blob: 372d0ca00274186c5aba65f9153c4c05315e74a2 [file] [log] [blame]
//
// Copyright © 2017 Arm Ltd. All rights reserved.
// SPDX-License-Identifier: MIT
//
#include <armnn/INetwork.hpp>
#include <armnn/Tensor.hpp>
#include <armnn/INetworkQuantizer.hpp>
#include <armnn/Types.hpp>
#include "armnn/LayerVisitorBase.hpp"
#include "../Graph.hpp"
#include "../Network.hpp"
#include "../NetworkQuantizerUtils.hpp"
#include "../OverrideInputRangeVisitor.hpp"
#include "../RangeTracker.hpp"
#include "../backends/backendsCommon/test/QuantizeHelper.hpp"
#include <boost/test/unit_test.hpp>
#include <unordered_map>
namespace armnn
{
using MinMaxRange = std::pair<float, float>;
using MinMaxRanges = std::vector<MinMaxRange>;
using MinMaxRangeMap = std::unordered_map<LayerGuid, MinMaxRanges>;
const float g_Asymm8QuantizationBase = 255.0f;
const float g_Symm16QuantizationBase = 32767.0f;
const float g_TestTolerance = 0.000001f;
BOOST_AUTO_TEST_SUITE(Quantizer)
class TestQuantization : public LayerVisitorBase<VisitorThrowingPolicy>
{
public:
TestQuantization(const TensorShape& inputShape, const TensorShape& outputShape)
: LayerVisitorBase<VisitorThrowingPolicy>()
, m_QuantizerOptions(QuantizerOptions())
, m_InputShape(inputShape)
, m_OutputShape(outputShape) {}
TestQuantization(const QuantizerOptions& options, const TensorShape& inputShape, const TensorShape& outputShape)
: LayerVisitorBase<VisitorThrowingPolicy>()
, m_QuantizerOptions(options)
, m_InputShape(inputShape)
, m_OutputShape(outputShape) {}
void VisitInputLayer(const IConnectableLayer* layer,
LayerBindingId id,
const char* name = nullptr) override
{
const TensorInfo& info = layer->GetOutputSlot(0).GetTensorInfo();
BOOST_TEST(m_InputShape == info.GetShape());
// Based off current default [-15.0f, 15.0f]
TestQuantizationParams(info, {30.0f / g_Asymm8QuantizationBase, 128}, {15.0f / g_Symm16QuantizationBase, 0});
}
void VisitOutputLayer(const IConnectableLayer* layer,
LayerBindingId id,
const char* name = nullptr) override
{
const TensorInfo& info = layer->GetInputSlot(0).GetConnection()->GetTensorInfo();
BOOST_TEST(m_OutputShape == info.GetShape());
}
protected:
void TestQuantizationParams(const TensorInfo& info,
const OffsetScalePair& qAsymm8Params,
const OffsetScalePair& qSymm16Params)
{
switch (m_QuantizerOptions.m_ActivationFormat)
{
case DataType::QuantisedAsymm8:
TestQuantizationParamsImpl(
info, DataType::QuantisedAsymm8, qAsymm8Params.first, qAsymm8Params.second);
break;
case DataType::QuantisedSymm16:
TestQuantizationParamsImpl(
info, DataType::QuantisedSymm16, qSymm16Params.first, qSymm16Params.second);
break;
default:
throw InvalidArgumentException("Unsupported quantization target");
}
}
void TestConstantQuantizationParams(const TensorInfo& info, const OffsetScalePair& params)
{
TestQuantizationParamsImpl(info, DataType::QuantisedAsymm8, params.first, params.second);
}
private:
void TestQuantizationParamsImpl(const TensorInfo& info, DataType dataType, float scale, int32_t offset)
{
BOOST_TEST((info.GetDataType() == dataType));
BOOST_TEST(info.GetQuantizationOffset() == offset);
BOOST_CHECK_CLOSE(info.GetQuantizationScale(), scale, g_TestTolerance);
}
QuantizerOptions m_QuantizerOptions;
TensorShape m_InputShape;
TensorShape m_OutputShape;
};
void VisitLayersTopologically(const INetwork* inputNetwork, ILayerVisitor& visitor)
{
auto network = boost::polymorphic_downcast<const Network*>(inputNetwork);
auto graph = network->GetGraph().TopologicalSort();
VisitLayers(graph, visitor);
}
class TestAdditionQuantization : public TestQuantization
{
public:
TestAdditionQuantization(const TensorShape& inputShape, const TensorShape& outputShape)
: TestQuantization(inputShape, outputShape) {}
TestAdditionQuantization(const QuantizerOptions& options,
const TensorShape& inputShape,
const TensorShape& outputShape)
: TestQuantization(options, inputShape, outputShape) {}
void VisitAdditionLayer(const IConnectableLayer* layer,
const char* name = nullptr) override
{
TensorInfo info = layer->GetOutputSlot(0).GetTensorInfo();
// Based off default static range [-20.0f, 20.0f]
TestQuantizationParams(info, {40.0f / g_Asymm8QuantizationBase, 128}, {20.0f / g_Symm16QuantizationBase, 0});
}
};
BOOST_AUTO_TEST_CASE(QuantizeAddition)
{
INetworkPtr network = INetwork::Create();
// Add the layers
IConnectableLayer* input0 = network->AddInputLayer(0);
IConnectableLayer* input1 = network->AddInputLayer(1);
IConnectableLayer* addition = network->AddAdditionLayer();
IConnectableLayer* output = network->AddOutputLayer(2);
// Establish connections
input0->GetOutputSlot(0).Connect(addition->GetInputSlot(0));
input1->GetOutputSlot(0).Connect(addition->GetInputSlot(1));
addition->GetOutputSlot(0).Connect(output->GetInputSlot(0));
// Set TensorInfo
const TensorShape shape{1U};
TensorInfo info(shape, DataType::Float32);
input0->GetOutputSlot(0).SetTensorInfo(info);
input1->GetOutputSlot(0).SetTensorInfo(info);
addition->GetOutputSlot(0).SetTensorInfo(info);
INetworkPtr quantizedNetworkQAsymm8 = INetworkQuantizer::Create(network.get())->ExportNetwork();
TestAdditionQuantization validatorQAsymm8(shape, shape);
VisitLayersTopologically(quantizedNetworkQAsymm8.get(), validatorQAsymm8);
const QuantizerOptions options(DataType::QuantisedSymm16);
INetworkPtr quantizedNetworkQSymm16 = INetworkQuantizer::Create(network.get(), options)->ExportNetwork();
TestAdditionQuantization validatorQSymm16(options, shape, shape);
VisitLayersTopologically(quantizedNetworkQSymm16.get(), validatorQSymm16);
}
class TestActivationQuantization : public TestQuantization
{
public:
TestActivationQuantization(const TensorShape& inputShape, const TensorShape& outputShape)
: TestQuantization(inputShape, outputShape) {}
TestActivationQuantization(const QuantizerOptions& options,
const TensorShape& inputShape,
const TensorShape& outputShape)
: TestQuantization(options, inputShape, outputShape) {}
void VisitActivationLayer(const IConnectableLayer* layer,
const ActivationDescriptor& descriptor,
const char* name = nullptr) override
{
TensorInfo info = layer->GetOutputSlot(0).GetTensorInfo();
// Based off default static range [0.0f, 15.0f]
TestQuantizationParams(info, {15.0f / g_Asymm8QuantizationBase, 0}, {15.0f / g_Symm16QuantizationBase, 0});
}
};
INetworkPtr CreateNetworkWithActivationLayer(const ActivationDescriptor& descriptor, const TensorShape& shape)
{
INetworkPtr network = INetwork::Create();
// Add the layers
IConnectableLayer* input0 = network->AddInputLayer(0);
IConnectableLayer* activation = network->AddActivationLayer(descriptor);
IConnectableLayer* output = network->AddOutputLayer(2);
