.cend());
if(Is12OrLaterOperand(*output))
{
descriptor.m_DataLayout = OptionalDataLayout(operation, 3, model, data);
}
bool isSupported = false;
auto validateFunc = [&](const armnn::TensorInfo &outputInfo, bool &isSupported)
{
FORWARD_LAYER_SUPPORT_FUNC(__func__,
IsSpaceToBatchNdSupported,
data.m_Backends,
isSupported,
inputInfo,
outputInfo,
descriptor);
};
if(IsDynamicTensor(outputInfo))
{
isSupported = AreDynamicTensorsSupported();
} else
{
validateFunc(outputInfo, isSupported);
}
if(!isSupported)
{
return false;
}
armnn::IConnectableLayer *const layer = data.m_Network->AddSpaceToBatchNdLayer(descriptor);
assert(layer != nullptr);
input.Connect(layer->GetInputSlot(0));
return SetupAndTrackLayerOutputSlot(operation, 0, *layer, model, data, nullptr, validateFunc);
}
bool Converter::ConvertSpaceToDepth(const Operation& operation, const Model& model, ConversionData& data)
{
VLOG(DRIVER) << "Converter::ConvertSpaceToDepth()";
LayerInputHandle input = ConvertToLayerInputHandle(operation, 0, model, data);
if (!input.IsValid() )
{
return Fail("%s: Operation has invalid inputs", __func__);
}
const TensorInfo& inputInfo = input.GetTensorInfo();
unsigned int rank = inputInfo.GetNumDimensions();
if (rank != 4)
{
return Fail("%s: Only inputs with rank 4 are supported", __func__);
}
const Operand* output = GetOutputOperand(operation, 0, model);
if (!output)
{
return Fail("%s: Could not read output 0", __func__);
}
const TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
SpaceToDepthDescriptor desc;
GetInputScalar(operation, 1, OperandType::INT32, desc.m_BlockSize, model, data);
if (desc.m_BlockSize <= 1)
{
return Fail("%s: Block size must be at least 1 in all dimensions");
}
desc.m_DataLayout = OptionalDataLayout(operation, 2, model, data);
bool isSupported = false;
auto validateFunc = [&](const armnn::TensorInfo& outputInfo, bool& isSupported)
{
FORWARD_LAYER_SUPPORT_FUNC(__func__,
IsSpaceToDepthSupported,
data.m_Backends,
isSupported,
inputInfo,
outputInfo,
desc);
};
if(IsDynamicTensor(outputInfo))
{
isSupported = AreDynamicTensorsSupported();
}
else
{
validateFunc(outputInfo, isSupported);
}
if (!isSupported)
{
return false;
}
IConnectableLayer* const layer = data.m_Network->AddSpaceToDepthLayer(desc);
assert(layer != nullptr);
input.Connect(layer->GetInputSlot(0));
return SetupAndTrackLayerOutputSlot(operation, 0, *layer, model, data, nullptr, validateFunc);
}
bool Converter::ConvertSoftmax(const Operation& operation, const Model& model, ConversionData& data)
{
VLOG(DRIVER) << "Converter::ConvertSoftmax()";
LayerInputHandle input = ConvertToLayerInputHandle(operation, 0, model, data);
if (!input.IsValid())
{
return Fail("%s: Operation has invalid inputs", __func__);
}
const Operand* outputOperand = GetOutputOperand(operation, 0, model);
if (!outputOperand)
{
return Fail("%s: Operation has no outputs", __func__);
}
const TensorInfo& outputInfo = GetTensorInfoForOperand(*outputOperand);
SoftmaxDescriptor desc;
OperandType outputType = outputOperand->type;
// Read beta value
if (outputType == OperandType::TENSOR_FLOAT16)
{
Half value;
if (!GetInputScalar(operation, 1, OperandType::FLOAT16, value, model, data))
{
return Fail("%s: Operation has invalid inputs %d", __func__, outputType);
}
desc.m_Beta = static_cast<float>(value);
}
else
{
if (!GetInputFloat32(operation, 1, desc.m_Beta, model, data))
{
return Fail("%s: Operation has invalid inputs %d", __func__, outputType);
}
}
if (operation.inputs.size() > 2 && !GetInputScalar(operation,
2,
OperandType::INT32,
desc.m_Axis,
model,
data))
{
return Fail("%s: Operation has invalid inputs", __func__);
}
bool isSupported = false;
auto validateFunc = [&](const armnn::TensorInfo& outputInfo, bool& isSupported)
{
FORWARD_LAYER_SUPPORT_FUNC(__func__,
IsSoftmaxSupported,
data.m_Backends,
isSupported,
input.GetTensorInfo(),
outputInfo,
desc);
};
if(IsDynamicTensor(outputInfo))
{
isSupported = AreDynamicTensorsSupported();
