blob: a8439a5e96f7b1449d49c1d5f9ac16f86c3b7304 [file] [log] [blame]
//
// Copyright © 2020-2023 Arm Ltd and Contributors. All rights reserved.
// SPDX-License-Identifier: MIT
//
#include "NeonSpaceToBatchNdWorkload.hpp"
#include <armnn/utility/PolymorphicDowncast.hpp>
namespace armnn
{
using namespace armcomputetensorutils;
arm_compute::Status NeonSpaceToBatchNdWorkloadValidate(const TensorInfo& input,
const TensorInfo& output,
const SpaceToBatchNdDescriptor& descriptor)
{
arm_compute::TensorInfo aclInputInfo = BuildArmComputeTensorInfo(input, descriptor.m_DataLayout);
arm_compute::TensorInfo aclOutputInfo = BuildArmComputeTensorInfo(output, descriptor.m_DataLayout);
arm_compute::Status statusSpaceToBatch = arm_compute::Status(arm_compute::ErrorCode::OK);
arm_compute::Status statusReshapeInput = arm_compute::Status(arm_compute::ErrorCode::OK);
arm_compute::Status statusReshapeOutput = arm_compute::Status(arm_compute::ErrorCode::OK);
arm_compute::TensorInfo aclReshapeInputInfo = aclInputInfo;
arm_compute::TensorInfo aclReshapeOutputInfo = aclOutputInfo;
// When a spacial dimension is missing (rank=3) set W to 1
const unsigned int rank = input.GetNumDimensions();
if (rank == 3)
{
const arm_compute::TensorShape inputShape = aclInputInfo.tensor_shape();
const arm_compute::TensorShape outputShape = aclOutputInfo.tensor_shape();
if (descriptor.m_DataLayout == armnn::DataLayout::NHWC)
{
// In ACL dimensions are right to left: C, W, H, N
aclReshapeInputInfo.set_tensor_shape({inputShape.x(), 1, inputShape.y(), inputShape.z()});
aclReshapeOutputInfo.set_tensor_shape({outputShape.x(), 1, outputShape.y(), outputShape.z()});
}
else if (descriptor.m_DataLayout == armnn::DataLayout::NCHW)
{
// In ACL dimensions are right to left: W, H, C, N
aclReshapeInputInfo.set_tensor_shape({1, inputShape.x(), inputShape.y(), inputShape.z()});
aclReshapeOutputInfo.set_tensor_shape({1, outputShape.x(), outputShape.y(), outputShape.z()});
}
else
{
throw InvalidArgumentException("Unsupported or unknown DataLayout", CHECK_LOCATION());
}
statusReshapeInput = arm_compute::NEReshapeLayer::validate(&aclInputInfo, &aclReshapeInputInfo);
statusReshapeOutput = arm_compute::NEReshapeLayer::validate(&aclReshapeOutputInfo, &aclOutputInfo);
}
// ArmNN blockShape is [H, W] ACl asks for W, H
int32_t blockHeight = armnn::numeric_cast<int32_t>(descriptor.m_BlockShape[0]);
int32_t blockWidth = (rank == 3) ? 1 : armnn::numeric_cast<int32_t>(descriptor.m_BlockShape[1]);
unsigned int padLeft = (rank == 3) ? 0 : descriptor.m_PadList[1].first;
unsigned int padRight = (rank == 3) ? 0 : descriptor.m_PadList[1].second;
arm_compute::Size2D paddingLeftTop = BuildArmComputeSize2D(padLeft,
descriptor.m_PadList[0].first);
arm_compute::Size2D paddingRightBottom = BuildArmComputeSize2D(padRight,
descriptor.m_PadList[0].second);
statusSpaceToBatch = arm_compute::NESpaceToBatchLayer::validate(rank == 3 ? &aclReshapeInputInfo : &aclInputInfo,
blockWidth,
blockHeight,
paddingLeftTop,
paddingRightBottom,
rank == 3 ? &aclReshapeOutputInfo : &aclOutputInfo);
if (statusReshapeInput.error_code() == arm_compute::ErrorCode::OK &&
statusReshapeOutput.error_code() == arm_compute::ErrorCode::OK &&
statusSpaceToBatch.error_code() == arm_compute::ErrorCode::OK)
{
return arm_compute::Status(arm_compute::ErrorCode::OK,
"All SpaceToBatch layers validate status OK.");
}
else
{
return arm_compute::Status(arm_compute::ErrorCode::RUNTIME_ERROR,
"SpaceToBatch layer validate status failed."
