blob: 2c2908371928417b49c981b85abd276f08a37350 [file] [log] [blame]
//
// Copyright © 2022-2023 Arm Ltd and Contributors. All rights reserved.
// SPDX-License-Identifier: MIT
//
#pragma once
#include <ClassicDelegateUtils.hpp>
#include <tensorflow/lite/builtin_ops.h>
#include <tensorflow/lite/c/builtin_op_data.h>
#include <tensorflow/lite/c/common.h>
#include <tensorflow/lite/minimal_logging.h>
namespace armnnDelegate
{
TfLiteStatus VisitCastOperator(DelegateData& delegateData,
TfLiteContext* tfLiteContext,
TfLiteNode* tfLiteNode,
int nodeIndex,
int32_t operatorCode)
{
TF_LITE_ENSURE_STATUS(ValidateNumInputs(tfLiteContext, tfLiteNode, 1, nodeIndex));
TF_LITE_ENSURE_STATUS(ValidateNumOutputs(tfLiteContext, tfLiteNode, 1, nodeIndex));
const TfLiteTensor* tfLiteTensors = tfLiteContext->tensors;
const TfLiteTensor& tfLiteInputTensor = tfLiteTensors[tfLiteNode->inputs->data[0]];
if (!IsValid(tfLiteContext, tfLiteInputTensor, operatorCode, nodeIndex))
{
return kTfLiteError;
}
const TfLiteTensor& tfLiteOutputTensor = tfLiteTensors[tfLiteNode->outputs->data[0]];
if (!IsValid(tfLiteContext, tfLiteOutputTensor, operatorCode, nodeIndex))
{
return kTfLiteError;
}
const armnn::TensorInfo& inputTensorInfo = GetTensorInfoForTfLiteTensor(tfLiteInputTensor);
const armnn::TensorInfo& outputTensorInfo = GetTensorInfoForTfLiteTensor(tfLiteOutputTensor, true);
bool isSupported = false;
armnn::BackendId setBackend;
auto validateFunc = [&](const armnn::TensorInfo& outInfo, bool& isSupported)
{
FORWARD_LAYER_SUPPORT_FUNC("CAST",
tfLiteContext,
IsCastSupported,
delegateData.m_Backends,
isSupported,
setBackend,
inputTensorInfo,
outInfo);
};
// If the m_Network is a nullptr, this signals that a prerequisite TfLite callback is required to clarify the
// support for the operator
// If supported, VisitCastOperator will be called again to add the layer to the network as seen further below
if (!delegateData.m_Network)
{
validateFunc(outputTensorInfo, isSupported);
return isSupported ? kTfLiteOk : kTfLiteError;
}
// Add a Cast layer
armnn::IConnectableLayer* layer = delegateData.m_Network->AddCastLayer();
layer->SetBackendId(setBackend);
ARMNN_ASSERT(layer != nullptr);
armnn::IOutputSlot& outputSlot = layer->GetOutputSlot(0);
outputSlot.SetTensorInfo(outputTensorInfo);
// try to connect the Constant Inputs if there are any
if(ProcessInputs(layer,delegateData, tfLiteContext, tfLiteNode) != kTfLiteOk )
{
return kTfLiteError;
}
// Connect
return Connect(layer, tfLiteNode, delegateData);
}
TfLiteStatus VisitReshapeOperator(DelegateData& delegateData,
TfLiteContext* tfLiteContext,
TfLiteNode* tfLiteNode,
int nodeIndex,
int32_t operatorCode)
{
auto numInputs = tfLiteNode->inputs->size;
if (numInputs == 2)
{
TF_LITE_ENSURE_STATUS(ValidateNumInputs(tfLiteContext, tfLiteNode, 2, nodeIndex));
}
else
{
TF_LITE_ENSURE_STATUS(ValidateNumInputs(tfLiteContext, tfLiteNode, 1, nodeIndex));
}
TF_LITE_ENSURE_STATUS(ValidateNumOutputs(tfLiteContext, tfLiteNode, 1, nodeIndex));
const TfLiteTensor* tfLiteTensors = tfLiteContext->tensors;
const TfLiteTensor& tfLiteInputTensor0 = tfLiteTensors[tfLiteNode->inputs->data[0]];
if (!IsValid(tfLiteContext, tfLiteInputTensor0, operatorCode, nodeIndex))
{
return kTfLiteError;
}
const TfLiteTensor& tfLiteOutputTensor = tfLiteTensors[tfLiteNode->outputs->data[0]];
if (!IsValid(tfLiteContext, tfLiteOutputTensor, operatorCode, nodeIndex))
{
return kTfLiteError;
}
const armnn::TensorInfo& inputTensorInfo0 = GetTensorInfoForTfLiteTensor(tfLiteInputTensor0);
const armnn::TensorInfo& outputTensorInfo = GetTensorInfoForTfLiteTensor(tfLiteOutputTensor, true);
armnn::ReshapeDescriptor reshapeDesc;
std::vector<int32_t> targetShape;
TfLiteReshapeParams* reshapeOptions = reinterpret_cast<TfLiteReshapeParams*>(tfLiteNode->builtin_data);
// The new shape can be defined by either a second input tensor or by a builtin option, we need to check for both.
