blob: 2bab669fb7f6748a50ec4550ef59f67f109f68c3 [file] [log] [blame]
# Copyright © 2021 Arm Ltd and Contributors. All rights reserved.
# SPDX-License-Identifier: MIT
"""Class used to extract the Mel-frequency cepstral coefficients from a given audio frame."""
import numpy as np
import collections
MFCCParams = collections.namedtuple('MFCCParams', ['sampling_freq', 'num_fbank_bins', 'mel_lo_freq', 'mel_hi_freq',
'num_mfcc_feats', 'frame_len', 'use_htk_method', 'n_fft'])
class MFCC:
def __init__(self, mfcc_params):
self.mfcc_params = mfcc_params
self.FREQ_STEP = 200.0 / 3
self.MIN_LOG_HZ = 1000.0
self.MIN_LOG_MEL = self.MIN_LOG_HZ / self.FREQ_STEP
self.LOG_STEP = 1.8562979903656 / 27.0
self._frame_len_padded = int(2 ** (np.ceil((np.log(self.mfcc_params.frame_len) / np.log(2.0)))))
self._filter_bank_initialised = False
self.__frame = np.zeros(self._frame_len_padded)
self.__buffer = np.zeros(self._frame_len_padded)
self._filter_bank_filter_first = np.zeros(self.mfcc_params.num_fbank_bins)
self._filter_bank_filter_last = np.zeros(self.mfcc_params.num_fbank_bins)
self.__mel_energies = np.zeros(self.mfcc_params.num_fbank_bins)
self._dct_matrix = self.create_dct_matrix(self.mfcc_params.num_fbank_bins, self.mfcc_params.num_mfcc_feats)
self.__mel_filter_bank = self.create_mel_filter_bank()
self._np_mel_bank = np.zeros([self.mfcc_params.num_fbank_bins, int(self.mfcc_params.n_fft / 2) + 1])
for i in range(self.mfcc_params.num_fbank_bins):
k = 0
for j in range(int(self._filter_bank_filter_first[i]), int(self._filter_bank_filter_last[i]) + 1):
self._np_mel_bank[i, j] = self.__mel_filter_bank[i][k]
k += 1
def mel_scale(self, freq, use_htk_method):
"""
Gets the mel scale for a particular sample frequency.
Args:
freq: The sampling frequency.
use_htk_method: Boolean to set whether to use HTK method or not.
Returns:
the mel scale
"""
if use_htk_method:
return 1127.0 * np.log(1.0 + freq / 700.0)
else:
mel = freq / self.FREQ_STEP
if freq >= self.MIN_LOG_HZ:
mel = self.MIN_LOG_MEL + np.log(freq / self.MIN_LOG_HZ) / self.LOG_STEP
return mel
def inv_mel_scale(self, mel_freq, use_htk_method):
"""
Gets the sample frequency for a particular mel.
Args:
mel_freq: The mel frequency.
use_htk_method: Boolean to set whether to use HTK method or not.
Returns:
the sample frequency
"""
if use_htk_method:
return 700.0 * (np.exp(mel_freq / 1127.0) - 1.0)
else:
freq = self.FREQ_STEP * mel_freq
if mel_freq >= self.MIN_LOG_MEL:
freq = self.MIN_LOG_HZ * np.exp(self.LOG_STEP * (mel_freq - self.MIN_LOG_MEL))
return freq
def spectrum_calc(self, audio_data):
return np.abs(np.fft.rfft(np.hanning(self.mfcc_params.frame_len + 1)[0:self.mfcc_params.frame_len] * audio_data,
self.mfcc_params.n_fft))
def log_mel(self, mel_energy):
mel_energy += 1e-10 # Avoid division by zero
return np.log(mel_energy)
def mfcc_compute(self, audio_data):
"""
Extracts the MFCC for a single frame.
Args:
audio_data: The audio data to process.
Returns:
the MFCC features
"""
if len(audio_data) != self.mfcc_params.frame_len:
raise ValueError(
f"audio_data buffer size {len(audio_data)} does not match frame length {self.mfcc_params.frame_len}")
audio_data = np.array(audio_data)
spec = self.spectrum_calc(audio_data)
mel_energy = np.dot(self._np_mel_bank.astype(np.float32),
np.transpose(spec).astype(np.float32))
log_mel_energy = self.log_mel(mel_energy)
mfcc_feats = np.dot(self._dct_matrix, log_mel_energy)
return mfcc_feats
def create_dct_matrix(self, num_fbank_bins, num_mfcc_feats):
"""
Creates the Discrete Cosine Transform matrix to be used in the compute function.
