blob: 6e2c53c43daa7451ea110b3df552c09feb89b97b [file] [log] [blame]
# Copyright © 2020 Arm Ltd and Contributors. All rights reserved.
# SPDX-License-Identifier: MIT
import os
from typing import List, Tuple
import pyarmnn as ann
import numpy as np
def create_network(model_file: str, backends: list, input_names: Tuple[str] = (), output_names: Tuple[str] = ()):
"""
Creates a network based on the model file and a list of backends.
Args:
model_file: User-specified model file.
backends: List of backends to optimize network.
input_names:
output_names:
Returns:
net_id: Unique ID of the network to run.
runtime: Runtime context for executing inference.
input_binding_info: Contains essential information about the model input.
output_binding_info: Used to map output tensor and its memory.
"""
if not os.path.exists(model_file):
raise FileNotFoundError(f'Model file not found for: {model_file}')
_, ext = os.path.splitext(model_file)
if ext == '.tflite':
parser = ann.ITfLiteParser()
else:
raise ValueError("Supplied model file type is not supported. Supported types are [ tflite ]")
network = parser.CreateNetworkFromBinaryFile(model_file)
# Specify backends to optimize network
preferred_backends = []
for b in backends:
preferred_backends.append(ann.BackendId(b))
# Select appropriate device context and optimize the network for that device
options = ann.CreationOptions()
runtime = ann.IRuntime(options)
opt_network, messages = ann.Optimize(network, preferred_backends, runtime.GetDeviceSpec(),
ann.OptimizerOptions())
print(f'Preferred backends: {backends}\n{runtime.GetDeviceSpec()}\n'
f'Optimization warnings: {messages}')
# Load the optimized network onto the Runtime device
net_id, _ = runtime.LoadNetwork(opt_network)
# Get input and output binding information
graph_id = parser.GetSubgraphCount() - 1
input_names = parser.GetSubgraphInputTensorNames(graph_id)
input_binding_info = parser.GetNetworkInputBindingInfo(graph_id, input_names[0])
output_names = parser.GetSubgraphOutputTensorNames(graph_id)
output_binding_info = []
for output_name in output_names:
out_bind_info = parser.GetNetworkOutputBindingInfo(graph_id, output_name)
output_binding_info.append(out_bind_info)
return net_id, runtime, input_binding_info, output_binding_info
def execute_network(input_tensors: list, output_tensors: list, runtime, net_id: int) -> List[np.ndarray]:
"""
Executes inference for the loaded network.
Args:
input_tensors: The input frame tensor.
output_tensors: The output tensor from output node.
runtime: Runtime context for executing inference.
net_id: Unique ID of the network to run.
Returns:
list: Inference results as a list of ndarrays.
"""
runtime.EnqueueWorkload(net_id, input_tensors, output_tensors)
output = ann.workload_tensors_to_ndarray(output_tensors)
return output
class ArmnnNetworkExecutor:
def __init__(self, model_file: str, backends: list):
"""
Creates an inference executor for a given network and a list of backends.
Args:
model_file: User-specified model file.
backends: List of backends to optimize network.
"""
self.network_id, self.runtime, self.input_binding_info, self.output_binding_info = create_network(model_file,
backends)
self.output_tensors = ann.make_output_tensors(self.output_binding_info)
def run(self, input_tensors: list) -> List[np.ndarray]:
"""
Executes inference for the loaded network.
Args:
input_tensors: The input frame tensor.
Returns:
list: Inference results as a list of ndarrays.
"""
return execute_network(input_tensors, self.output_tensors, self.runtime, self.network_id)