// Options might be set without valid data. we need to check the dimensions are in a valid range.
if (reshapeOptions && reshapeOptions->num_dimensions > 0 && reshapeOptions->num_dimensions <= 8)
{
for (int i=0; i < reshapeOptions->num_dimensions; ++i)
{
targetShape.push_back(reshapeOptions->shape[i]);
}
}
else if (numInputs == 2)
{
// Get shape from the second input tensor
const TfLiteTensor& tfLiteShapeInputTensor = tfLiteTensors[tfLiteNode->inputs->data[1]];
if (!IsValid(tfLiteContext, tfLiteShapeInputTensor, operatorCode, nodeIndex))
{
return kTfLiteError;
}
if (tfLiteShapeInputTensor.dims->size != 1)
{
TF_LITE_MAYBE_KERNEL_LOG(tfLiteContext,
"TfLiteArmnnDelegate: Target 'shape' input is not a 1D tensor in "
"operator #%d node #%d: Falling back to TfLiteOptions.",
operatorCode, nodeIndex);
}
else
{
// Get the shape data out of the input tensor
auto* shapeTensorDataPtr = tflite::GetTensorData<int32_t>(&tfLiteShapeInputTensor);
auto shapeTensorNumValues = tfLiteShapeInputTensor.dims->data[0];
for (auto i=0; i < shapeTensorNumValues; ++i)
{
targetShape.push_back(*(shapeTensorDataPtr+i));
}
}
}
else
{
TF_LITE_MAYBE_KERNEL_LOG(tfLiteContext,
"Target shape not defined in reshape parameters or input tensor. "
"At least one method required in operator #%d node #%d: ",
operatorCode, nodeIndex);
return kTfLiteError;
}
// Use the data to create the required tensor shape.
if (CreateOutputTensorShape(inputTensorInfo0, targetShape, reshapeDesc) != kTfLiteOk)
{
TF_LITE_MAYBE_KERNEL_LOG(tfLiteContext,
"TfLiteArmnnDelegate: At most one component of shape can be -1 in: "
"operator #%d node #%d: ",
operatorCode, nodeIndex);
return kTfLiteError;
}
if (reshapeDesc.m_TargetShape.GetNumElements() != inputTensorInfo0.GetNumElements())
{
TF_LITE_MAYBE_KERNEL_LOG(
tfLiteContext,
"TfLiteArmnnDelegate: Reshape, number of elements in output shape does not match input "
"operator #%d node #%d: ",
operatorCode, nodeIndex);
return kTfLiteError;
}
bool isSupported = false;
armnn::BackendId setBackend;
auto validateFunc = [&](const armnn::TensorInfo& outInfo, bool& isSupported)
{
FORWARD_LAYER_SUPPORT_FUNC("RESHAPE",
tfLiteContext,
IsReshapeSupported,
delegateData.m_Backends,
isSupported,
setBackend,
inputTensorInfo0,
outInfo,
reshapeDesc);
};
if (!delegateData.m_Network)
{
validateFunc(outputTensorInfo, isSupported);
return isSupported ? kTfLiteOk : kTfLiteError;
}
armnn::IConnectableLayer* layer = delegateData.m_Network->AddReshapeLayer(reshapeDesc);
layer->SetBackendId(setBackend);
ARMNN_ASSERT(layer != nullptr);
armnn::IOutputSlot& outputSlot = layer->GetOutputSlot(0);
outputSlot.SetTensorInfo(outputTensorInfo);
// try to connect the Constant Inputs if there are any
if(ProcessInputs(layer,delegateData, tfLiteContext, tfLiteNode) != kTfLiteOk )
{
return kTfLiteError;
}
// Connect
