blob: 54a35fd7fe3eed288fefd076d0cbf15f21119a5c [file] [log] [blame]
//
// Copyright © 2017-2023 Arm Ltd and Contributors. All rights reserved.
// SPDX-License-Identifier: MIT
//
#include "NeonConvertFp32ToFp16Workload.hpp"
#include <arm_compute/runtime/NEON/functions/NECast.h>
#include <Half.hpp>
#include <Profiling.hpp>
#include <armnnUtils/FloatingPointConverter.hpp>
#include <backendsCommon/WorkloadUtils.hpp>
static constexpr arm_compute::ConvertPolicy g_AclConvertPolicy = arm_compute::ConvertPolicy::SATURATE;
namespace armnn
{
arm_compute::Status NeonConvertFp32ToFp16WorkloadValidate(const TensorInfo& input, const TensorInfo& output)
{
// Fallback to portable software implementation if Compute Library NECast won't work, so
// this method always returns success
armnn::IgnoreUnused(input);
armnn::IgnoreUnused(output);
return arm_compute::Status();
}
NeonConvertFp32ToFp16Workload::NeonConvertFp32ToFp16Workload(const ConvertFp32ToFp16QueueDescriptor& descriptor,
const WorkloadInfo& info)
: Float32ToFloat16Workload<ConvertFp32ToFp16QueueDescriptor>(descriptor, info)
{
this->m_Data.ValidateInputsOutputs("NeonConvertFp32ToFp16Workload", 1, 1);
arm_compute::ITensor& input = PolymorphicDowncast<IAclTensorHandle*>(m_Data.m_Inputs[0])->GetTensor();
arm_compute::ITensor& output = PolymorphicDowncast<IAclTensorHandle*>(m_Data.m_Outputs[0])->GetTensor();
if (arm_compute::NECast::validate(input.info(), output.info(), g_AclConvertPolicy))
{
// Use NECast if supported (needs hardware support for FP16)
m_Cast.reset(new arm_compute::NECast);
m_Cast->configure(&input, &output, g_AclConvertPolicy);
}
else
{
// Else use software implementation from Half.hpp
GatherTensorHandlePairs(descriptor, m_TensorHandlePairs);
}
}
void NeonConvertFp32ToFp16Workload::Execute() const
{
ARMNN_SCOPED_PROFILING_EVENT_NEON_NAME_GUID("NeonConvertFp32ToFp16Workload_Execute");
if (m_Cast)
{
// Use NECast if supported and initialised
m_Cast->run();
}
else
{
// Else use softwre implementabion using Half.hpp
auto convertFunc = [](uint8_t* dst, const uint8_t* src, size_t size)
{
auto input = reinterpret_cast<const float*>(src);
auto output = reinterpret_cast<Half*>(dst);
size_t numElements = size/2; // 2 bytes per fp16
armnnUtils::FloatingPointConverter::ConvertFloat32To16(input, numElements, output);
};
for (const auto& pair : m_TensorHandlePairs)
{
CopyTensorContentsGeneric(pair.first, pair.second, convertFunc);
}
}
}
void NeonConvertFp32ToFp16Workload::ReplaceInputTensorHandle(ITensorHandle* tensorHandle, unsigned int slot)
{
ITensorHandle* backupHandle = this->m_Data.m_Inputs[slot];
this->m_Data.m_Inputs[slot] = tensorHandle;
try
{
Reconfigure();
}
catch(armnn::UnimplementedException& e)
{
// Cannot reconfigure, revert the slot back and throw the exception.
this->m_Data.m_Inputs[slot] = backupHandle;
throw e;
}
}
// Replace output tensor handle with the given TensorHandle
void NeonConvertFp32ToFp16Workload::ReplaceOutputTensorHandle(ITensorHandle* tensorHandle, unsigned int slot)
{
ITensorHandle* backupHandle = this->m_Data.m_Inputs[slot];
this->m_Data.m_Inputs[slot] = tensorHandle;
try
{
Reconfigure();
}
catch(armnn::UnimplementedException& e)
{
// Cannot reconfigure, revert the slot back and throw the exception.
this->m_Data.m_Inputs[slot] = backupHandle;
throw e;
}
}
void NeonConvertFp32ToFp16Workload::Reconfigure()
{
throw armnn::UnimplementedException("Reconfigure not implemented for this workload");
}
} //namespace armnn