}
else
{
validateFunc(outputInfo, isSupported);
}
if (!isSupported)
{
return false;
}
IConnectableLayer* layer = data.m_Network->AddSoftmaxLayer(desc);
assert(layer != nullptr);
input.Connect(layer->GetInputSlot(0));
return SetupAndTrackLayerOutputSlot(operation, 0, *layer, model, data, nullptr, validateFunc);
}
bool Converter::ConvertSub(const Operation& operation, const Model& model, ConversionData& data)
{
VLOG(DRIVER) << "Converter::ConvertSub()";
LayerInputHandle input0 = ConvertToLayerInputHandle(operation, 0, model, data);
LayerInputHandle input1 = ConvertToLayerInputHandle(operation, 1, model, data);
if (!input0.IsValid() || !input1.IsValid())
{
return Fail("%s: Operation has invalid inputs", __func__);
}
// The FuseActivation parameter is always the input index 2
// and it should be optional
ActivationFn activationFunction;
if (!GetOptionalInputActivation(operation, 2, activationFunction, model, data))
{
return Fail("%s: Operation has invalid inputs", __func__);
}
const Operand* output = GetOutputOperand(operation, 0, model);
if (!output)
{
return Fail("%s: Could not read output 0", __func__);
}
const armnn::TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
bool isSupported = false;
auto validateFunc = [&](const armnn::TensorInfo& outputInfo, bool& isSupported)
{
FORWARD_LAYER_SUPPORT_FUNC(__func__,
IsSubtractionSupported,
data.m_Backends,
isSupported,
input0.GetTensorInfo(),
input1.GetTensorInfo(),
outputInfo);
};
if(IsDynamicTensor(outputInfo))
{
isSupported = AreDynamicTensorsSupported();
}
else
{
validateFunc(outputInfo, isSupported);
}
if (!isSupported)
{
return false;
}
armnn::IConnectableLayer* const startLayer = data.m_Network->AddSubtractionLayer();
bool isReshapeSupported = BroadcastTensor(input0, input1, startLayer, data);
if (!isReshapeSupported)
{
return false;
}
return SetupAndTrackLayerOutputSlot(operation, 0, *startLayer, model,
data, nullptr, validateFunc, activationFunction);
}
bool Converter::ConvertTanH(const Operation& operation, const Model& model, ConversionData& data)
{
VLOG(DRIVER) << "Converter::ConvertTanH()";
armnn::ActivationDescriptor desc;
desc.m_Function = armnn::ActivationFunction::TanH;
desc.m_A = 1.0f; // android nn does not support tanH parameters
desc.m_B = 1.0f; // set to 1.0f for unity scaling
return ConvertToActivation(operation, __func__, desc, model, data);
}
bool Converter::ConvertTransposeConv2d(const Operation& operation, const Model& model, ConversionData& data)
{
VLOG(DRIVER) << "Converter::ConvertTransposeConv2d()";
LayerInputHandle input = ConvertToLayerInputHandle(operation, 0, model, data);
if (!input.IsValid())
{
return Fail("%s: Operation has invalid inputs", __func__);
}
const Operand* output = GetOutputOperand(operation, 0, model);
if (!output)
{
return Fail("%s: Could not read output 0", __func__);
}
const TensorInfo& inputInfo = input.GetTensorInfo();
const TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
// ArmNN does not currently support non-fixed weights or bias
// Find the shape of the weights tensor. In AndroidNN this will be [ 1, H, W, I * M ]
const Operand* weightsOperand = GetInputOperand(operation, 1, model);
if (weightsOperand == nullptr)
{
return Fail("%s: Operand is invalid", __func__);
}
TransposeConvolution2dDescriptor desc;
desc.m_DataLayout = DataLayout::NHWC;
// Determine whether padding is implicit or explicit
bool implicitPadding = operation.inputs.size() == 9;
if (implicitPadding )
{
desc.m_DataLayout = OptionalDataLayout(operation, 8, model, data);
}
else
{
desc.m_DataLayout = OptionalDataLayout(operation, 10, model, data);
}
armnnUtils::DataLayoutIndexed dataLayoutIndexed(desc.m_DataLayout);
unsigned int widthIndex = dataLayoutIndexed.GetWidthIndex();
unsigned int heightIndex = dataLayoutIndexed.GetHeightIndex();
const PermutationVector OHWIToOIHW = {0, 2, 3, 1};
// The shape of the weight is [depth_out, filter_height, filter_width, depth_in].
