blob: 1129951104e7c75636969d1a971484590fdf3d7d [file] [log] [blame]
//
// Copyright © 2020-2023 Arm Ltd and Contributors. All rights reserved.
// SPDX-License-Identifier: MIT
//
#pragma once
#include "DelegateUtils.hpp"
#include "armnnUtils/TensorUtils.hpp"
#include <armnn/utility/IgnoreUnused.hpp>
#include <tensorflow/lite/builtin_ops.h>
#include <tensorflow/lite/c/builtin_op_data.h>
#include <tensorflow/lite/c/common.h>
#include <tensorflow/lite/minimal_logging.h>
namespace armnnDelegate
{
TfLiteStatus VisitFullyConnectedOperator(DelegateData& delegateData,
TfLiteContext* tfLiteContext,
TfLiteNode* tfLiteNode,
int nodeIndex,
int32_t operatorCode)
{
auto numInputs = tfLiteNode->inputs->size;
if (numInputs < 2)
{
TF_LITE_MAYBE_KERNEL_LOG(
tfLiteContext, "TfLiteArmnnDelegate: Minimum number of inputs (%d != %d) in node #%d",
2, numInputs, nodeIndex);
return kTfLiteError;
}
TF_LITE_ENSURE_STATUS(ValidateNumOutputs(tfLiteContext, tfLiteNode, 1, nodeIndex));
bool biasEnabled = IsOptionalOperandPresent(tfLiteNode, 2);
const TfLiteTensor* tfLiteTensors = tfLiteContext->tensors;
const TfLiteTensor& tfLiteInputTensor = tfLiteTensors[tfLiteNode->inputs->data[0]];
if (!IsValid(tfLiteContext, tfLiteInputTensor, operatorCode, nodeIndex))
{
return kTfLiteError;
}
const TfLiteTensor& tfLiteOutputTensor = tfLiteTensors[tfLiteNode->outputs->data[0]];
if (!IsValid(tfLiteContext, tfLiteOutputTensor, operatorCode, nodeIndex))
{
return kTfLiteError;
}
const TfLiteTensor& tfLiteWeightsTensor = tfLiteTensors[tfLiteNode->inputs->data[1]];
if (!IsValid(tfLiteContext, tfLiteWeightsTensor, operatorCode, nodeIndex))
{
return kTfLiteError;
}
const armnn::TensorInfo& inputTensorInfo = GetTensorInfoForTfLiteTensor(tfLiteInputTensor);
const armnn::TensorInfo& weightsTensorInfo = GetTensorInfoForTfLiteTensor(tfLiteWeightsTensor);
const armnn::TensorInfo& outputTensorInfo = GetTensorInfoForTfLiteTensor(tfLiteOutputTensor, true);
// Check that we support fused activation before we attempt to create a layer
auto* tfLiteNodeParameters = reinterpret_cast<TfLiteFullyConnectedParams *>(tfLiteNode->builtin_data);
TfLiteFusedActivation activationType=kTfLiteActNone;
if (tfLiteNodeParameters)
{
activationType = tfLiteNodeParameters->activation;
TfLiteStatus activationStatus = ValidateFusedActivationOperator(delegateData, tfLiteContext, outputTensorInfo,
outputTensorInfo, activationType);
if(activationStatus != kTfLiteOk)
{
return kTfLiteError;
}
}
// Fully Connected Layer accepts two dimensional weights input
int32_t weightsDimension = static_cast<int32_t>(weightsTensorInfo.GetNumDimensions());
if (weightsDimension != 2)
{
TF_LITE_MAYBE_KERNEL_LOG(
tfLiteContext,
"TfLiteArmnnDelegate: Dimension #$d for Fully Connected weights is not supported by Armnn"
" in operator #%d node #%d: ", weightsDimension, operatorCode, nodeIndex);