return Connect(layer, tfLiteNode, delegateData);
}
TfLiteStatus VisitSqueezeOperator(DelegateData& delegateData,
TfLiteContext* tfLiteContext,
TfLiteNode* tfLiteNode,
int nodeIndex,
int32_t operatorCode)
{
TF_LITE_ENSURE_STATUS(ValidateNumInputs(tfLiteContext, tfLiteNode, 1, nodeIndex));
TF_LITE_ENSURE_STATUS(ValidateNumOutputs(tfLiteContext, tfLiteNode, 1, nodeIndex));
const TfLiteTensor* tfLiteTensors = tfLiteContext->tensors;
const TfLiteTensor& tfLiteInputTensor = tfLiteTensors[tfLiteNode->inputs->data[0]];
if (!IsValid(tfLiteContext, tfLiteInputTensor, operatorCode, nodeIndex))
{
return kTfLiteError;
}
const TfLiteTensor& tfLiteOutputTensor = tfLiteTensors[tfLiteNode->outputs->data[0]];
if (!IsValid(tfLiteContext, tfLiteOutputTensor, operatorCode, nodeIndex))
{
return kTfLiteError;
}
auto* options = reinterpret_cast<TfLiteSqueezeParams*>(tfLiteNode->builtin_data);
const armnn::TensorInfo& inputTensorInfo = GetTensorInfoForTfLiteTensor(tfLiteInputTensor);
std::vector<uint32_t> squeezeDim;
// A single negative dim index is interpreted as a negative index in python
// Meaning the index will be the shape size plus the negative index value
if (options->num_squeeze_dims == 1 && options->squeeze_dims[0] < 0)
{
int32_t dim = static_cast<int32_t>(inputTensorInfo.GetShape().GetNumDimensions()) + options->squeeze_dims[0];
squeezeDim.push_back(static_cast<uint32_t>(dim));
}
else
{
for (int32_t i = 0; i < options->num_squeeze_dims; ++i)
{
squeezeDim.push_back(static_cast<uint32_t>(options->squeeze_dims[i]));
}
}
armnn::TensorInfo outputTensorInfo = OutputShapeOfSqueeze(squeezeDim, inputTensorInfo);
armnn::ReshapeDescriptor reshapeDesc;
reshapeDesc.m_TargetShape = outputTensorInfo.GetShape();
bool isSupported = false;
armnn::BackendId setBackend;
auto validateFunc = [&](const armnn::TensorInfo& outInfo, bool& isSupported)
{
FORWARD_LAYER_SUPPORT_FUNC("SQUEEZE",
tfLiteContext,
IsReshapeSupported,
delegateData.m_Backends,
isSupported,
setBackend,
inputTensorInfo,
outInfo,
reshapeDesc);
};
if (!delegateData.m_Network)
{
validateFunc(outputTensorInfo, isSupported);
return isSupported ? kTfLiteOk : kTfLiteError;
}
armnn::IConnectableLayer* layer = delegateData.m_Network->AddReshapeLayer(reshapeDesc);
layer->SetBackendId(setBackend);
ARMNN_ASSERT(layer != nullptr);
armnn::IOutputSlot& outputSlot = layer->GetOutputSlot(0);
outputSlot.SetTensorInfo(outputTensorInfo);
// try to connect the Constant Inputs if there are any
if(ProcessInputs(layer, delegateData, tfLiteContext, tfLiteNode) != kTfLiteOk)
{
return kTfLiteError;
}
// Connect
return Connect(layer, tfLiteNode, delegateData);
}
TfLiteStatus VisitExpandDimsOperator(DelegateData& delegateData,
TfLiteContext* tfLiteContext,
TfLiteNode* tfLiteNode,
int nodeIndex,
int32_t operatorCode)
{
TF_LITE_ENSURE_STATUS(ValidateNumInputs(tfLiteContext, tfLiteNode, 2, nodeIndex));