// We have to permute it to OIHW if the data layout is NCHW.
const ConstTensorPin weightsPin = (desc.m_DataLayout == DataLayout::NCHW) ?
ConvertOperationInputToConstTensorPin(operation, 1,
model, data, OHWIToOIHW) :
ConvertOperationInputToConstTensorPin(operation, 1, model, data);
// Bias is a 1D tensor
const ConstTensorPin biasPin =
ConvertOperationInputToConstTensorPin(operation, 2, model, data);
if (!weightsPin.IsValid())
{
return Fail("%s: Operation has invalid weights", __func__);
}
if (!biasPin.IsValid())
{
return Fail("%s: Operation has invalid biases", __func__);
}
ConstTensor weights = weightsPin.GetConstTensor();
ConstTensor bias = biasPin.GetConstTensor();
SanitizeBiasQuantizationScale(bias.GetInfo(), weights.GetInfo(), inputInfo);
ActivationFn activation;
if (implicitPadding)
{
int32_t strideX{0};
int32_t strideY{0};
int32_t padLeft{0};
int32_t padRight{0};
int32_t padTop{0};
int32_t padBottom{0};
::android::nn::PaddingScheme paddingScheme;
if (!GetInputPaddingScheme(operation, 4, paddingScheme, model, data) ||
!GetInputScalar(operation, 5, OperandType::INT32, strideX, model, data) ||
!GetInputScalar(operation, 6, OperandType::INT32, strideY, model, data) ||
!GetInputActivationFunction(operation, 7, activation, model, data))
{
return Fail("%s: Operation has invalid inputs (implicit padding)", __func__);
}
const uint32_t kernelX = weights.GetShape()[widthIndex];
const uint32_t kernelY = weights.GetShape()[heightIndex];
// If output shape has been specified as a parameter then extract it and make it available.
const Operand* outputShapeOperand = GetInputOperand(operation, 3, model, false);
std::vector<int32_t> outputShape;
if ((outputShapeOperand) && (GetTensorInt32Values(*outputShapeOperand, outputShape, model, data)))
{
// Change from signed to unsigned int to store in TransposeConvolution2dDescriptor.
