blob: cde69c2f90829a1d7a87a0d54c64c909ebf55453 [file] [log] [blame]
//
// Copyright © 2020, 2023-2024 Arm Ltd and Contributors. All rights reserved.
// SPDX-License-Identifier: MIT
//
#pragma once
#include "TestUtils.hpp"
#include <armnn_delegate.hpp>
#include <DelegateTestInterpreter.hpp>
#include <tensorflow/lite/version.h>
namespace
{
std::vector<char> CreateConcatTfLiteModel(tflite::BuiltinOperator controlOperatorCode,
tflite::TensorType tensorType,
std::vector<int32_t>& inputTensorShape,
const std::vector <int32_t>& outputTensorShape,
const int32_t inputTensorNum,
int32_t axis = 0,
float quantScale = 1.0f,
int quantOffset = 0)
{
using namespace tflite;
flatbuffers::FlatBufferBuilder flatBufferBuilder;
std::vector<flatbuffers::Offset<tflite::Buffer>> buffers;
buffers.push_back(CreateBuffer(flatBufferBuilder));
buffers.push_back(CreateBuffer(flatBufferBuilder));
buffers.push_back(CreateBuffer(flatBufferBuilder));
auto quantizationParameters =
CreateQuantizationParameters(flatBufferBuilder,
0,
0,
flatBufferBuilder.CreateVector<float>({ quantScale }),
flatBufferBuilder.CreateVector<int64_t>({ quantOffset }));
std::vector<int32_t> operatorInputs{};
const std::vector<int32_t> operatorOutputs{inputTensorNum};
std::vector<int> subgraphInputs{};
const std::vector<int> subgraphOutputs{inputTensorNum};
std::vector<flatbuffers::Offset<Tensor>> tensors(inputTensorNum + 1);
for (int i = 0; i < inputTensorNum; ++i)
{
tensors[i] = CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(inputTensorShape.data(),
inputTensorShape.size()),
tensorType,
1,
flatBufferBuilder.CreateString("input" + std::to_string(i)),
quantizationParameters);
// Add number of inputs to vector.
operatorInputs.push_back(i);
subgraphInputs.push_back(i);
}
// Create output tensor
tensors[inputTensorNum] = CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(outputTensorShape.data(),
outputTensorShape.size()),
tensorType,
2,
flatBufferBuilder.CreateString("output"),
quantizationParameters);
// create operator
tflite::BuiltinOptions operatorBuiltinOptionsType = tflite::BuiltinOptions_ConcatenationOptions;
flatbuffers::Offset<void> operatorBuiltinOptions = CreateConcatenationOptions(flatBufferBuilder, axis).Union();
flatbuffers::Offset <Operator> controlOperator =
CreateOperator(flatBufferBuilder,
0,
flatBufferBuilder.CreateVector<int32_t>(operatorInputs.data(), operatorInputs.size()),
flatBufferBuilder.CreateVector<int32_t>(operatorOutputs.data(), operatorOutputs.size()),
operatorBuiltinOptionsType,
operatorBuiltinOptions);
flatbuffers::Offset <SubGraph> subgraph =
CreateSubGraph(flatBufferBuilder,
flatBufferBuilder.CreateVector(tensors.data(), tensors.size()),
flatBufferBuilder.CreateVector<int32_t>(subgraphInputs.data(), subgraphInputs.size()),
flatBufferBuilder.CreateVector<int32_t>(subgraphOutputs.data(), subgraphOutputs.size()),
flatBufferBuilder.CreateVector(&controlOperator, 1));
flatbuffers::Offset <flatbuffers::String> modelDescription =
flatBufferBuilder.CreateString("ArmnnDelegate: Concatenation Operator Model");
flatbuffers::Offset <OperatorCode> operatorCode = CreateOperatorCode(flatBufferBuilder, controlOperatorCode);
flatbuffers::Offset <Model> flatbufferModel =
CreateModel(flatBufferBuilder,
TFLITE_SCHEMA_VERSION,
flatBufferBuilder.CreateVector(&operatorCode, 1),
flatBufferBuilder.CreateVector(&subgraph, 1),
modelDescription,
flatBufferBuilder.CreateVector(buffers.data(), buffers.size()));
flatBufferBuilder.Finish(flatbufferModel, armnnDelegate::FILE_IDENTIFIER);
return std::vector<char>(flatBufferBuilder.GetBufferPointer(),
flatBufferBuilder.GetBufferPointer() + flatBufferBuilder.GetSize());
}
std::vector<char> CreateMeanTfLiteModel(tflite::BuiltinOperator controlOperatorCode,
tflite::TensorType tensorType,
std::vector<int32_t>& input0TensorShape,
std::vector<int32_t>& input1TensorShape,
const std::vector <int32_t>& outputTensorShape,
