blob: 517d932f29a8062ba6dc92ac72dd1b6f803a86d3 [file] [log] [blame]
//
// Copyright © 2020, 2023-2024 Arm Ltd and Contributors. All rights reserved.
// SPDX-License-Identifier: MIT
//
#pragma once
#include "TestUtils.hpp"
#include <armnn_delegate.hpp>
#include <DelegateTestInterpreter.hpp>
#include <tensorflow/lite/version.h>
namespace
{
template <typename T>
std::vector<char> CreateFullyConnectedTfLiteModel(tflite::TensorType tensorType,
tflite::ActivationFunctionType activationType,
const std::vector <int32_t>& inputTensorShape,
const std::vector <int32_t>& weightsTensorShape,
const std::vector <int32_t>& biasTensorShape,
std::vector <int32_t>& outputTensorShape,
std::vector <T>& weightsData,
bool constantWeights = true,
float quantScale = 1.0f,
int quantOffset = 0,
float outputQuantScale = 2.0f,
int outputQuantOffset = 0)
{
using namespace tflite;
flatbuffers::FlatBufferBuilder flatBufferBuilder;
std::array<flatbuffers::Offset<tflite::Buffer>, 5> buffers;
buffers[0] = CreateBuffer(flatBufferBuilder);
buffers[1] = CreateBuffer(flatBufferBuilder);
auto biasTensorType = ::tflite::TensorType_FLOAT32;
if (tensorType == ::tflite::TensorType_INT8)
{
biasTensorType = ::tflite::TensorType_INT32;
}
if (constantWeights)
{
buffers[2] = CreateBuffer(flatBufferBuilder,
flatBufferBuilder.CreateVector(reinterpret_cast<const uint8_t*>(weightsData.data()),
sizeof(T) * weightsData.size()));
if (tensorType == ::tflite::TensorType_INT8)
{
std::vector<int32_t> biasData = { 10 };
buffers[3] = CreateBuffer(flatBufferBuilder,
flatBufferBuilder.CreateVector(reinterpret_cast<const uint8_t*>(biasData.data()),
sizeof(int32_t) * biasData.size()));
}
else
{
std::vector<float> biasData = { 10 };
buffers[3] = CreateBuffer(flatBufferBuilder,
flatBufferBuilder.CreateVector(reinterpret_cast<const uint8_t*>(biasData.data()),
sizeof(float) * biasData.size()));
}
}
else
{
buffers[2] = CreateBuffer(flatBufferBuilder);
buffers[3] = CreateBuffer(flatBufferBuilder);
}
buffers[4] = CreateBuffer(flatBufferBuilder);
auto quantizationParameters =
CreateQuantizationParameters(flatBufferBuilder,
0,
0,
flatBufferBuilder.CreateVector<float>({ quantScale }),
flatBufferBuilder.CreateVector<int64_t>({ quantOffset }));
auto outputQuantizationParameters =
CreateQuantizationParameters(flatBufferBuilder,
0,
0,
flatBufferBuilder.CreateVector<float>({ outputQuantScale }),
flatBufferBuilder.CreateVector<int64_t>({ outputQuantOffset }));
std::array<flatbuffers::Offset<Tensor>, 4> tensors;
tensors[0] = CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(inputTensorShape.data(),
inputTensorShape.size()),
tensorType,
1,
flatBufferBuilder.CreateString("input_0"),
quantizationParameters);
tensors[1] = CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(weightsTensorShape.data(),
weightsTensorShape.size()),
tensorType,
2,
flatBufferBuilder.CreateString("weights"),
quantizationParameters);
tensors[2] = CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(biasTensorShape.data(),
biasTensorShape.size()),
biasTensorType,
3,
flatBufferBuilder.CreateString("bias"),
quantizationParameters);
tensors[3] = CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(outputTensorShape.data(),
outputTensorShape.size()),
tensorType,
4,
flatBufferBuilder.CreateString("output"),
outputQuantizationParameters);
// create operator
tflite::BuiltinOptions operatorBuiltinOptionsType = BuiltinOptions_FullyConnectedOptions;
flatbuffers::Offset<void> operatorBuiltinOptions =
CreateFullyConnectedOptions(flatBufferBuilder,
activationType,
FullyConnectedOptionsWeightsFormat_DEFAULT, false).Union();
const std::vector<int> operatorInputs{0, 1, 2};
const std::vector<int> operatorOutputs{3};
flatbuffers::Offset <Operator> fullyConnectedOperator =
CreateOperator(flatBufferBuilder,
0,
flatBufferBuilder.CreateVector<int32_t>(operatorInputs.data(), operatorInputs.size()),
flatBufferBuilder.CreateVector<int32_t>(operatorOutputs.data(), operatorOutputs.size()),