for (int dimension : outputShape)
{
desc.m_OutputShape.push_back(static_cast<unsigned int>(dimension));
}
desc.m_OutputShapeEnabled = true;
}
uint32_t outputX;
uint32_t outputY;
if (IsDynamicTensor(outputInfo))
{
if (outputShape.size() == 0)
{
return Fail("%s: Padding sizes cannot be inferred", __func__);
}
outputX = outputShape[widthIndex];
outputY = outputShape[heightIndex];
}
else
{
outputX = outputInfo.GetShape()[widthIndex];
outputY = outputInfo.GetShape()[heightIndex];
}
CalcPaddingTransposeConv(outputX, kernelX, strideX, padLeft, padRight, paddingScheme);
CalcPaddingTransposeConv(outputY, kernelY, strideY, padTop, padBottom, paddingScheme);
// NOTE: The Android NN API allows for negative padding values in TransposeConv2d,
// but Arm NN only supports values >= 0
if (padLeft < 0 || padRight < 0 || padTop < 0 || padBottom < 0)
{
return Fail("%s: Negative padding values are not supported", __func__);
}
desc.m_StrideX = armnn::numeric_cast<uint32_t>(strideX);
desc.m_StrideY = armnn::numeric_cast<uint32_t>(strideY);
desc.m_PadLeft = armnn::numeric_cast<uint32_t>(padLeft);
desc.m_PadRight = armnn::numeric_cast<uint32_t>(padRight);
desc.m_PadTop = armnn::numeric_cast<uint32_t>(padTop);
desc.m_PadBottom = armnn::numeric_cast<uint32_t>(padBottom);
}
else if (operation.inputs.size() == 11)
{
// explicit padding
if (!GetInputScalar(operation, 3, OperandType::INT32, desc.m_PadLeft, model, data) ||
!GetInputScalar(operation, 4, OperandType::INT32, desc.m_PadRight, model, data) ||
!GetInputScalar(operation, 5, OperandType::INT32, desc.m_PadTop, model, data) ||
!GetInputScalar(operation, 6, OperandType::INT32, desc.m_PadBottom, model, data) ||
!GetInputScalar(operation, 7, OperandType::INT32, desc.m_StrideX, model, data) ||
!GetInputScalar(operation, 8, OperandType::INT32, desc.m_StrideY, model, data) ||
!GetInputActivationFunction(operation, 9, activation, model, data))
{
return Fail("%s: Operation has invalid inputs (explicit padding)", __func__);
}
}
else
{
return Fail("%s: Unsupported number of operation inputs", __func__);
}
desc.m_BiasEnabled = true;
Optional<TensorInfo> biases(bias.GetInfo());
bool isSupported = false;
auto validateFunc = [&](const armnn::TensorInfo& outputInfo, bool& isSupported)
{
FORWARD_LAYER_SUPPORT_FUNC(__func__,
IsTransposeConvolution2dSupported,
data.m_Backends,
isSupported,
inputInfo,
outputInfo,
desc,
weights.GetInfo(),
biases);
};
if(IsDynamicTensor(outputInfo))
{
isSupported = AreDynamicTensorsSupported();
}
else
{
validateFunc(outputInfo, isSupported);
}
if (!isSupported)
{
return false;
}
IConnectableLayer* startLayer =
data.m_Network->AddTransposeConvolution2dLayer(desc, weights, Optional<ConstTensor>(bias));
if (!startLayer)
{
return Fail("%s: AddTransposeConvolution2dLayer failed", __func__);
}
input.Connect(startLayer->GetInputSlot(0));
return SetupAndTrackLayerOutputSlot(operation, 0, *startLayer, model,
data, nullptr, validateFunc, activation);
}
bool Converter::ConvertSqrt(const Operation& operation, const Model& model, ConversionData& data)
{
VLOG(DRIVER) << "Converter::ConvertSqrt()";
ActivationDescriptor desc;
desc.m_Function = ActivationFunction::Sqrt;
return ::ConvertToActivation(operation, __func__, desc, model, data);
}
bool Converter::ConvertSqueeze(const Operation& operation, const Model& model, ConversionData& data)
{
VLOG(DRIVER) << "Converter::ConvertSqueeze()";
LayerInputHandle input = ConvertToLayerInputHandle(operation, 0, model, data);
if (!input.IsValid())
{
return Fail("%s: Operation has invalid inputs", __func__);
}
const armnn::TensorInfo& inputInfo = input.GetTensorInfo();
unsigned int rank = inputInfo.GetNumDimensions();
if (rank > 4)
{
Fail("%s: Inputs with rank greater than 4 are not supported", __func__);
}
const Operand* output = GetOutputOperand(operation, 0, model);
if (!output)
{
return Fail("%s: Could not read output 0", __func__);
}
if (IsDynamicTensor(GetTensorInfoForOperand(*output)) && !(AreDynamicTensorsSupported()))
{
return Fail("%s: Dynamic output tensors are not supported", __func__);
}
// NOTE: Axis is an optional parameter to SQUEEZE, therefore we do not want to generate a failure
// if the operand index is out of bounds.