TF_LITE_ENSURE_STATUS(ValidateNumOutputs(tfLiteContext, tfLiteNode, 1, nodeIndex));
const TfLiteTensor* tfLiteTensors = tfLiteContext->tensors;
const TfLiteTensor& tfLiteInputTensor = tfLiteTensors[tfLiteNode->inputs->data[0]];
if (!IsValid(tfLiteContext, tfLiteInputTensor, operatorCode, nodeIndex))
{
return kTfLiteError;
}
const TfLiteTensor& tfLiteAxisTensor = tfLiteTensors[tfLiteNode->inputs->data[1]];
if (!IsValid(tfLiteContext, tfLiteAxisTensor, operatorCode, nodeIndex))
{
return kTfLiteError;
}
const TfLiteTensor& tfLiteOutputTensor = tfLiteTensors[tfLiteNode->outputs->data[0]];
if (!IsValid(tfLiteContext, tfLiteOutputTensor, operatorCode, nodeIndex))
{
return kTfLiteError;
}
const armnn::TensorInfo& inputTensorInfo = GetTensorInfoForTfLiteTensor(tfLiteInputTensor);
armnn::TensorInfo outputTensorInfo = GetTensorInfoForTfLiteTensor(tfLiteOutputTensor);
auto* axisTensorData = tflite::GetTensorData<int32_t>(&tfLiteAxisTensor);
int32_t axis = axisTensorData[0];
int32_t inputDimSize = static_cast<int32_t>(inputTensorInfo.GetShape().GetNumDimensions());
if (axis > inputDimSize || axis < 0 - (inputDimSize + 1))
{
TF_LITE_MAYBE_KERNEL_LOG(
tfLiteContext,
"TfLiteArmnnOpaqueDelegate: Axis must be in range "
"[0 - (inputDimSize + 1), inputDimSize] inclusive.");
return kTfLiteError;
}
if(axis < 0)
{
axis = inputDimSize + axis + 1;
}
std::vector<unsigned int> shape(static_cast<unsigned int>(inputDimSize) + 1);
unsigned int inputShapeIndex = 0;
for (unsigned int i = 0; i < static_cast<unsigned int>(inputDimSize + 1); ++i)
{
if (i == static_cast<unsigned int>(axis))
{
shape[i] = 1;
}
else
{
shape[i] = inputTensorInfo.GetShape()[inputShapeIndex];
++inputShapeIndex;
}
}
armnn::ReshapeDescriptor reshapeDesc;
reshapeDesc.m_TargetShape = armnn::TensorShape(static_cast<unsigned int>(inputDimSize + 1), shape.data());
bool isSupported = false;
armnn::BackendId setBackend;
auto validateFunc = [&](const armnn::TensorInfo& outInfo, bool& isSupported)
{
FORWARD_LAYER_SUPPORT_FUNC("EXPAND_DIMS",
tfLiteContext,
IsReshapeSupported,
delegateData.m_Backends,
isSupported,
setBackend,
inputTensorInfo,
outInfo,
reshapeDesc);
};
if (!delegateData.m_Network)
{
validateFunc(outputTensorInfo, isSupported);
return isSupported ? kTfLiteOk : kTfLiteError;
}
armnn::IConnectableLayer* layer = delegateData.m_Network->AddReshapeLayer(reshapeDesc);
layer->SetBackendId(setBackend);
ARMNN_ASSERT(layer != nullptr);
armnn::IOutputSlot& outputSlot = layer->GetOutputSlot(0);
outputTensorInfo.SetShape(reshapeDesc.m_TargetShape);
outputSlot.SetTensorInfo(outputTensorInfo);
// try to connect the Constant Inputs if there are any
if(ProcessInputs(layer, delegateData, tfLiteContext, tfLiteNode) != kTfLiteOk)
{
return kTfLiteError;
}
// Connect
return Connect(layer, tfLiteNode, delegateData);
}
} // namespace armnnDelegate