operatorBuiltinOptionsType, operatorBuiltinOptions);
const std::vector<int> subgraphInputs{0, 1, 2};
const std::vector<int> subgraphOutputs{3};
flatbuffers::Offset <SubGraph> subgraph =
CreateSubGraph(flatBufferBuilder,
flatBufferBuilder.CreateVector(tensors.data(), tensors.size()),
flatBufferBuilder.CreateVector<int32_t>(subgraphInputs.data(), subgraphInputs.size()),
flatBufferBuilder.CreateVector<int32_t>(subgraphOutputs.data(), subgraphOutputs.size()),
flatBufferBuilder.CreateVector(&fullyConnectedOperator, 1));
flatbuffers::Offset <flatbuffers::String> modelDescription =
flatBufferBuilder.CreateString("ArmnnDelegate: FullyConnected Operator Model");
flatbuffers::Offset <OperatorCode> operatorCode = CreateOperatorCode(flatBufferBuilder,
tflite::BuiltinOperator_FULLY_CONNECTED);
flatbuffers::Offset <Model> flatbufferModel =
CreateModel(flatBufferBuilder,
TFLITE_SCHEMA_VERSION,
flatBufferBuilder.CreateVector(&operatorCode, 1),
flatBufferBuilder.CreateVector(&subgraph, 1),
modelDescription,
flatBufferBuilder.CreateVector(buffers.data(), buffers.size()));
flatBufferBuilder.Finish(flatbufferModel, armnnDelegate::FILE_IDENTIFIER);
return std::vector<char>(flatBufferBuilder.GetBufferPointer(),
flatBufferBuilder.GetBufferPointer() + flatBufferBuilder.GetSize());
}
template <typename T>
void FullyConnectedTest(tflite::TensorType tensorType,
tflite::ActivationFunctionType activationType,
const std::vector <int32_t>& inputTensorShape,
const std::vector <int32_t>& weightsTensorShape,
const std::vector <int32_t>& biasTensorShape,
std::vector <int32_t>& outputTensorShape,
std::vector <T>& inputValues,
std::vector <T>& expectedOutputValues,
std::vector <T>& weightsData,
const std::vector<armnn::BackendId>& backends = {},
bool constantWeights = true,
float quantScale = 1.0f,
int quantOffset = 0)
{
using namespace delegateTestInterpreter;
std::vector<char> modelBuffer = CreateFullyConnectedTfLiteModel(tensorType,
activationType,
inputTensorShape,
weightsTensorShape,
biasTensorShape,
outputTensorShape,
weightsData,
constantWeights,
quantScale,
quantOffset);
// Setup interpreter with just TFLite Runtime.
auto tfLiteInterpreter = DelegateTestInterpreter(modelBuffer);
CHECK(tfLiteInterpreter.AllocateTensors() == kTfLiteOk);
// Setup interpreter with Arm NN Delegate applied.
auto armnnInterpreter = DelegateTestInterpreter(modelBuffer, CaptureAvailableBackends(backends));
CHECK(armnnInterpreter.AllocateTensors() == kTfLiteOk);
CHECK(tfLiteInterpreter.FillInputTensor<T>(inputValues, 0) == kTfLiteOk);
CHECK(armnnInterpreter.FillInputTensor<T>(inputValues, 0) == kTfLiteOk);
if (!constantWeights)
{
CHECK(tfLiteInterpreter.FillInputTensor<T>(weightsData, 1) == kTfLiteOk);
CHECK(armnnInterpreter.FillInputTensor<T>(weightsData, 1) == kTfLiteOk);
if (tensorType == ::tflite::TensorType_INT8)
{
std::vector <int32_t> biasData = {10};
CHECK(tfLiteInterpreter.FillInputTensor<int32_t>(biasData, 2) == kTfLiteOk);
CHECK(armnnInterpreter.FillInputTensor<int32_t>(biasData, 2) == kTfLiteOk);
}
else
{
std::vector<float> biasData = {10};
CHECK(tfLiteInterpreter.FillInputTensor<float>(biasData, 2) == kTfLiteOk);
CHECK(armnnInterpreter.FillInputTensor<float>(biasData, 2) == kTfLiteOk);
}
}
CHECK(tfLiteInterpreter.Invoke() == kTfLiteOk);
std::vector<T> tfLiteOutputValues = tfLiteInterpreter.GetOutputResult<T>(0);
std::vector<int32_t> tfLiteOutputShape = tfLiteInterpreter.GetOutputShape(0);
CHECK(armnnInterpreter.Invoke() == kTfLiteOk);
std::vector<T> armnnOutputValues = armnnInterpreter.GetOutputResult<T>(0);
std::vector<int32_t> armnnOutputShape = armnnInterpreter.GetOutputShape(0);
armnnDelegate::CompareOutputData<T>(tfLiteOutputValues, armnnOutputValues, expectedOutputValues);
armnnDelegate::CompareOutputShape(tfLiteOutputShape, armnnOutputShape, outputTensorShape);
tfLiteInterpreter.Cleanup();
armnnInterpreter.Cleanup();
}
} // anonymous namespace