// Establish connections
input0->GetOutputSlot(0).Connect(activation->GetInputSlot(0));
activation->GetOutputSlot(0).Connect(output->GetInputSlot(0));
// Set TensorInfo
TensorInfo info(shape, DataType::Float32);
input0->GetOutputSlot(0).SetTensorInfo(info);
activation->GetOutputSlot(0).SetTensorInfo(info);
return network;
}
BOOST_AUTO_TEST_CASE(QuantizeAbsActivation)
{
ActivationDescriptor descriptor;
descriptor.m_Function = ActivationFunction::Abs;
descriptor.m_A = 3.5f;
descriptor.m_B = -10.0f;
const TensorShape shape{1U};
INetworkPtr network = CreateNetworkWithActivationLayer(descriptor, shape);
INetworkPtr quantizedNetworkQAsymm8 = INetworkQuantizer::Create(network.get())->ExportNetwork();
TestActivationQuantization validatorQAsymm8(shape, shape);
VisitLayersTopologically(quantizedNetworkQAsymm8.get(), validatorQAsymm8);
const QuantizerOptions options(DataType::QuantisedSymm16);
INetworkPtr quantizedNetworkQSymm16 = INetworkQuantizer::Create(network.get(), options)->ExportNetwork();
TestActivationQuantization validatorQSymm16(options, shape, shape);
VisitLayersTopologically(quantizedNetworkQSymm16.get(), validatorQSymm16);
}
BOOST_AUTO_TEST_CASE(QuantizeLinearActivation)
{
ActivationDescriptor descriptor;
descriptor.m_Function = ActivationFunction::Linear;
descriptor.m_A = 3.5f;
descriptor.m_B = -10.0f;
const TensorShape shape{1U};
INetworkPtr network = CreateNetworkWithActivationLayer(descriptor, shape);
INetworkPtr quantizedNetworkQAsymm8 = INetworkQuantizer::Create(network.get())->ExportNetwork();
TestActivationQuantization validatorQAsymm8(shape, shape);
VisitLayersTopologically(quantizedNetworkQAsymm8.get(), validatorQAsymm8);
const QuantizerOptions options(DataType::QuantisedSymm16);
INetworkPtr quantizedNetworkQSymm16 = INetworkQuantizer::Create(network.get(), options)->ExportNetwork();
TestActivationQuantization validatorQSymm16(options, shape, shape);
VisitLayersTopologically(quantizedNetworkQSymm16.get(), validatorQSymm16);
}
BOOST_AUTO_TEST_CASE(QuantizeReLuActivation)
{
ActivationDescriptor descriptor;
descriptor.m_Function = ActivationFunction::ReLu;
descriptor.m_A = 3.5f;
descriptor.m_B = -10.0f;
const TensorShape shape{1U};
INetworkPtr network = CreateNetworkWithActivationLayer(descriptor, shape);
INetworkPtr quantizedNetworkQAsymm8 = INetworkQuantizer::Create(network.get())->ExportNetwork();
TestActivationQuantization validatorQAsymm8(shape, shape);
VisitLayersTopologically(quantizedNetworkQAsymm8.get(), validatorQAsymm8);
const QuantizerOptions options(DataType::QuantisedSymm16);
INetworkPtr quantizedNetworkQSymm16 = INetworkQuantizer::Create(network.get(), options)->ExportNetwork();
TestActivationQuantization validatorQSymm16(options, shape, shape);
VisitLayersTopologically(quantizedNetworkQSymm16.get(), validatorQSymm16);
}
BOOST_AUTO_TEST_CASE(QuantizeSoftReLuActivation)
{
ActivationDescriptor descriptor;
descriptor.m_Function = ActivationFunction::SoftReLu;
descriptor.m_A = 3.5f;
descriptor.m_B = -10.0f;
const TensorShape shape{1U};
INetworkPtr network = CreateNetworkWithActivationLayer(descriptor, shape);
INetworkPtr quantizedNetworkQAsymm8 = INetworkQuantizer::Create(network.get())->ExportNetwork();
TestActivationQuantization validatorQAsymm8(shape, shape);
VisitLayersTopologically(quantizedNetworkQAsymm8.get(), validatorQAsymm8);
const QuantizerOptions options(DataType::QuantisedSymm16);
INetworkPtr quantizedNetworkQSymm16 = INetworkQuantizer::Create(network.get(), options)->ExportNetwork();
TestActivationQuantization validatorQSymm16(options, shape, shape);
VisitLayersTopologically(quantizedNetworkQSymm16.get(), validatorQSymm16);
}
BOOST_AUTO_TEST_CASE(QuantizeBoundedReluActivation)
{
class TestBoundedReluActivationQuantization : public TestQuantization
{
public:
TestBoundedReluActivationQuantization(const TensorShape& inputShape, const TensorShape& outputShape)
: TestQuantization(inputShape, outputShape) {}
TestBoundedReluActivationQuantization(const QuantizerOptions& options,
const TensorShape& inputShape,
const TensorShape& outputShape)
: TestQuantization(options, inputShape, outputShape) {}
void VisitActivationLayer(const IConnectableLayer* layer,
const ActivationDescriptor& descriptor,
const char* name = nullptr) override
{
TensorInfo info = layer->GetOutputSlot(0).GetTensorInfo();
// Based off default static range [0.0f, 3.5f]
TestQuantizationParams(info, {3.5f / g_Asymm8QuantizationBase, 0}, {3.5f / g_Symm16QuantizationBase, 0});
}
};
ActivationDescriptor descriptor;
descriptor.m_Function = ActivationFunction::BoundedReLu;
descriptor.m_A = 3.5f;
descriptor.m_B = -10.0f;
const TensorShape shape{1U};
INetworkPtr network = CreateNetworkWithActivationLayer(descriptor, shape);
INetworkPtr quantizedNetworkQAsymm8 = INetworkQuantizer::Create(network.get())->ExportNetwork();
TestBoundedReluActivationQuantization validatorQAsymm8(shape, shape);
VisitLayersTopologically(quantizedNetworkQAsymm8.get(), validatorQAsymm8);
const QuantizerOptions options(DataType::QuantisedSymm16);
INetworkPtr quantizedNetworkQSymm16 = INetworkQuantizer::Create(network.get(), options)->ExportNetwork();
TestBoundedReluActivationQuantization validatorQSymm16(options, shape, shape);
VisitLayersTopologically(quantizedNetworkQSymm16.get(), validatorQSymm16);
}
BOOST_AUTO_TEST_CASE(QuantizeTanHActivation)
{
class TestTanHActivationQuantization : public TestQuantization
{
public:
TestTanHActivationQuantization(const TensorShape& inputShape, const TensorShape& outputShape)
: TestQuantization(inputShape, outputShape) {}
TestTanHActivationQuantization(const QuantizerOptions& options,
const TensorShape& inputShape,
const TensorShape& outputShape)
: TestQuantization(options, inputShape, outputShape) {}
void VisitActivationLayer(const IConnectableLayer* layer,
const ActivationDescriptor& descriptor,
const char* name = nullptr) override
{
TensorInfo info = layer->GetOutputSlot(0).GetTensorInfo();
// Based off default static range [-1.0f, 1.0f]
TestQuantizationParams(
info, {2.0f / g_Asymm8QuantizationBase, 128}, {1.0f / g_Symm16QuantizationBase, 0});
}
};
ActivationDescriptor descriptor;
descriptor.m_Function = ActivationFunction::TanH;
descriptor.m_A = 3.5f;
descriptor.m_B = -10.0f;
const TensorShape shape{1U};
INetworkPtr network = CreateNetworkWithActivationLayer(descriptor, shape);
INetworkPtr quantizedNetworkQAsymm8 = INetworkQuantizer::Create(network.get())->ExportNetwork();
TestTanHActivationQuantization validatorQAsymm8(shape, shape);
VisitLayersTopologically(quantizedNetworkQAsymm8.get(), validatorQAsymm8);
const QuantizerOptions options(DataType::QuantisedSymm16);