return kTfLiteError;
}
armnn::TensorInfo biasTensorInfo;
if (biasEnabled)
{
const TfLiteTensor& tfLiteBiasTensor = tfLiteTensors[tfLiteNode->inputs->data[2]];
if (!IsValid(tfLiteContext, tfLiteBiasTensor, operatorCode, nodeIndex))
{
return kTfLiteError;
}
biasTensorInfo = GetTensorInfoForTfLiteTensor(tfLiteBiasTensor);
}
else
{
biasTensorInfo = armnn::TensorInfo(armnn::TensorShape({1}), GetDataType(tfLiteInputTensor));
}
armnn::TensorInfo reshapedTensorInfo = GetTensorInfoForTfLiteTensor(tfLiteInputTensor);
if (inputTensorInfo.GetNumDimensions() > 2)
{
// Calculate reshape to flatten to 2D [batch_size, input_size]
std::vector<unsigned int> reshapedDimensions(2);
reshapedDimensions[1] = weightsTensorInfo.GetShape()[1];
reshapedDimensions[0] = inputTensorInfo.GetNumElements() / reshapedDimensions[1];
if (inputTensorInfo.GetNumElements() % reshapedDimensions[1] != 0)
{
TF_LITE_MAYBE_KERNEL_LOG(
tfLiteContext,
"TfLiteArmnnDelegate: Failed to deduce input tensor shape from filter size #%d #%d node #%d: ",
reshapedDimensions[1], operatorCode, nodeIndex);
return kTfLiteError;
}
reshapedTensorInfo.SetShape(armnn::TensorShape{ 2, reshapedDimensions.data() });
}
armnn::TensorInfo reshapedOutputTensorInfo = GetTensorInfoForTfLiteTensor(tfLiteOutputTensor);
if (outputTensorInfo.GetNumDimensions() > 2)
{
// Calculate reshape to flatten to 2D [batch_size, input_size]
std::vector<unsigned int> reshapedDimensions(2);
reshapedDimensions[1] = weightsTensorInfo.GetShape()[0];
reshapedDimensions[0] = outputTensorInfo.GetNumElements() / reshapedDimensions[1];
if (outputTensorInfo.GetNumElements() % reshapedDimensions[1] != 0)
{
TF_LITE_MAYBE_KERNEL_LOG(
tfLiteContext,
"TfLiteArmnnDelegate: Failed to deduce output tensor shape from filter size #%d #%d node #%d: ",
reshapedDimensions[1], operatorCode, nodeIndex);
return kTfLiteError;
}
reshapedOutputTensorInfo.SetShape(armnn::TensorShape{ 2, reshapedDimensions.data() });
}
armnn::FullyConnectedDescriptor descriptor;
descriptor.m_TransposeWeightMatrix = true;
descriptor.m_BiasEnabled = biasEnabled;
descriptor.m_ConstantWeights = weightsTensorInfo.IsConstant();
bool isSupported = false;
armnn::BackendId setBackend;
auto validateFunc = [&](const armnn::TensorInfo& outputTensorInfo, bool& isSupported)
{
FORWARD_LAYER_SUPPORT_FUNC("FULLY_CONNECTED",
tfLiteContext,
IsFullyConnectedSupported,
delegateData.m_Backends,
isSupported,
setBackend,
reshapedTensorInfo,
outputTensorInfo,
weightsTensorInfo,
biasTensorInfo,
descriptor);
};
if (!delegateData.m_Network)
{
validateFunc(reshapedOutputTensorInfo, isSupported);
return isSupported ? kTfLiteOk : kTfLiteError;
}
armnn::IConnectableLayer* layer = delegateData.m_Network->AddFullyConnectedLayer(descriptor);
layer->SetBackendId(setBackend);
ARMNN_ASSERT(layer != nullptr);
// Add a constant layer for weights and biases if inputs are constant.