const Operand* axisOperand = GetInputOperand(operation, 1, model, false);
const uint32_t dimensionSequence[] = { 0, 1, 2, 3 };
std::vector<int32_t> axis;
if (!axisOperand)
{
axis.assign(dimensionSequence,
dimensionSequence + rank);
}
else if (!GetTensorInt32Values(*axisOperand, axis, model, data))
{
return Fail("%s: Operation has an invalid or unsupported axis operand", __func__);
}
std::vector<uint32_t> outputDims;
for (unsigned int i = 0; i < rank; i++)
{
bool skipSqueeze = (std::find(axis.begin(), axis.end(), i) == axis.end());
auto currentDimension = inputInfo.GetShape()[i];
if (skipSqueeze || currentDimension != 1)
{
outputDims.push_back(currentDimension);
}
}
armnn::TensorShape outShape = armnn::TensorShape(outputDims.size(), outputDims.data());
armnn::TensorInfo outputInfo = inputInfo;
outputInfo.SetShape(outShape);
armnn::ReshapeDescriptor reshapeDesc;
reshapeDesc.m_TargetShape = outputInfo.GetShape();
bool isSupported = false;
FORWARD_LAYER_SUPPORT_FUNC(__func__,
IsReshapeSupported,
data.m_Backends,
isSupported,
inputInfo,
outputInfo,
reshapeDesc);
if (!isSupported)
{
return false;
}
armnn::IConnectableLayer* const layer = data.m_Network->AddReshapeLayer(reshapeDesc);
assert(layer != nullptr);
input.Connect(layer->GetInputSlot(0));
return SetupAndTrackLayerOutputSlot(operation, 0, *layer, model, data);
}
bool Converter::ConvertStridedSlice(const Operation& operation, const Model& model, ConversionData& data)
{
VLOG(DRIVER) << "Converter::ConvertStridedSlice()";
LayerInputHandle input = ConvertToLayerInputHandle(operation, 0, model, data);
if (!input.IsValid())
{
return Fail("%s: Operation has invalid inputs", __func__);
}
const armnn::TensorInfo& inputInfo = input.GetTensorInfo();
unsigned int rank = inputInfo.GetNumDimensions();
if (rank > 4)
{
Fail("%s: Inputs with rank greater than 4 are not supported", __func__);
}
const Operand* output = GetOutputOperand(operation, 0, model);
if (!output)
{
return Fail("%s: Could not read output 0", __func__);
}
const armnn::TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
const Operand* beginOperand = GetInputOperand(operation, 1, model);
const Operand* endOperand = GetInputOperand(operation, 2, model);
const Operand* stridesOperand = GetInputOperand(operation, 3, model);
std::vector<int32_t> beginValues;
std::vector<int32_t> endValues;
std::vector<int32_t> stridesValues;
// The length of the beginOperand, endOperand and stridesOperand must be of a rank(input)
auto ValidateInputOperands = [&] (const Operand& operand, std::vector<int32_t>& operandValues)
{
if (!GetTensorInt32Values(operand, operandValues, model, data))
{
return false;
}
if (operandValues.size() != rank)
{
return false;
}
return true;
};
if (!ValidateInputOperands(*beginOperand, beginValues)
|| !ValidateInputOperands(*endOperand, endValues)
|| !ValidateInputOperands(*stridesOperand, stridesValues))
{
return Fail("%s: Operation has invalid input operand", __func__);
}
// Stride cannot have value '0'
if (std::any_of(stridesValues.cbegin(), stridesValues.cend(), [](int32_t i){ return i == 0; }))
{
return Fail("%s: Stride must be non-zero value.", __func__);
}
armnn::StridedSliceDescriptor descriptor;
descriptor.m_Begin.assign(beginValues.cbegin(), beginValues.cend());
descriptor.m_End.assign(endValues.cbegin(), endValues.cend());
descriptor.m_Stride.assign(stridesValues.cbegin(), stridesValues.cend());
descriptor.m_DataLayout = armnn::DataLayout::NHWC;
// Get the "begin_mask", "end_mask", and "shrink_axis_mask" flags
if (!GetInputInt32(operation, 4, descriptor.m_BeginMask, model, data) ||
!GetInputInt32(operation, 5, descriptor.m_EndMask, model, data) ||
!GetInputInt32(operation, 6, descriptor.m_ShrinkAxisMask, model, data))