INetworkPtr quantizedNetworkQSymm16 = INetworkQuantizer::Create(network.get(), options)->ExportNetwork();
TestTanHActivationQuantization validatorQSymm16(options, shape, shape);
VisitLayersTopologically(quantizedNetworkQSymm16.get(), validatorQSymm16);
}
class TestLeakyReLuActivationQuantization : public TestQuantization
{
public:
TestLeakyReLuActivationQuantization(const TensorShape& inputShape, const TensorShape& outputShape)
: TestQuantization(inputShape, outputShape) {}
TestLeakyReLuActivationQuantization(const QuantizerOptions& options,
const TensorShape& inputShape,
const TensorShape& outputShape)
: TestQuantization(options, inputShape, outputShape) {}
void VisitActivationLayer(const IConnectableLayer* layer,
const ActivationDescriptor& descriptor,
const char* name = nullptr) override
{
TensorInfo info = layer->GetOutputSlot(0).GetTensorInfo();
// Based off default static range [-5.0f, 15.0f]
TestQuantizationParams(info, {20.0f / g_Asymm8QuantizationBase, 64}, {15.0f / g_Symm16QuantizationBase, 0});
}
protected:
// Used by the descendant classes which test layers
// that are forwarding their parent layer settings
void CheckForwardedQuantizationSettings(const IConnectableLayer* layer)
{
TensorInfo info = layer->GetOutputSlot(0).GetTensorInfo();
TestQuantizationParams(info, {20.0f / g_Asymm8QuantizationBase, 64}, {15.0f / g_Symm16QuantizationBase, 0});
}
};
BOOST_AUTO_TEST_CASE(QuantizeLeakyReLuActivation)
{
ActivationDescriptor descriptor;
descriptor.m_Function = ActivationFunction::LeakyReLu;
descriptor.m_A = 3.5f;
descriptor.m_B = -10.0f;
const TensorShape shape{1U};
INetworkPtr network = CreateNetworkWithActivationLayer(descriptor, shape);
INetworkPtr quantizedNetworkQAsymm8 = INetworkQuantizer::Create(network.get())->ExportNetwork();
TestLeakyReLuActivationQuantization validatorQAsymm8(shape, shape);
VisitLayersTopologically(quantizedNetworkQAsymm8.get(), validatorQAsymm8);
const QuantizerOptions options(DataType::QuantisedSymm16);
INetworkPtr quantizedNetworkQSymm16 = INetworkQuantizer::Create(network.get(), options)->ExportNetwork();
TestLeakyReLuActivationQuantization validatorQSymm16(options, shape, shape);
VisitLayersTopologically(quantizedNetworkQSymm16.get(), validatorQSymm16);
}
BOOST_AUTO_TEST_CASE(QuantizeBatchNorm)
{
class TestBatchNormalizationQuantization : public TestQuantization
{
public:
TestBatchNormalizationQuantization(const TensorShape& inputShape, const TensorShape& outputShape)
: TestQuantization(inputShape, outputShape) {}
TestBatchNormalizationQuantization(const QuantizerOptions& options,
const TensorShape& inputShape,
const TensorShape& outputShape)
: TestQuantization(options, inputShape, outputShape) {}
void VisitBatchNormalizationLayer(const IConnectableLayer* layer,
const BatchNormalizationDescriptor& desc,
const ConstTensor& mean,
const ConstTensor& variance,
const ConstTensor& beta,
const ConstTensor& gamma,
const char* name = nullptr) override
{
TensorInfo info = layer->GetOutputSlot(0).GetTensorInfo();
// Based off default static range [-15.0f, 15.0f]
TestQuantizationParams(
info, {30.0f / g_Asymm8QuantizationBase, 128}, {15.0f / g_Symm16QuantizationBase, 0});
// Test constants
TestConstantQuantizationParams(mean.GetInfo(), {3.0f / g_Asymm8QuantizationBase, 85});
TestConstantQuantizationParams(variance.GetInfo(), {3.0f / g_Asymm8QuantizationBase, 85});
TestConstantQuantizationParams(beta.GetInfo(), {3.0f / g_Asymm8QuantizationBase, 85});
TestConstantQuantizationParams(gamma.GetInfo(), {3.0f / g_Asymm8QuantizationBase, 85});
}
};
INetworkPtr network = INetwork::Create();
const TensorShape shape{3U};
TensorInfo info(shape, DataType::Float32);
std::vector<float> meanData{-1.0f, 1.5f, 2.0f};
std::vector<float> varData{-1.0f, 1.5f, 2.0f};
std::vector<float> betaData{-1.0f, 1.5f, 2.0f};
std::vector<float> gammaData{-1.0f, 1.5f, 2.0f};
ConstTensor mean(info, meanData);
ConstTensor var(info, varData);
ConstTensor beta(info, betaData);
ConstTensor gamma(info, gammaData);
BatchNormalizationDescriptor desc;
// Add the layers
IConnectableLayer* input0 = network->AddInputLayer(0);
IConnectableLayer* batchNorm = network->AddBatchNormalizationLayer(desc, mean, var, beta, gamma);
IConnectableLayer* output = network->AddOutputLayer(1);
// Establish connections
input0->GetOutputSlot(0).Connect(batchNorm->GetInputSlot(0));
batchNorm->GetOutputSlot(0).Connect(output->GetInputSlot(0));
// Set TensorInfo
input0->GetOutputSlot(0).SetTensorInfo(info);
batchNorm->GetOutputSlot(0).SetTensorInfo(info);
INetworkPtr quantizedNetworkQAsymm8 = INetworkQuantizer::Create(network.get())->ExportNetwork();
TestBatchNormalizationQuantization validatorQAsymm8(shape, shape);
VisitLayersTopologically(quantizedNetworkQAsymm8.get(), validatorQAsymm8);
const QuantizerOptions options(DataType::QuantisedSymm16);
INetworkPtr quantizedNetworkQSymm16 = INetworkQuantizer::Create(network.get(), options)->ExportNetwork();
TestBatchNormalizationQuantization validatorQSymm16(options, shape, shape);
VisitLayersTopologically(quantizedNetworkQSymm16.get(), validatorQSymm16);
}
BOOST_AUTO_TEST_CASE(OverrideInputRangeEmptyNetwork)
{
RangeTracker ranges;
RangeTracker::MinMaxRange minMaxRange(-12.3f, 45.6f); // Range to use for the override
Network network; // Empty network
auto inputLayers = network.GetGraph().GetInputLayers(); // Empty list of input layers
OverrideInputRangeVisitor overrideInputRangeVisitor(ranges, 0, minMaxRange);
VisitLayers(inputLayers, overrideInputRangeVisitor);
BOOST_CHECK(ranges.IsEmpty()); // Check that the map of ranges remained untouched
}
BOOST_AUTO_TEST_CASE(OverrideInputRangeNoInputLayers)
{
RangeTracker ranges;
MinMaxRange minMaxRange(-12.3f, 45.6f); // Range to use for the override
Network network;
network.AddAdditionLayer(); // Network with no input layers
auto inputLayers = network.GetGraph().GetInputLayers(); // Empty list of input layers
OverrideInputRangeVisitor overrideInputRangeVisitor(ranges, 0, minMaxRange);
VisitLayers(inputLayers, overrideInputRangeVisitor);
BOOST_CHECK(ranges.IsEmpty()); // Check that the map of ranges remained untouched
}
BOOST_AUTO_TEST_CASE(OverrideInputRangeInputLayers)
{
RangeTracker ranges;
MinMaxRange minMaxRange(-12.3f, 45.6f); // Range to use for the override
Network network;
// Adding the layers
IConnectableLayer* input0 = network.AddInputLayer(0);
IConnectableLayer* input1 = network.AddInputLayer(1);
IConnectableLayer* addition = network.AddAdditionLayer();
IConnectableLayer* output = network.AddOutputLayer(2);
// Connecting the layer
input0->GetOutputSlot(0).Connect(addition->GetInputSlot(0));
input1->GetOutputSlot(0).Connect(addition->GetInputSlot(1));