+ statusSpaceToBatch.error_description()
+ statusReshapeInput.error_description()
+ statusReshapeOutput.error_description());
}
}
NeonSpaceToBatchNdWorkload::NeonSpaceToBatchNdWorkload(const SpaceToBatchNdQueueDescriptor& descriptor,
const WorkloadInfo& info)
: NeonBaseWorkload<SpaceToBatchNdQueueDescriptor>(descriptor, info)
{
// Report Profiling Details
ARMNN_REPORT_PROFILING_WORKLOAD_DESC("NeonSpaceToBatchNdWorkload_Construct",
descriptor.m_Parameters,
info,
this->GetGuid());
m_Data.ValidateInputsOutputs("NESpaceToBatchNdWorkload", 1, 1);
arm_compute::ITensor& input = PolymorphicPointerDowncast<IAclTensorHandle>(m_Data.m_Inputs[0])->GetTensor();
arm_compute::ITensor& output = PolymorphicPointerDowncast<IAclTensorHandle>(m_Data.m_Outputs[0])->GetTensor();
arm_compute::DataLayout aclDataLayout = ConvertDataLayout(m_Data.m_Parameters.m_DataLayout);
input.info()->set_data_layout(aclDataLayout);
output.info()->set_data_layout(aclDataLayout);
arm_compute::TensorInfo aclReshapeInputInfo = BuildArmComputeTensorInfo(info.m_InputTensorInfos[0],
m_Data.m_Parameters.m_DataLayout);
arm_compute::TensorInfo aclReshapeOutputInfo = BuildArmComputeTensorInfo(info.m_OutputTensorInfos[0],
m_Data.m_Parameters.m_DataLayout);
const unsigned int rank = info.m_InputTensorInfos[0].GetNumDimensions();
if (rank == 3)
{
const arm_compute::TensorShape inputShape = input.info()->tensor_shape();
const arm_compute::TensorShape outputShape = output.info()->tensor_shape();
// When a spacial dimension is missing set W to 1
if (m_Data.m_Parameters.m_DataLayout == armnn::DataLayout::NHWC)
{
// In ACL dimensions are right to left: C, W, H, N
aclReshapeInputInfo.set_tensor_shape({inputShape.x(), 1, inputShape.y(), inputShape.z()});
aclReshapeOutputInfo.set_tensor_shape({outputShape.x(), 1, outputShape.y(), outputShape.z()});
}
else if (m_Data.m_Parameters.m_DataLayout == armnn::DataLayout::NCHW)
{
// In ACL dimensions are right to left: W, H, C, N
aclReshapeInputInfo.set_tensor_shape({1, inputShape.x(), inputShape.y(), inputShape.z()});
aclReshapeOutputInfo.set_tensor_shape({1, outputShape.x(), outputShape.y(), outputShape.z()});
}
else
{
throw InvalidArgumentException("Unsupported or unknown DataLayout", CHECK_LOCATION());
}
m_ReshapeInputTensor.allocator()->init(aclReshapeInputInfo);
m_ReshapeOutputTensor.allocator()->init(aclReshapeOutputInfo);
InitialiseArmComputeTensorEmpty(m_ReshapeInputTensor);
InitialiseArmComputeTensorEmpty(m_ReshapeOutputTensor);
m_LayerReshapeInput.reset(new arm_compute::NEReshapeLayer());
m_LayerReshapeOutput.reset(new arm_compute::NEReshapeLayer());
m_LayerReshapeInput->configure(&input, &m_ReshapeInputTensor);
m_LayerReshapeOutput->configure(&m_ReshapeOutputTensor, &output);
}
// ArmNN blockShape is [H, W] ACl asks for W, H
int32_t blockHeight = armnn::numeric_cast<int32_t>(m_Data.m_Parameters.m_BlockShape[0]);
int32_t blockWidth = (rank == 3) ? 1: armnn::numeric_cast<int32_t>(descriptor.m_Parameters.m_BlockShape[1]);
unsigned int padLeft = (rank == 3) ? 0 : descriptor.m_Parameters.m_PadList[1].first;
unsigned int padRight = (rank == 3) ? 0 : descriptor.m_Parameters.m_PadList[1].second;
arm_compute::Size2D paddingLeftTop = BuildArmComputeSize2D(padLeft,
descriptor.m_Parameters.m_PadList[0].first);
arm_compute::Size2D paddingRightBottom = BuildArmComputeSize2D(padRight,
descriptor.m_Parameters.m_PadList[0].second);
m_Layer.reset(new arm_compute::NESpaceToBatchLayer());
m_Layer->configure((rank == 3) ? &m_ReshapeInputTensor : &input,
blockWidth,
blockHeight,
paddingLeftTop,
paddingRightBottom,
(rank == 3) ? &m_ReshapeOutputTensor : &output);
m_Layer->prepare();
}
void NeonSpaceToBatchNdWorkload::Execute() const
{
ARMNN_SCOPED_PROFILING_EVENT_NEON_NAME_GUID("NeonSpaceToBatchNdWorkload_Execute");
if (m_LayerReshapeInput)
{
m_LayerReshapeInput->run();
}
if (m_Layer)
{
m_Layer->run();
}
if (m_LayerReshapeOutput)
{
m_LayerReshapeOutput->run();
}
}
} //namespace armnn