Args:
num_fbank_bins: The number of filter bank bins
num_mfcc_feats: the number of MFCC features
Returns:
the DCT matrix
"""
dct_m = np.zeros(num_fbank_bins * num_mfcc_feats)
for k in range(num_mfcc_feats):
for n in range(num_fbank_bins):
dct_m[(k * num_fbank_bins) + n] = (np.sqrt(2 / num_fbank_bins)) * np.cos(
(np.pi / num_fbank_bins) * (n + 0.5) * k)
dct_m = np.reshape(dct_m, [self.mfcc_params.num_mfcc_feats, self.mfcc_params.num_fbank_bins])
return dct_m
def mel_norm(self, weight, right_mel, left_mel):
"""
Placeholder function over-ridden in child class
"""
return weight
def create_mel_filter_bank(self):
"""
Creates the Mel filter bank.
Returns:
the mel filter bank
"""
# FFT calculations are greatly accelerated for frame lengths which are powers of 2
# Frames are padded and FFT bin width/length calculated accordingly
num_fft_bins = int(self._frame_len_padded / 2)
fft_bin_width = self.mfcc_params.sampling_freq / self._frame_len_padded
mel_low_freq = self.mel_scale(self.mfcc_params.mel_lo_freq, self.mfcc_params.use_htk_method)
mel_high_freq = self.mel_scale(self.mfcc_params.mel_hi_freq, self.mfcc_params.use_htk_method)
mel_freq_delta = (mel_high_freq - mel_low_freq) / (self.mfcc_params.num_fbank_bins + 1)
this_bin = np.zeros(num_fft_bins)
mel_fbank = [0] * self.mfcc_params.num_fbank_bins
for bin_num in range(self.mfcc_params.num_fbank_bins):
left_mel = mel_low_freq + bin_num * mel_freq_delta
center_mel = mel_low_freq + (bin_num + 1) * mel_freq_delta
right_mel = mel_low_freq + (bin_num + 2) * mel_freq_delta
first_index = last_index = -1
for i in range(num_fft_bins):
freq = (fft_bin_width * i)
mel = self.mel_scale(freq, self.mfcc_params.use_htk_method)
this_bin[i] = 0.0
if (mel > left_mel) and (mel < right_mel):
if mel <= center_mel:
weight = (mel - left_mel) / (center_mel - left_mel)
else:
weight = (right_mel - mel) / (right_mel - center_mel)
this_bin[i] = self.mel_norm(weight, right_mel, left_mel)
if first_index == -1:
first_index = i
last_index = i
self._filter_bank_filter_first[bin_num] = first_index
self._filter_bank_filter_last[bin_num] = last_index
mel_fbank[bin_num] = np.zeros(last_index - first_index + 1)
j = 0
for i in range(first_index, last_index + 1):
mel_fbank[bin_num][j] = this_bin[i]
j += 1
return mel_fbank
class AudioPreprocessor:
def __init__(self, mfcc, model_input_size, stride):
self.model_input_size = model_input_size
self.stride = stride
self._mfcc_calc = mfcc
def _normalize(self, values):
"""
Normalize values to mean 0 and std 1
"""
ret_val = (values - np.mean(values)) / np.std(values)
return ret_val
def _get_features(self, features, mfcc_instance, audio_data):
idx = 0
while len(features) < self.model_input_size * mfcc_instance.mfcc_params.num_mfcc_feats:
current_frame_feats = mfcc_instance.mfcc_compute(audio_data[idx:idx + int(mfcc_instance.mfcc_params.frame_len)])
features.extend(current_frame_feats)
idx += self.stride
def mfcc_delta_calc(self, features):
"""
Placeholder function over-ridden in child class
"""
return features
def extract_features(self, audio_data):
"""
Extracts the MFCC features. Also calculates each features first and second order derivatives
if the mfcc_delta_calc() function has been implemented by a child class.
The matrix returned should be sized appropriately for input to the model, based
on the model info specified in the MFCC instance.
Args:
audio_data: the audio data to be used for this calculation
Returns:
the derived MFCC feature vector, sized appropriately for inference
"""
num_samples_per_inference = ((self.model_input_size - 1)
* self.stride) + self._mfcc_calc.mfcc_params.frame_len
if len(audio_data) < num_samples_per_inference:
raise ValueError("audio_data size for feature extraction is smaller than "
"the expected number of samples needed for inference")
features = []
self._get_features(features, self._mfcc_calc, np.asarray(audio_data))
features = np.reshape(np.array(features), (self.model_input_size, self._mfcc_calc.mfcc_params.num_mfcc_feats))
features = self.mfcc_delta_calc(features)
return np.float32(features)