addition->GetOutputSlot(0).Connect(output->GetInputSlot(0));
// Setting the TensorInfos
TensorShape shape{1U};
TensorInfo info(shape, DataType::Float32);
input0->GetOutputSlot(0).SetTensorInfo(info);
input1->GetOutputSlot(0).SetTensorInfo(info);
addition->GetOutputSlot(0).SetTensorInfo(info);
auto inputLayers = network.GetGraph().GetInputLayers(); // List of input layers
// Trying to override the input range for the input layer with binding id 3 (does not exist in the network)
OverrideInputRangeVisitor overrideInputRangeVisitorLayer3(ranges, 3, minMaxRange);
VisitLayers(inputLayers, overrideInputRangeVisitorLayer3);
// Check that the map of ranges remained untouched
BOOST_CHECK(ranges.IsEmpty());
// Override the input range for the input layer with binding id 1
OverrideInputRangeVisitor overrideInputRangeVisitorLayer1(ranges, 1, minMaxRange);
VisitLayers(inputLayers, overrideInputRangeVisitorLayer1);
// Check that the map of ranges has been populated
BOOST_CHECK(!ranges.IsEmpty());
// Check that an entry for the input layer with binding id 0 does not exist
BOOST_CHECK(!ranges.HasRanges(input0->GetGuid()));
// Check that an entry for the input layer with binding id 1 exists
BOOST_CHECK(ranges.HasRanges(input1->GetGuid()));
// Check the the overridden values are what we intended to set
BOOST_CHECK(ranges.GetRange(input1->GetGuid(), 0) == minMaxRange);
}
INetworkPtr CreateNetworkWithFullyConnectedLayer(const bool biasEnabled,
const TensorShape& inputShape,
const TensorShape& outputShape)
{
FullyConnectedDescriptor desc;
desc.m_BiasEnabled = biasEnabled;
INetworkPtr network = INetwork::Create();
const TensorInfo info(inputShape, DataType::Float32);
const TensorInfo outputInfo(outputShape, DataType::Float32);
std::vector<float> weightsData{-1.0f, 1.5f, 2.0f};
ConstTensor weights(info, weightsData);
// Add the layers
IConnectableLayer* input0 = network->AddInputLayer(0);
IConnectableLayer* fullyConnected;
if (desc.m_BiasEnabled)
{
std::vector<float> biasData{10.0f, 20.0f, 30.0f};
ConstTensor bias(info, biasData);
fullyConnected = network->AddFullyConnectedLayer(desc, weights, bias);
}
else
{
fullyConnected = network->AddFullyConnectedLayer(desc, weights);
}
IConnectableLayer* output = network->AddOutputLayer(1);
// Establish connections
input0->GetOutputSlot(0).Connect(fullyConnected->GetInputSlot(0));
fullyConnected->GetOutputSlot(0).Connect(output->GetInputSlot(0));
// Set TensorInfo
input0->GetOutputSlot(0).SetTensorInfo(info);
fullyConnected->GetOutputSlot(0).SetTensorInfo(outputInfo);
return network;
}
void ValidateFullyConnectedLayer(const bool biasEnabled)
{
class TestFullyConnectedQuantization : public TestQuantization
{
public:
TestFullyConnectedQuantization(const TensorShape& inputShape, const TensorShape& outputShape)
: TestQuantization(inputShape, outputShape) {}
TestFullyConnectedQuantization(const QuantizerOptions& options,
const TensorShape& inputShape,
const TensorShape& outputShape)
: TestQuantization(options, inputShape, outputShape) {}
void VisitFullyConnectedLayer(const IConnectableLayer* layer,
const FullyConnectedDescriptor& desc,
const ConstTensor& weights,
const Optional<ConstTensor>& biases,
const char* name = nullptr) override
{
TensorInfo info = layer->GetOutputSlot(0).GetTensorInfo();
// Based off default static range [-15.0f, 15.0f]
TestQuantizationParams(
info, {30.0f / g_Asymm8QuantizationBase, 128}, {15.0f / g_Symm16QuantizationBase, 0});
TestConstantQuantizationParams(weights.GetInfo(), {3.0f / g_Asymm8QuantizationBase, 85});
if (biases.has_value())
{
TestConstantQuantizationParams(biases.value().GetInfo(), {30.0f / g_Asymm8QuantizationBase, 0});
}
}
};
const TensorShape shape{3U};
INetworkPtr network = CreateNetworkWithFullyConnectedLayer(biasEnabled, shape, shape);
INetworkPtr quantizedNetworkQAsymm8 = INetworkQuantizer::Create(network.get())->ExportNetwork();
TestFullyConnectedQuantization validatorQAsymm8(shape, shape);
VisitLayersTopologically(quantizedNetworkQAsymm8.get(), validatorQAsymm8);
const QuantizerOptions options(DataType::QuantisedSymm16);
INetworkPtr quantizedNetworkQSymm16 = INetworkQuantizer::Create(network.get(), options)->ExportNetwork();
TestFullyConnectedQuantization validatorQSymm16(options, shape, shape);
VisitLayersTopologically(quantizedNetworkQSymm16.get(), validatorQSymm16);
}
BOOST_AUTO_TEST_CASE(QuantizeFullyConnected)
{
ValidateFullyConnectedLayer(false);
}
BOOST_AUTO_TEST_CASE(QuantizeFullyConnectedBiasEnabled)
{
ValidateFullyConnectedLayer(true);
}
void TestQuantizeConvolution2d(bool useBiases)
{
class TestConv2dQuantization : public TestQuantization
{
public:
TestConv2dQuantization(const TensorShape& inputShape, const TensorShape& outputShape)
: TestQuantization(inputShape, outputShape) {}
TestConv2dQuantization(const QuantizerOptions& options,
const TensorShape& inputShape,
const TensorShape& outputShape)
: TestQuantization(options, inputShape, outputShape) {}
void VisitConvolution2dLayer(const IConnectableLayer *layer,
const Convolution2dDescriptor& convolution2dDescriptor,
const ConstTensor& weights,
const Optional<ConstTensor>& biases,
const char *name = nullptr) override
{
TensorInfo info = layer->GetOutputSlot(0).GetTensorInfo();
// Based off default static range [-15.0f, 15.0f]
TestQuantizationParams(
info, {30.0f / g_Asymm8QuantizationBase, 128}, {15.0f / g_Symm16QuantizationBase, 0});
TestConstantQuantizationParams(weights.GetInfo(), {3.0f / g_Asymm8QuantizationBase, 85});
if (biases.has_value())
{
TestConstantQuantizationParams(biases.value().GetInfo(), {3.0f / g_Asymm8QuantizationBase, 85});
}
}
};
INetworkPtr network = INetwork::Create();
TensorShape shape{3U};
TensorInfo info(shape, DataType::Float32);
std::vector<float> weightsData{-1.0f, 1.5f, 2.0f};
ConstTensor weights(info, weightsData);
Convolution2dDescriptor descriptor;
descriptor.m_BiasEnabled = useBiases;
// Add the layers
IConnectableLayer* input0 = network->AddInputLayer(0);
IConnectableLayer* conv2d;
if (useBiases)
{
std::vector<float> biasesData{-1.0f, 1.5f, 2.0f};
ConstTensor biases(info, biasesData);
conv2d = network->AddConvolution2dLayer(descriptor, weights, biases);
}
else
{
conv2d = network->AddConvolution2dLayer(descriptor, weights);
}
IConnectableLayer* output = network->AddOutputLayer(1);
// Establish connections
input0->GetOutputSlot(0).Connect(conv2d->GetInputSlot(0));
conv2d->GetOutputSlot(0).Connect(output->GetInputSlot(0));
// Set TensorInfo
input0->GetOutputSlot(0).SetTensorInfo(info);
conv2d->GetOutputSlot(0).SetTensorInfo(info);
INetworkPtr quantizedNetworkQAsymm8 = INetworkQuantizer::Create(network.get())->ExportNetwork();