std::vector<int32_t>& axisData,
const bool keepDims,
float quantScale = 1.0f,
int quantOffset = 0)
{
using namespace tflite;
flatbuffers::FlatBufferBuilder flatBufferBuilder;
std::array<flatbuffers::Offset<tflite::Buffer>, 2> buffers;
buffers[0] = CreateBuffer(flatBufferBuilder);
buffers[1] = CreateBuffer(flatBufferBuilder,
flatBufferBuilder.CreateVector(reinterpret_cast<const uint8_t*>(axisData.data()),
sizeof(int32_t) * axisData.size()));
auto quantizationParameters =
CreateQuantizationParameters(flatBufferBuilder,
0,
0,
flatBufferBuilder.CreateVector<float>({ quantScale }),
flatBufferBuilder.CreateVector<int64_t>({ quantOffset }));
std::array<flatbuffers::Offset<Tensor>, 3> tensors;
tensors[0] = CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(input0TensorShape.data(),
input0TensorShape.size()),
tensorType,
0,
flatBufferBuilder.CreateString("input"),
quantizationParameters);
tensors[1] = CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(input1TensorShape.data(),
input1TensorShape.size()),
::tflite::TensorType_INT32,
1,
flatBufferBuilder.CreateString("axis"),
quantizationParameters);
// Create output tensor
tensors[2] = CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(outputTensorShape.data(),
outputTensorShape.size()),
tensorType,
0,
flatBufferBuilder.CreateString("output"),
quantizationParameters);
// create operator. Mean uses ReducerOptions.
tflite::BuiltinOptions operatorBuiltinOptionsType = tflite::BuiltinOptions_ReducerOptions;
flatbuffers::Offset<void> operatorBuiltinOptions = CreateReducerOptions(flatBufferBuilder, keepDims).Union();
const std::vector<int> operatorInputs{ {0, 1} };
const std::vector<int> operatorOutputs{ 2 };
flatbuffers::Offset <Operator> controlOperator =
CreateOperator(flatBufferBuilder,
0,
flatBufferBuilder.CreateVector<int32_t>(operatorInputs.data(), operatorInputs.size()),
flatBufferBuilder.CreateVector<int32_t>(operatorOutputs.data(), operatorOutputs.size()),
operatorBuiltinOptionsType,
operatorBuiltinOptions);
const std::vector<int> subgraphInputs{ {0, 1} };
const std::vector<int> subgraphOutputs{ 2 };
flatbuffers::Offset <SubGraph> subgraph =
CreateSubGraph(flatBufferBuilder,
flatBufferBuilder.CreateVector(tensors.data(), tensors.size()),
flatBufferBuilder.CreateVector<int32_t>(subgraphInputs.data(), subgraphInputs.size()),
flatBufferBuilder.CreateVector<int32_t>(subgraphOutputs.data(), subgraphOutputs.size()),
flatBufferBuilder.CreateVector(&controlOperator, 1));
flatbuffers::Offset <flatbuffers::String> modelDescription =
flatBufferBuilder.CreateString("ArmnnDelegate: Mean Operator Model");
flatbuffers::Offset <OperatorCode> operatorCode = CreateOperatorCode(flatBufferBuilder, controlOperatorCode);
flatbuffers::Offset <Model> flatbufferModel =
CreateModel(flatBufferBuilder,
TFLITE_SCHEMA_VERSION,
flatBufferBuilder.CreateVector(&operatorCode, 1),
flatBufferBuilder.CreateVector(&subgraph, 1),
modelDescription,
flatBufferBuilder.CreateVector(buffers.data(), buffers.size()));
flatBufferBuilder.Finish(flatbufferModel, armnnDelegate::FILE_IDENTIFIER);
return std::vector<char>(flatBufferBuilder.GetBufferPointer(),
flatBufferBuilder.GetBufferPointer() + flatBufferBuilder.GetSize());
}
template <typename T>
void ConcatenationTest(tflite::BuiltinOperator controlOperatorCode,
tflite::TensorType tensorType,
std::vector<int32_t>& inputShapes,
std::vector<int32_t>& expectedOutputShape,
std::vector<std::vector<T>>& inputValues,
std::vector<T>& expectedOutputValues,
int32_t axis = 0,
float quantScale = 1.0f,
int quantOffset = 0,
const std::vector<armnn::BackendId>& backends = {})
{
using namespace delegateTestInterpreter;
std::vector<char> modelBuffer = CreateConcatTfLiteModel(controlOperatorCode,
tensorType,
inputShapes,
expectedOutputShape,
inputValues.size(),
axis,
quantScale,
quantOffset);
// Setup interpreter with just TFLite Runtime.
