blob: 2a355edaed44e4518a54b1ebbbfcaf30c8859ec7 [file] [log] [blame]
//
// Copyright © 2017-2023 Arm Ltd and Contributors. All rights reserved.
// SPDX-License-Identifier: MIT
//
#include "NeonNormalizationFloatWorkload.hpp"
#include "NeonWorkloadUtils.hpp"
#include <aclCommon/ArmComputeUtils.hpp>
#include <aclCommon/ArmComputeTensorUtils.hpp>
#include <armnn/utility/PolymorphicDowncast.hpp>
#include <arm_compute/runtime/NEON/functions/NENormalizationLayer.h>
using namespace armnn::armcomputetensorutils;
namespace armnn
{
namespace
{
using ACLMemManagerOnDemand = std::shared_ptr<arm_compute::MemoryManagerOnDemand>;
bool IsNeonNormalizationDescriptorSupported(const NormalizationDescriptor& parameters,
Optional<std::string&> reasonIfUnsupported)
{
if (parameters.m_NormMethodType != NormalizationAlgorithmMethod::LocalBrightness)
{
if (reasonIfUnsupported)
{
reasonIfUnsupported.value() = "Unsupported normalisation method type, only LocalBrightness is supported";
}
return false;
}
if (parameters.m_NormSize % 2 == 0)
{
if (reasonIfUnsupported)
{
reasonIfUnsupported.value() = "Normalization size must be an odd number.";
}
return false;
}
return true;
}
} // anonymous namespace
arm_compute::Status NeonNormalizationWorkloadValidate(const TensorInfo& input,
const TensorInfo& output,
const NormalizationDescriptor& descriptor)
{
const arm_compute::TensorInfo aclInput = BuildArmComputeTensorInfo(input, descriptor.m_DataLayout);
const arm_compute::TensorInfo aclOutput = BuildArmComputeTensorInfo(output, descriptor.m_DataLayout);
arm_compute::NormalizationLayerInfo normalizationInfo = BuildArmComputeNormalizationLayerInfo(descriptor);
return arm_compute::NENormalizationLayer::validate(&aclInput, &aclOutput, normalizationInfo);
}
NeonNormalizationFloatWorkload::NeonNormalizationFloatWorkload(const NormalizationQueueDescriptor& descriptor,
const WorkloadInfo& info,
ACLMemManagerOnDemand& memoryManager)
: FloatWorkload<NormalizationQueueDescriptor>(descriptor, info)
{
// Report Profiling Details
ARMNN_REPORT_PROFILING_WORKLOAD_DESC("NeonNormalizationWorkload_Construct",
descriptor.m_Parameters,
info,
this->GetGuid());
m_Data.ValidateInputsOutputs("NeonNormalizationFloatWorkload", 1, 1);
std::string reasonIfUnsupported;
if (!IsNeonNormalizationDescriptorSupported(m_Data.m_Parameters, Optional<std::string&>(reasonIfUnsupported)))
{
throw UnimplementedException(reasonIfUnsupported);
}
// Input and output tensors have to have the same dimensionality.
if (info.m_InputTensorInfos[0].GetShape()[1] != info.m_OutputTensorInfos[0].GetShape()[1]
|| info.m_InputTensorInfos[0].GetShape()[0] != info.m_OutputTensorInfos[0].GetShape()[0]
|| info.m_InputTensorInfos[0].GetShape()[3] != info.m_OutputTensorInfos[0].GetShape()[3]
|| info.m_InputTensorInfos[0].GetShape()[2] != info.m_OutputTensorInfos[0].GetShape()[2])
{
throw InvalidArgumentException("Normalization requires input and output tensors to have equal dimensionality.");
}
arm_compute::ITensor& input = PolymorphicDowncast<IAclTensorHandle*>(m_Data.m_Inputs[0])->GetTensor();
arm_compute::ITensor& output = PolymorphicDowncast<IAclTensorHandle*>(m_Data.m_Outputs[0])->GetTensor();
arm_compute::DataLayout aclDataLayout = ConvertDataLayout(m_Data.m_Parameters.m_DataLayout);
input.info()->set_data_layout(aclDataLayout);
output.info()->set_data_layout(aclDataLayout);
const arm_compute::NormType normType =
ConvertNormalizationAlgorithmChannelToAclNormType(m_Data.m_Parameters.m_NormChannelType);
arm_compute::NormalizationLayerInfo normalizationInfo(normType,
m_Data.m_Parameters.m_NormSize,
m_Data.m_Parameters.m_Alpha,
m_Data.m_Parameters.m_Beta,
m_Data.m_Parameters.m_K,
false);
auto layer = std::make_unique<arm_compute::NENormalizationLayer>(memoryManager);
layer->configure(&input, &output, normalizationInfo);
m_NormalizationLayer.reset(layer.release());
}
void NeonNormalizationFloatWorkload::Execute() const
{
ARMNN_SCOPED_PROFILING_EVENT_NEON_NAME_GUID("NeonNormalizationFloatWorkload_Execute");
m_NormalizationLayer->run();
}
void NeonNormalizationFloatWorkload::ReplaceInputTensorHandle(ITensorHandle* tensorHandle, unsigned int slot)
{
ITensorHandle* backupHandle = this->m_Data.m_Inputs[slot];
this->m_Data.m_Inputs[slot] = tensorHandle;
try
{
Reconfigure();
}
catch(armnn::UnimplementedException& e)
{
// Cannot reconfigure, revert the slot back and throw the exception.
this->m_Data.m_Inputs[slot] = backupHandle;
throw e;
}
}
// Replace output tensor handle with the given TensorHandle
void NeonNormalizationFloatWorkload::ReplaceOutputTensorHandle(ITensorHandle* tensorHandle, unsigned int slot)
{
ITensorHandle* backupHandle = this->m_Data.m_Inputs[slot];
this->m_Data.m_Inputs[slot] = tensorHandle;
try
{
Reconfigure();
}
catch(armnn::UnimplementedException& e)
{
// Cannot reconfigure, revert the slot back and throw the exception.
this->m_Data.m_Inputs[slot] = backupHandle;
throw e;
}
}
void NeonNormalizationFloatWorkload::Reconfigure()
{
throw armnn::UnimplementedException("Reconfigure not implemented for this workload");
}
} //namespace armnn