TestConv2dQuantization validatorQAsymm8(shape, shape);
VisitLayersTopologically(quantizedNetworkQAsymm8.get(), validatorQAsymm8);
const QuantizerOptions options(DataType::QuantisedSymm16);
INetworkPtr quantizedNetworkQSymm16 = INetworkQuantizer::Create(network.get(), options)->ExportNetwork();
TestConv2dQuantization validatorQSymm16(options, shape, shape);
VisitLayersTopologically(quantizedNetworkQSymm16.get(), validatorQSymm16);
}
BOOST_AUTO_TEST_CASE(QuantizeConvolution2d)
{
TestQuantizeConvolution2d(false);
}
BOOST_AUTO_TEST_CASE(QuantizeConvolution2dWithBiases)
{
TestQuantizeConvolution2d(true);
}
void TestQuantizeDepthwiseConvolution2d(bool useBiases)
{
class TestDepthwiseConv2dQuantization : public TestQuantization
{
public:
TestDepthwiseConv2dQuantization(const TensorShape& inputShape, const TensorShape& outputShape)
: TestQuantization(inputShape, outputShape) {}
TestDepthwiseConv2dQuantization(const QuantizerOptions& options,
const TensorShape& inputShape,
const TensorShape& outputShape)
: TestQuantization(options, inputShape, outputShape) {}
void VisitDepthwiseConvolution2dLayer(const IConnectableLayer *layer,
const DepthwiseConvolution2dDescriptor& convolution2dDescriptor,
const ConstTensor& weights,
const Optional<ConstTensor>& biases,
const char *name = nullptr) override
{
TensorInfo info = layer->GetOutputSlot(0).GetTensorInfo();
// Based off default static range [-15.0f, 15.0f]
TestQuantizationParams(
info, {30.0f / g_Asymm8QuantizationBase, 128}, {15.0f / g_Symm16QuantizationBase, 0});
TestConstantQuantizationParams(weights.GetInfo(), {3.0f / g_Asymm8QuantizationBase, 85});
if (biases.has_value())
{
TestConstantQuantizationParams(biases.value().GetInfo(), {3.0f / g_Asymm8QuantizationBase, 85});
}
}
};
INetworkPtr network = INetwork::Create();
TensorShape shape{3U};
TensorInfo info(shape, DataType::Float32);
std::vector<float> weightsData{-1.0f, 1.5f, 2.0f};
ConstTensor weights(info, weightsData);
DepthwiseConvolution2dDescriptor descriptor;
descriptor.m_BiasEnabled = useBiases;
// Add the layers
IConnectableLayer* input0 = network->AddInputLayer(0);
IConnectableLayer* depthwiseConv2d;
if (useBiases)
{
std::vector<float> biasesData{-1.0f, 1.5f, 2.0f};
ConstTensor biases(info, biasesData);
depthwiseConv2d = network->AddDepthwiseConvolution2dLayer(descriptor, weights, biases);
}
else
{
depthwiseConv2d = network->AddDepthwiseConvolution2dLayer(descriptor, weights);
}
IConnectableLayer* output = network->AddOutputLayer(1);
// Establish connections
input0->GetOutputSlot(0).Connect(depthwiseConv2d->GetInputSlot(0));
depthwiseConv2d->GetOutputSlot(0).Connect(output->GetInputSlot(0));
//Set TensorInfo
input0->GetOutputSlot(0).SetTensorInfo(info);
depthwiseConv2d->GetOutputSlot(0).SetTensorInfo(info);
INetworkPtr quantizedNetworkQAsymm8 = INetworkQuantizer::Create(network.get())->ExportNetwork();
TestDepthwiseConv2dQuantization validatorQAsymm8(shape, shape);
VisitLayersTopologically(quantizedNetworkQAsymm8.get(), validatorQAsymm8);
const QuantizerOptions options(DataType::QuantisedSymm16);
INetworkPtr quantizedNetworkQSymm16 = INetworkQuantizer::Create(network.get(), options)->ExportNetwork();
TestDepthwiseConv2dQuantization validatorQSymm16(options, shape, shape);
VisitLayersTopologically(quantizedNetworkQSymm16.get(), validatorQSymm16);
}
BOOST_AUTO_TEST_CASE(QuantizeDepthwiseConvolution2d)
{
TestQuantizeDepthwiseConvolution2d(false);
}
BOOST_AUTO_TEST_CASE(QuantizeDepthwiseConvolution2dWithBiases)
{
TestQuantizeDepthwiseConvolution2d(true);
}
INetworkPtr CreateNetworkWithSoftmaxLayer(const SoftmaxDescriptor& descriptor, const TensorShape& shape)
{
INetworkPtr network = INetwork::Create();
// Add the layers
IConnectableLayer* input0 = network->AddInputLayer(0);
IConnectableLayer* softmax = network->AddSoftmaxLayer(descriptor);
IConnectableLayer* output = network->AddOutputLayer(2);
// Establish connections
input0->GetOutputSlot(0).Connect(softmax->GetInputSlot(0));
softmax->GetOutputSlot(0).Connect(output->GetInputSlot(0));
// Set TensorInfo
TensorInfo info(shape, DataType::Float32);
input0->GetOutputSlot(0).SetTensorInfo(info);
softmax->GetOutputSlot(0).SetTensorInfo(info);
return network;
}
BOOST_AUTO_TEST_CASE(QuantizeSoftmax)
{
class TestSoftmaxQuantization : public TestQuantization
{
public:
TestSoftmaxQuantization(const TensorShape& inputShape, const TensorShape& outputShape)
: TestQuantization(inputShape, outputShape) {}
TestSoftmaxQuantization(const QuantizerOptions& options,
const TensorShape& inputShape,
const TensorShape& outputShape)
: TestQuantization(options, inputShape, outputShape) {}
void VisitSoftmaxLayer(const IConnectableLayer* layer,
const SoftmaxDescriptor& descriptor,
const char* name = nullptr) override
{
TensorInfo info = layer->GetOutputSlot(0).GetTensorInfo();
// Based off default static range [0.0f, 1.0f]
TestQuantizationParams(info, {1.0f / g_Asymm8QuantizationBase, 0}, {1.0f / g_Symm16QuantizationBase, 0});
}
};
SoftmaxDescriptor descriptor;
descriptor.m_Beta = 1.0f;
const TensorShape shape{1U};
INetworkPtr network = CreateNetworkWithSoftmaxLayer(descriptor, shape);
INetworkPtr quantizedNetworkQAsymm8 = INetworkQuantizer::Create(network.get())->ExportNetwork();
TestSoftmaxQuantization validatorQAsymm8(shape, shape);
VisitLayersTopologically(quantizedNetworkQAsymm8.get(), validatorQAsymm8);
const QuantizerOptions options(DataType::QuantisedSymm16);
INetworkPtr quantizedNetworkQSymm16 = INetworkQuantizer::Create(network.get(), options)->ExportNetwork();
TestSoftmaxQuantization validatorQSymm16(options, shape, shape);
VisitLayersTopologically(quantizedNetworkQSymm16.get(), validatorQSymm16);
}
IConnectableLayer* CreateStartOfLeakyReluNetwork(INetwork* network, const TensorInfo& info)
{
ActivationDescriptor activationDescriptor;
activationDescriptor.m_Function = ActivationFunction::LeakyReLu;
activationDescriptor.m_A = 3.5f;
activationDescriptor.m_B = -10.0f;
// Add the layers
IConnectableLayer* input0 = network->AddInputLayer(0);
IConnectableLayer* activation = network->AddActivationLayer(activationDescriptor);
// Establish connections
input0->GetOutputSlot(0).Connect(activation->GetInputSlot(0));
// Set TensorInfo
input0->GetOutputSlot(0).SetTensorInfo(info);
activation->GetOutputSlot(0).SetTensorInfo(info);
return activation;
}
void CompleteLeakyReluNetwork(INetwork* network,
IConnectableLayer* activation,
IConnectableLayer* layerUnderTest,
const TensorInfo& info)
{
// Add the output Layer
IConnectableLayer* output = network->AddOutputLayer(3);
// Establish connections
activation->GetOutputSlot(0).Connect(layerUnderTest->GetInputSlot(0));