if (weightsTensorInfo.IsConstant())
{
auto weightsTensor = CreateConstTensor(&tfLiteWeightsTensor,
weightsTensorInfo);
armnn::IConnectableLayer* weightsLayer = delegateData.m_Network->AddConstantLayer(weightsTensor);
weightsLayer->GetOutputSlot(0).Connect(layer->GetInputSlot(1u));
weightsLayer->GetOutputSlot(0).SetTensorInfo(weightsTensorInfo);
}
if (biasEnabled)
{
const TfLiteTensor& tfLiteBiasTensor = tfLiteTensors[tfLiteNode->inputs->data[2]];
if(biasTensorInfo.IsConstant())
{
auto biasTensor = CreateConstTensor(&tfLiteBiasTensor,
biasTensorInfo);
armnn::IConnectableLayer* biasLayer = delegateData.m_Network->AddConstantLayer(biasTensor);
ARMNN_ASSERT(biasLayer != nullptr);
biasLayer->GetOutputSlot(0).Connect(layer->GetInputSlot(2u));
biasLayer->GetOutputSlot(0).SetTensorInfo(biasTensorInfo);
}
}
// The data input can also be constant, so we must check that this is also allocated to an input slot
if(inputTensorInfo.IsConstant())
{
auto input =
CreateConstTensor(&tfLiteContext->tensors[tfLiteNode->inputs->data[0]],
inputTensorInfo);
armnn::IConnectableLayer *inputLayer = delegateData.m_Network->AddConstantLayer(input);
inputLayer->GetOutputSlot(0).Connect(layer->GetInputSlot(0u));
inputLayer->GetOutputSlot(0).SetTensorInfo(inputTensorInfo);
}
armnn::IOutputSlot& outputSlot = layer->GetOutputSlot(0);
outputSlot.SetTensorInfo(outputTensorInfo);
armnn::IConnectableLayer* reshapeLayer = nullptr;
if (inputTensorInfo.GetNumDimensions() > 2)
{
// Add reshape to flatten to 2D [batch_size, input_size]
armnn::ReshapeDescriptor reshapeDescriptor;
reshapeDescriptor.m_TargetShape = reshapedTensorInfo.GetShape();
reshapeLayer = delegateData.m_Network->AddReshapeLayer(reshapeDescriptor);
ARMNN_ASSERT(reshapeLayer != nullptr);
reshapeLayer->GetOutputSlot(0).SetTensorInfo(reshapedTensorInfo);
// Connect
delegateData.m_OutputSlotForNode[tfLiteNode->inputs->data[0]]->Connect(reshapeLayer->GetInputSlot(0));
reshapeLayer->GetOutputSlot(0).Connect(layer->GetInputSlot(0));
if (!descriptor.m_ConstantWeights)
{
delegateData.m_OutputSlotForNode[tfLiteNode->inputs->data[1]]->Connect(layer->GetInputSlot(1));
}
if (biasEnabled && !biasTensorInfo.IsConstant())
{
delegateData.m_OutputSlotForNode[tfLiteNode->inputs->data[2]]->Connect(layer->GetInputSlot(2));
}
delegateData.m_OutputSlotForNode[tfLiteNode->outputs->data[0]] = &outputSlot;
}
if (reshapeLayer == nullptr)
{
if(Connect(layer, tfLiteNode, delegateData) != kTfLiteOk)
{
return kTfLiteError;
}
}
if (outputTensorInfo.GetNumDimensions() > 2)
{
layer = AddReshapeLayer(tfLiteContext, tfLiteNode, layer, reshapedOutputTensorInfo, outputTensorInfo,
delegateData);
if (!layer)
{
TF_LITE_MAYBE_KERNEL_LOG(
tfLiteContext,
"TfLiteArmnnDelegate: Failed to add reshape for FullyConnected #%d node #%d: ",
operatorCode,
nodeIndex);
return kTfLiteError;
}
}
if (!tfLiteNodeParameters)
{
// No Activation
return kTfLiteOk;
}
// Check and Create Activation
return FusedActivation(tfLiteContext, tfLiteNode, activationType, layer, 0, delegateData);
}
} // namespace armnnDelegate