auto tfLiteInterpreter = DelegateTestInterpreter(modelBuffer);
CHECK(tfLiteInterpreter.AllocateTensors() == kTfLiteOk);
// Setup interpreter with Arm NN Delegate applied.
auto armnnInterpreter = DelegateTestInterpreter(modelBuffer, CaptureAvailableBackends(backends));
CHECK(armnnInterpreter.AllocateTensors() == kTfLiteOk);
for (unsigned int i = 0; i < inputValues.size(); ++i)
{
CHECK(tfLiteInterpreter.FillInputTensor<T>(inputValues[i], i) == kTfLiteOk);
CHECK(armnnInterpreter.FillInputTensor<T>(inputValues[i], i) == kTfLiteOk);
}
CHECK(tfLiteInterpreter.Invoke() == kTfLiteOk);
std::vector<T> tfLiteOutputValues = tfLiteInterpreter.GetOutputResult<T>(0);
std::vector<int32_t> tfLiteOutputShape = tfLiteInterpreter.GetOutputShape(0);
CHECK(armnnInterpreter.Invoke() == kTfLiteOk);
std::vector<T> armnnOutputValues = armnnInterpreter.GetOutputResult<T>(0);
std::vector<int32_t> armnnOutputShape = armnnInterpreter.GetOutputShape(0);
armnnDelegate::CompareOutputData<T>(tfLiteOutputValues, armnnOutputValues, expectedOutputValues);
armnnDelegate::CompareOutputShape(tfLiteOutputShape, armnnOutputShape, expectedOutputShape);
tfLiteInterpreter.Cleanup();
armnnInterpreter.Cleanup();
}
template <typename T>
void MeanTest(tflite::BuiltinOperator controlOperatorCode,
tflite::TensorType tensorType,
std::vector<int32_t>& input0Shape,
std::vector<int32_t>& input1Shape,
std::vector<int32_t>& expectedOutputShape,
std::vector<T>& input0Values,
std::vector<int32_t>& input1Values,
std::vector<T>& expectedOutputValues,
const bool keepDims,
float quantScale = 1.0f,
int quantOffset = 0,
const std::vector<armnn::BackendId>& backends = {})
{
using namespace delegateTestInterpreter;
std::vector<char> modelBuffer = CreateMeanTfLiteModel(controlOperatorCode,
tensorType,
input0Shape,
input1Shape,
expectedOutputShape,
input1Values,
keepDims,
quantScale,
quantOffset);
// Setup interpreter with just TFLite Runtime.
auto tfLiteInterpreter = DelegateTestInterpreter(modelBuffer);
CHECK(tfLiteInterpreter.AllocateTensors() == kTfLiteOk);
CHECK(tfLiteInterpreter.FillInputTensor<T>(input0Values, 0) == kTfLiteOk);
CHECK(tfLiteInterpreter.Invoke() == kTfLiteOk);
std::vector<T> tfLiteOutputValues = tfLiteInterpreter.GetOutputResult<T>(0);
std::vector<int32_t> tfLiteOutputShape = tfLiteInterpreter.GetOutputShape(0);
// Setup interpreter with Arm NN Delegate applied.
auto armnnInterpreter = DelegateTestInterpreter(modelBuffer, CaptureAvailableBackends(backends));
CHECK(armnnInterpreter.AllocateTensors() == kTfLiteOk);
CHECK(armnnInterpreter.FillInputTensor<T>(input0Values, 0) == kTfLiteOk);
CHECK(armnnInterpreter.Invoke() == kTfLiteOk);
std::vector<T> armnnOutputValues = armnnInterpreter.GetOutputResult<T>(0);
std::vector<int32_t> armnnOutputShape = armnnInterpreter.GetOutputShape(0);
armnnDelegate::CompareOutputData<T>(tfLiteOutputValues, armnnOutputValues, expectedOutputValues);
armnnDelegate::CompareOutputShape(tfLiteOutputShape, armnnOutputShape, expectedOutputShape);
tfLiteInterpreter.Cleanup();
armnnInterpreter.Cleanup();
}
} // anonymous namespace