layerUnderTest->GetOutputSlot(0).Connect(output->GetInputSlot(0));
//Set TensorInfo
layerUnderTest->GetOutputSlot(0).SetTensorInfo(info);
}
BOOST_AUTO_TEST_CASE(QuantizePermute)
{
class TestPermuteQuantization : public TestLeakyReLuActivationQuantization
{
public:
TestPermuteQuantization(const TensorShape& inputShape, const TensorShape& outputShape)
: TestLeakyReLuActivationQuantization(inputShape, outputShape) {}
TestPermuteQuantization(const QuantizerOptions& options,
const TensorShape& inputShape,
const TensorShape& outputShape)
: TestLeakyReLuActivationQuantization(options, inputShape, outputShape) {}
void VisitPermuteLayer(const IConnectableLayer* layer,
const PermuteDescriptor& desc,
const char* name = nullptr) override
{
CheckForwardedQuantizationSettings(layer);
}
};
INetworkPtr network = INetwork::Create();
const TensorShape shape{1U};
TensorInfo info(shape, DataType::Float32);
IConnectableLayer* activation = CreateStartOfLeakyReluNetwork(network.get(), info);
// Add the layer under test
PermuteDescriptor desc;
IConnectableLayer* permute = network->AddPermuteLayer(desc);
CompleteLeakyReluNetwork(network.get(), activation, permute, info);
INetworkPtr quantizedNetworkQAsymm8 = INetworkQuantizer::Create(network.get())->ExportNetwork();
TestPermuteQuantization validatorQAsymm8(shape, shape);
VisitLayersTopologically(quantizedNetworkQAsymm8.get(), validatorQAsymm8);
const QuantizerOptions options(DataType::QuantisedSymm16);
INetworkPtr quantizedNetworkQSymm16 = INetworkQuantizer::Create(network.get(), options)->ExportNetwork();
TestPermuteQuantization validatorQSymm16(options, shape, shape);
VisitLayersTopologically(quantizedNetworkQSymm16.get(), validatorQSymm16);
}
BOOST_AUTO_TEST_CASE(QuantizeSpaceToBatch)
{
class TestSpaceToBatchQuantization : public TestLeakyReLuActivationQuantization
{
public:
TestSpaceToBatchQuantization(const TensorShape& inputShape, const TensorShape& outputShape)
: TestLeakyReLuActivationQuantization(inputShape, outputShape) {}
TestSpaceToBatchQuantization(const QuantizerOptions& options,
const TensorShape& inputShape,
const TensorShape& outputShape)
: TestLeakyReLuActivationQuantization(options, inputShape, outputShape) {}
void VisitSpaceToBatchNdLayer(const IConnectableLayer* layer,
const SpaceToBatchNdDescriptor& spaceToBatchNdDescriptor,
const char* name = nullptr) override
{
CheckForwardedQuantizationSettings(layer);
}
};
INetworkPtr network = INetwork::Create();
const TensorShape shape{1U};
TensorInfo info(shape, DataType::Float32);
IConnectableLayer* activation = CreateStartOfLeakyReluNetwork(network.get(), info);
// Add the layer under test
SpaceToBatchNdDescriptor descriptor;
IConnectableLayer* spaceToBatch = network->AddSpaceToBatchNdLayer(descriptor);
CompleteLeakyReluNetwork(network.get(), activation, spaceToBatch, info);
INetworkPtr quantizedNetworkQAsymm8 = INetworkQuantizer::Create(network.get())->ExportNetwork();
TestSpaceToBatchQuantization validatorQAsymm8(shape, shape);
VisitLayersTopologically(quantizedNetworkQAsymm8.get(), validatorQAsymm8);
const QuantizerOptions options(DataType::QuantisedSymm16);
INetworkPtr quantizedNetworkQSymm16 = INetworkQuantizer::Create(network.get(), options)->ExportNetwork();
TestSpaceToBatchQuantization validatorQSymm16(options, shape, shape);
VisitLayersTopologically(quantizedNetworkQSymm16.get(), validatorQSymm16);
}
BOOST_AUTO_TEST_CASE(QuantizePooling2d)
{
class TestPooling2dQuantization : public TestLeakyReLuActivationQuantization
{
public:
TestPooling2dQuantization(const TensorShape& inputShape, const TensorShape& outputShape)
: TestLeakyReLuActivationQuantization(inputShape, outputShape) {}
TestPooling2dQuantization(const QuantizerOptions& options,
const TensorShape& inputShape,
const TensorShape& outputShape)
: TestLeakyReLuActivationQuantization(options, inputShape, outputShape) {}
void VisitPooling2dLayer(const IConnectableLayer* layer,
const Pooling2dDescriptor& desc,
const char* name = nullptr) override
{
CheckForwardedQuantizationSettings(layer);
}
};
auto network = INetwork::Create();
TensorShape shape{1U};
TensorInfo info(shape, DataType::Float32);
Pooling2dDescriptor desc;
ActivationDescriptor activationDescriptor;
activationDescriptor.m_Function = ActivationFunction::LeakyReLu;
activationDescriptor.m_A = 3.5f;
activationDescriptor.m_B = -10.0f;
// Add the layers
IConnectableLayer* input0 = network->AddInputLayer(0);
IConnectableLayer* activation = network->AddActivationLayer(activationDescriptor);
IConnectableLayer* pooling2d = network->AddPooling2dLayer(desc);
IConnectableLayer* output = network->AddOutputLayer(3);
// Establish connections
input0->GetOutputSlot(0).Connect(activation->GetInputSlot(0));
activation->GetOutputSlot(0).Connect(pooling2d->GetInputSlot(0));
pooling2d->GetOutputSlot(0).Connect(output->GetInputSlot(0));
// Set TensorInfo
input0->GetOutputSlot(0).SetTensorInfo(info);
activation->GetOutputSlot(0).SetTensorInfo(info);
pooling2d->GetOutputSlot(0).SetTensorInfo(info);
INetworkPtr quantizedNetworkQAsymm8 = INetworkQuantizer::Create(network.get())->ExportNetwork();
TestPooling2dQuantization validatorQAsymm8(shape, shape);
VisitLayersTopologically(quantizedNetworkQAsymm8.get(), validatorQAsymm8);
const QuantizerOptions options(DataType::QuantisedSymm16);
INetworkPtr quantizedNetworkQSymm16 = INetworkQuantizer::Create(network.get(), options)->ExportNetwork();
TestPooling2dQuantization validatorQSymm16(options, shape, shape);
VisitLayersTopologically(quantizedNetworkQSymm16.get(), validatorQSymm16);
}
BOOST_AUTO_TEST_CASE(QuantizeConstant)
{
class TestConstantQuantization : public TestAdditionQuantization
{
public:
TestConstantQuantization(const TensorShape& inputShape, const TensorShape& outputShape)
: TestAdditionQuantization(inputShape, outputShape) {}
TestConstantQuantization(const QuantizerOptions& options,
const TensorShape& inputShape,
const TensorShape& outputShape)
: TestAdditionQuantization(options, inputShape, outputShape) {}
void VisitConstantLayer(const IConnectableLayer* layer,
const ConstTensor& input,
const char* name = nullptr) override
{
TensorInfo info = layer->GetOutputSlot(0).GetTensorInfo();
// Based off the range of values in the const tensor used for the test: [-2.0f, 6.0f]
TestQuantizationParams(info, {8.0f / g_Asymm8QuantizationBase, 64}, {6.0f / g_Symm16QuantizationBase, 0});
}
};
INetworkPtr network = INetwork::Create();
// Constant layer data
std::vector<float> data = {-2.0f, -1.0f, 0.0f, 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f};
const TensorShape shape{1U, 1U, 3U, 3U};
TensorInfo tensorInfo(shape, DataType::Float32);