{
return Fail("%s: Operation has invalid inputs", __func__);
}
bool isSupported = false;
auto validateFunc = [&](const armnn::TensorInfo& outputInfo, bool& isSupported)
{
FORWARD_LAYER_SUPPORT_FUNC(__func__,
IsStridedSliceSupported,
data.m_Backends,
isSupported,
inputInfo,
outputInfo,
descriptor);
};
if(IsDynamicTensor(outputInfo))
{
isSupported = AreDynamicTensorsSupported();
}
else
{
validateFunc(outputInfo, isSupported);
}
if (!isSupported)
{
return false;
}
// Check if slice can fit in a inferred output
armnn::TensorShape inputShape = inputInfo.GetShape();
for (unsigned int i = 0; i < inputShape.GetNumDimensions(); i++)
{
int stride = descriptor.m_Stride[i];
if (descriptor.m_ShrinkAxisMask & (1 << i))
{
// If the difference between the start point and the end point of the slice on an axis being shrunk
// is greater than 1 then throw an error as the output will not be large enough to hold the slice
if (((descriptor.m_Begin[i] - descriptor.m_End[i]) > 1)
|| ((descriptor.m_Begin[i] - descriptor.m_End[i]) < -1))
{
return Fail("%s: StridedSlice: Output will not be large enough to hold the slice", __func__);
}
if(stride < 0)
{
return Fail("%s: StridedSlice: Stride can not be negative while ShrinkAxisMask is set.", __func__);
}
}
}
armnn::IConnectableLayer* const layer = data.m_Network->AddStridedSliceLayer(descriptor);
assert(layer != nullptr);
input.Connect(layer->GetInputSlot(0));
return SetupAndTrackLayerOutputSlot(operation, 0, *layer, model, data, nullptr, validateFunc);
}
bool Converter::ConvertTranspose(const Operation& operation, const Model& model, ConversionData& data)
{
VLOG(DRIVER) << "Converter::ConvertTranspose()";
LayerInputHandle input = ConvertToLayerInputHandle(operation, 0, model, data);
if (!input.IsValid())
{
return Fail("%s: Operation has invalid inputs", __func__);
}
const armnn::TensorInfo& inputInfo = input.GetTensorInfo();
unsigned int rank = inputInfo.GetNumDimensions();
if (rank > 4)
{
Fail("%s: Inputs with rank greater than 4 are not supported", __func__);
}
// NOTE: Axis is an optional parameter to TRANSPOSE, therefore we do not want to generate a failure
// if the operand index is out of bounds.
const Operand* permOperand = GetInputOperand(operation, 1, model, false);
std::vector<int32_t> perm(rank);
if (!permOperand || (permOperand->lifetime == OperandLifeTime::NO_VALUE))
{
for (unsigned int i = rank; i > 0; i--)
{
perm[rank - i] = armnn::numeric_cast<int> (i - 1);
}
}
else if (!GetTensorInt32Values(*permOperand, perm, model, data))
{
return Fail("%s: Operation has an invalid or unsupported permutation operand", __func__);
}
std::vector<uint32_t> outputDims(perm.begin(), perm.begin() + rank);
armnn::TransposeDescriptor transposeDesc;
transposeDesc.m_DimMappings = armnn::PermutationVector(outputDims.data(), outputDims.size());
const Operand* output = GetOutputOperand(operation, 0, model);
if (!output)
{
return Fail("%s: Could not read output 0", __func__);
}
const armnn::TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
bool isSupported = false;
auto validateFunc = [&](const armnn::TensorInfo& outputInfo, bool& isSupported)
{
FORWARD_LAYER_SUPPORT_FUNC(__func__,
IsTransposeSupported,
data.m_Backends,
isSupported,
inputInfo,
outputInfo,
transposeDesc);
};
if(IsDynamicTensor(outputInfo))
{
isSupported = AreDynamicTensorsSupported();
}
else
{
validateFunc(outputInfo, isSupported);
}
if (!isSupported)
{
return false;
}
armnn::IConnectableLayer* const layer = data.m_Network->AddTransposeLayer(transposeDesc);
assert(layer != nullptr);
input.Connect(layer->GetInputSlot(0));
return SetupAndTrackLayerOutputSlot(operation, 0, *layer, model, data, nullptr, validateFunc);
}
} // namespace armnn_driver