ConstTensor constantTensor(tensorInfo, data);
// Add the layers
IConnectableLayer* input = network->AddInputLayer(0);
IConnectableLayer* constant = network->AddConstantLayer(constantTensor);
IConnectableLayer* addition = network->AddAdditionLayer();
IConnectableLayer* output = network->AddOutputLayer(1);
// Establish connections
input->GetOutputSlot(0).Connect(addition->GetInputSlot(0));
constant->GetOutputSlot(0).Connect(addition->GetInputSlot(1));
addition->GetOutputSlot(0).Connect(output->GetInputSlot(0));
// Set TensorInfo in the remaining layers
input->GetOutputSlot(0).SetTensorInfo(tensorInfo);
addition->GetOutputSlot(0).SetTensorInfo(tensorInfo);
constant->GetOutputSlot(0).SetTensorInfo(tensorInfo);
INetworkPtr quantizedNetworkQAsymm8 = INetworkQuantizer::Create(network.get())->ExportNetwork();
TestConstantQuantization validatorQAsymm8(shape, shape);
VisitLayersTopologically(quantizedNetworkQAsymm8.get(), validatorQAsymm8);
const QuantizerOptions options(DataType::QuantisedSymm16);
INetworkPtr quantizedNetworkQSymm16 = INetworkQuantizer::Create(network.get(), options)->ExportNetwork();
TestConstantQuantization validatorQSymm16(options, shape, shape);
VisitLayersTopologically(quantizedNetworkQSymm16.get(), validatorQSymm16);
}
BOOST_AUTO_TEST_CASE(QuantizeMerger)
{
class TestMergerQuantization : public TestQuantization
{
public:
TestMergerQuantization(const TensorShape& inputShape, const TensorShape& outputShape)
: TestQuantization(inputShape, outputShape) {}
TestMergerQuantization(const QuantizerOptions& options,
const TensorShape& inputShape,
const TensorShape& outputShape)
: TestQuantization(options, inputShape, outputShape) {}
void VisitInputLayer(const IConnectableLayer* layer,
LayerBindingId id,
const char* name = nullptr) override
{}
void VisitOutputLayer(const IConnectableLayer* layer,
LayerBindingId id,
const char* name = nullptr) override
{}
void VisitMergerLayer(const IConnectableLayer* layer,
const OriginsDescriptor& mergerDescriptor,
const char* name = nullptr) override
{
TensorInfo info = layer->GetOutputSlot(0).GetTensorInfo();
TestQuantizationParams(
info, {60.8f / g_Asymm8QuantizationBase, 65}, {45.3f / g_Symm16QuantizationBase, 0});
}
};
INetworkPtr network = INetwork::Create();
IConnectableLayer* input0 = network->AddInputLayer(0);
IConnectableLayer* input1 = network->AddInputLayer(1);
IConnectableLayer* input2 = network->AddInputLayer(2);
OriginsDescriptor descriptor(3, 1);
IConnectableLayer* merger = network->AddMergerLayer(descriptor);
IConnectableLayer* output0 = network->AddOutputLayer(3);
// Establish connections
input0->GetOutputSlot(0).Connect(merger->GetInputSlot(0));
input1->GetOutputSlot(0).Connect(merger->GetInputSlot(1));
input2->GetOutputSlot(0).Connect(merger->GetInputSlot(2));
merger->GetOutputSlot(0).Connect(output0->GetInputSlot(0));
// Set TensorInfo
const TensorShape shape{1U};
TensorInfo info(shape, DataType::Float32);
input0->GetOutputSlot(0).SetTensorInfo(info);
input1->GetOutputSlot(0).SetTensorInfo(info);
input2->GetOutputSlot(0).SetTensorInfo(info);
merger->GetOutputSlot(0).SetTensorInfo(info);
const QuantizerOptions options(DataType::QuantisedSymm16);
INetworkQuantizerPtr quantizerPtrQAsymm8 = INetworkQuantizer::Create(network.get());
INetworkQuantizerPtr quantizerPtrQSymm16 = INetworkQuantizer::Create(network.get(), options);
// Override the input ranges
float min = -15.5f;
float max = 45.3f;
quantizerPtrQAsymm8->OverrideInputRange(0, (min + 2.1f), (max - 3.2f));
quantizerPtrQAsymm8->OverrideInputRange(1, (min + 6.7f), max);
quantizerPtrQAsymm8->OverrideInputRange(2, min, (max - 7.8f));
quantizerPtrQSymm16->OverrideInputRange(0, (min + 2.1f), (max - 3.2f));
quantizerPtrQSymm16->OverrideInputRange(1, (min + 6.7f), max);
quantizerPtrQSymm16->OverrideInputRange(2, min, (max - 7.8f));
INetworkPtr quantizedNetworkQAsymm8 = quantizerPtrQAsymm8->ExportNetwork();
TestMergerQuantization validatorQAsymm8(shape, shape);
VisitLayersTopologically(quantizedNetworkQAsymm8.get(), validatorQAsymm8);
INetworkPtr quantizedNetworkQSymm16 = quantizerPtrQSymm16->ExportNetwork();
TestMergerQuantization validatorQSymm16(options, shape, shape);
VisitLayersTopologically(quantizedNetworkQSymm16.get(), validatorQSymm16);
}
BOOST_AUTO_TEST_CASE(QuantizeReshape)
{
class TestReshapeQuantization : public TestLeakyReLuActivationQuantization
{
public:
TestReshapeQuantization(const TensorShape& inputShape, const TensorShape& outputShape)
: TestLeakyReLuActivationQuantization(inputShape, outputShape) {}
TestReshapeQuantization(const QuantizerOptions& options,
const TensorShape& inputShape,
const TensorShape& outputShape)
: TestLeakyReLuActivationQuantization(options, inputShape, outputShape) {}
virtual void VisitReshapeLayer(const IConnectableLayer* layer,
const ReshapeDescriptor& reshapeDescriptor,
const char* name = nullptr) override
{
CheckForwardedQuantizationSettings(layer);
}
};
INetworkPtr network = INetwork::Create();
const TensorShape shape{1U};
TensorInfo info(shape, DataType::Float32);
IConnectableLayer* activation = CreateStartOfLeakyReluNetwork(network.get(), info);
// Add the layer under test
ReshapeDescriptor descriptor({1, 2, 3, 4});
IConnectableLayer* reshape = network->AddReshapeLayer(descriptor);
CompleteLeakyReluNetwork(network.get(), activation, reshape, info);
INetworkPtr quantizedNetworkQAsymm8 = INetworkQuantizer::Create(network.get())->ExportNetwork();
TestReshapeQuantization validatorQAsymm8(shape, shape);
VisitLayersTopologically(quantizedNetworkQAsymm8.get(), validatorQAsymm8);
const QuantizerOptions options(DataType::QuantisedSymm16);
INetworkPtr quantizedNetworkQSymm16 = INetworkQuantizer::Create(network.get(), options)->ExportNetwork();
TestReshapeQuantization validatorQSymm16(options, shape, shape);
VisitLayersTopologically(quantizedNetworkQSymm16.get(), validatorQSymm16);
}
BOOST_AUTO_TEST_CASE(QuantizeSplitter)
{
class TestSplitterQuantization : public TestLeakyReLuActivationQuantization
{
public:
TestSplitterQuantization(const TensorShape& inputShape, const TensorShape& outputShape)
: TestLeakyReLuActivationQuantization(inputShape, outputShape) {}
TestSplitterQuantization(const QuantizerOptions& options,
const TensorShape& inputShape,
const TensorShape& outputShape)
: TestLeakyReLuActivationQuantization(options, inputShape, outputShape) {}
virtual void VisitSplitterLayer(const IConnectableLayer* layer,
const SplitterDescriptor& desc,
const char* name = nullptr)
{
CheckForwardedQuantizationSettings(layer);
}
};
INetworkPtr network = INetwork::Create();
const TensorShape shape{3U};
TensorInfo info(shape, DataType::Float32);
IConnectableLayer* activation = CreateStartOfLeakyReluNetwork(network.get(), info);
// Add the layer under test
ViewsDescriptor splitterDesc(2,4);
IConnectableLayer* splitter = network->AddSplitterLayer(splitterDesc);
CompleteLeakyReluNetwork(network.get(), activation, splitter, info);
INetworkPtr quantizedNetworkQAsymm8 = INetworkQuantizer::Create(network.get())->ExportNetwork();
TestSplitterQuantization validatorQAsymm8(shape, shape);
VisitLayersTopologically(quantizedNetworkQAsymm8.get(), validatorQAsymm8);
const QuantizerOptions options(DataType::QuantisedSymm16);
INetworkPtr quantizedNetworkQSymm16 = INetworkQuantizer::Create(network.get(), options)->ExportNetwork();
TestSplitterQuantization validatorQSymm16(options, shape, shape);
VisitLayersTopologically(quantizedNetworkQSymm16.get(), validatorQSymm16);
}
BOOST_AUTO_TEST_CASE(QuantizeResizeBilinear)
{
class TestResizeBilinearQuantization : public TestLeakyReLuActivationQuantization
{
public:
TestResizeBilinearQuantization(const TensorShape& inputShape, const TensorShape& outputShape)
: TestLeakyReLuActivationQuantization(inputShape, outputShape) {}
TestResizeBilinearQuantization(const QuantizerOptions& options,
const TensorShape& inputShape,
const TensorShape& outputShape)
: TestLeakyReLuActivationQuantization(options, inputShape, outputShape) {}
void VisitResizeBilinearLayer(const IConnectableLayer* layer,
const ResizeBilinearDescriptor& resizeDescriptor,
const char* name = nullptr) override
{
CheckForwardedQuantizationSettings(layer);
}
};
INetworkPtr network = INetwork::Create();
const TensorShape shape{1U};
TensorInfo info(shape, DataType::Float32);
IConnectableLayer* activation = CreateStartOfLeakyReluNetwork(network.get(), info);
// Add the layer under test
ResizeBilinearDescriptor descriptor;
descriptor.m_TargetHeight = 3;
descriptor.m_TargetWidth = 3;
IConnectableLayer* spaceToBatch = network->AddResizeBilinearLayer(descriptor);
CompleteLeakyReluNetwork(network.get(), activation, spaceToBatch, info);
INetworkPtr quantizedNetworkQAsymm8 = INetworkQuantizer::Create(network.get())->ExportNetwork();
TestResizeBilinearQuantization validatorQAsymm8(shape, shape);
VisitLayersTopologically(quantizedNetworkQAsymm8.get(), validatorQAsymm8);
const QuantizerOptions options(DataType::QuantisedSymm16);
INetworkPtr quantizedNetworkQSymm16 = INetworkQuantizer::Create(network.get(), options)->ExportNetwork();
TestResizeBilinearQuantization validatorQSymm16(options, shape, shape);
VisitLayersTopologically(quantizedNetworkQSymm16.get(), validatorQSymm16);
}
BOOST_AUTO_TEST_CASE(QuantizeStridedSlice)
{
class TestStridedSliceQuantization : public TestLeakyReLuActivationQuantization
{
public:
TestStridedSliceQuantization(const TensorShape& inputShape, const TensorShape& outputShape)
: TestLeakyReLuActivationQuantization(inputShape, outputShape) {}
TestStridedSliceQuantization(const QuantizerOptions& options,
const TensorShape& inputShape,
const TensorShape& outputShape)
: TestLeakyReLuActivationQuantization(options, inputShape, outputShape) {}
virtual void VisitStridedSliceLayer(const IConnectableLayer* layer,
const StridedSliceDescriptor& desc,
const char* name = nullptr)
{
CheckForwardedQuantizationSettings(layer);
}
};
INetworkPtr network = INetwork::Create();
const TensorShape shape{3U};
TensorInfo info(shape, DataType::Float32);
IConnectableLayer* activation = CreateStartOfLeakyReluNetwork(network.get(), info);
// Add the layer under test
StridedSliceDescriptor stridedSliceDesc;
IConnectableLayer* stridedSlice = network->AddStridedSliceLayer(stridedSliceDesc);
CompleteLeakyReluNetwork(network.get(), activation, stridedSlice, info);
INetworkPtr quantizedNetworkQAsymm8 = INetworkQuantizer::Create(network.get())->ExportNetwork();
TestStridedSliceQuantization validatorQAsymm8(shape, shape);
VisitLayersTopologically(quantizedNetworkQAsymm8.get(), validatorQAsymm8);
const QuantizerOptions options(DataType::QuantisedSymm16);
INetworkPtr quantizedNetworkQSymm16 = INetworkQuantizer::Create(network.get(), options)->ExportNetwork();
TestStridedSliceQuantization validatorQSymm16(options, shape, shape);
VisitLayersTopologically(quantizedNetworkQSymm16.get(), validatorQSymm16);
}
BOOST_AUTO_TEST_CASE(QuantizeBatchToSpace)
{
class TestBatchToSpaceQuantization : public TestLeakyReLuActivationQuantization
{
public:
TestBatchToSpaceQuantization(const TensorShape& inputShape, const TensorShape& outputShape)
: TestLeakyReLuActivationQuantization(inputShape, outputShape) {}
TestBatchToSpaceQuantization(const QuantizerOptions& options,
const TensorShape& inputShape,
const TensorShape& outputShape)
: TestLeakyReLuActivationQuantization(options, inputShape, outputShape) {}
void VisitBatchToSpaceNdLayer(const IConnectableLayer* layer,
const BatchToSpaceNdDescriptor& batchToSpaceNdDescriptor,
const char* name = nullptr) override
{
CheckForwardedQuantizationSettings(layer);
}
};
INetworkPtr network = INetwork::Create();
const TensorShape shape{1U};
TensorInfo info(shape, DataType::Float32);
IConnectableLayer* activation = CreateStartOfLeakyReluNetwork(network.get(), info);
// Add the layer under test
BatchToSpaceNdDescriptor descriptor;
IConnectableLayer* batchToSpace = network->AddBatchToSpaceNdLayer(descriptor);
CompleteLeakyReluNetwork(network.get(), activation, batchToSpace, info);
INetworkPtr quantizedNetworkQAsymm8 = INetworkQuantizer::Create(network.get())->ExportNetwork();
TestBatchToSpaceQuantization validatorQAsymm8(shape, shape);
VisitLayersTopologically(quantizedNetworkQAsymm8.get(), validatorQAsymm8);
const QuantizerOptions options(DataType::QuantisedSymm16);
INetworkPtr quantizedNetworkQSymm16 = INetworkQuantizer::Create(network.get(), options)->ExportNetwork();
TestBatchToSpaceQuantization validatorQSymm16(options, shape, shape);
VisitLayersTopologically(quantizedNetworkQSymm16.get(), validatorQSymm16);
}
std::vector<uint8_t> SetupQuantize(float value)
{
armnn::TensorInfo inputInfo({ 1, 2, 2 }, armnn::DataType::Float32);
inputInfo.SetQuantizationScale(1.0f);
inputInfo.SetQuantizationOffset(1);
std::vector<float> input({
value, 0.0f,
0.0f, 1.0f
});
const std::vector<float> &inputRef = input;
auto output = QuantizedVector<uint8_t>(inputInfo.GetQuantizationScale(),
inputInfo.GetQuantizationOffset(),
inputRef);
return output;
}
BOOST_AUTO_TEST_CASE(QuantizeInf)
{
BOOST_CHECK_EQUAL(SetupQuantize(std::numeric_limits<float>::infinity())[0], 255);
}
BOOST_AUTO_TEST_CASE(QuantizeNegativeInf)
{
BOOST_CHECK_EQUAL(SetupQuantize(-1 * std::numeric_limits<float>::infinity())[0], 0);
}
BOOST_AUTO_TEST_SUITE_END()
} // namespace armnn