blob: 64ed778231b2622a18278785c64cbc0a1174aa36 [file] [log] [blame]
//
// Copyright © 2022 Arm Ltd and Contributors. All rights reserved.
// SPDX-License-Identifier: MIT
//
#pragma once
#include "DelegateUtils.hpp"
#include <armnn/LstmParams.hpp>
#include <armnn/Tensor.hpp>
#include <armnn/utility/IgnoreUnused.hpp>
#include <tensorflow/lite/builtin_ops.h>
#include <tensorflow/lite/c/builtin_op_data.h>
#include <tensorflow/lite/c/common.h>
#include <tensorflow/lite/minimal_logging.h>
namespace armnnDelegate
{
TfLiteStatus VisitUnidirectionalSequenceLstmOperator(DelegateData& delegateData,
TfLiteContext* tfLiteContext,
TfLiteNode* tfLiteNode,
int nodeIndex,
int32_t operatorCode)
{
auto numInputs = tfLiteNode->inputs->size;
if (numInputs < 2)
{
TF_LITE_MAYBE_KERNEL_LOG(
tfLiteContext, "TfLiteArmnnDelegate: Minimum number of inputs (%d != %d) in node #%d",
2, numInputs, nodeIndex);
return kTfLiteError;
}
const auto nodeParams = reinterpret_cast<TfLiteUnidirectionalSequenceLSTMParams *>(tfLiteNode->builtin_data);
const TfLiteTensor* tfLiteTensors = tfLiteContext->tensors;
const TfLiteTensor& tfLiteInputTensor = tfLiteTensors[tfLiteNode->inputs->data[0]];
if (!IsValid(tfLiteContext, tfLiteInputTensor, operatorCode, nodeIndex))
{
return kTfLiteError;
}
const TfLiteTensor& tfLiteOutputTensor = tfLiteTensors[tfLiteNode->outputs->data[0]];
if (!IsValid(tfLiteContext, tfLiteOutputTensor, operatorCode, nodeIndex))
{
return kTfLiteError;
}
// Set the params structure for the AddUnidirectionalSequenceLstmLayer call
// Please refer to each operand at
// https://www.tensorflow.org/mlir/tfl_ops#tflunidirectional_sequence_lstm_tflunidirectionalsequencelstmop
armnn::LstmInputParams params;
if (IsOptionalOperandPresent(tfLiteNode, 1))
{
params.m_InputToInputWeights = GetConstTensorForTfLiteTensor(tfLiteTensors, tfLiteNode, 1);
}
params.m_InputToForgetWeights = GetConstTensorForTfLiteTensor(tfLiteTensors, tfLiteNode, 2);
params.m_InputToCellWeights = GetConstTensorForTfLiteTensor(tfLiteTensors, tfLiteNode, 3);
params.m_InputToOutputWeights = GetConstTensorForTfLiteTensor(tfLiteTensors, tfLiteNode, 4);
// Recurrent weight tensors of size {n_cell, n_output}
if (IsOptionalOperandPresent(tfLiteNode, 5))
{
params.m_RecurrentToInputWeights = GetConstTensorForTfLiteTensor(tfLiteTensors, tfLiteNode, 5);
}
params.m_RecurrentToForgetWeights = GetConstTensorForTfLiteTensor(tfLiteTensors, tfLiteNode, 6);
params.m_RecurrentToCellWeights = GetConstTensorForTfLiteTensor(tfLiteTensors, tfLiteNode, 7);
params.m_RecurrentToOutputWeights = GetConstTensorForTfLiteTensor(tfLiteTensors, tfLiteNode, 8);
// Peephole weights tensors of size {n_cell}, representing a diagonal matrix.
if (IsOptionalOperandPresent(tfLiteNode, 9))
{
params.m_CellToInputWeights = GetConstTensorForTfLiteTensor(tfLiteTensors, tfLiteNode, 9);
}
if (IsOptionalOperandPresent(tfLiteNode, 10))
{
params.m_CellToForgetWeights = GetConstTensorForTfLiteTensor(tfLiteTensors, tfLiteNode, 10);
}
if (IsOptionalOperandPresent(tfLiteNode, 11))
{
params.m_CellToOutputWeights = GetConstTensorForTfLiteTensor(tfLiteTensors, tfLiteNode, 11);
}
// Gates bias tensors of size {n_cell}
if (IsOptionalOperandPresent(tfLiteNode, 12))
{
params.m_InputGateBias = GetConstTensorForTfLiteTensor(tfLiteTensors, tfLiteNode, 12);
}
params.m_ForgetGateBias = GetConstTensorForTfLiteTensor(tfLiteTensors, tfLiteNode, 13);
params.m_CellBias = GetConstTensorForTfLiteTensor(tfLiteTensors, tfLiteNode, 14);
params.m_OutputGateBias = GetConstTensorForTfLiteTensor(tfLiteTensors, tfLiteNode, 15);
// Projection weight tensor of size {n_output, n_cell}
if (IsOptionalOperandPresent(tfLiteNode, 16))
{
params.m_ProjectionWeights = GetConstTensorForTfLiteTensor(tfLiteTensors, tfLiteNode, 16);
}
// Projection bias tensor of size {n_output}
if (IsOptionalOperandPresent(tfLiteNode, 17))
{
params.m_ProjectionBias = GetConstTensorForTfLiteTensor(tfLiteTensors, tfLiteNode, 17);
}
// These state tensors are defined as variable tensors, and will be modified by this op.
armnn::TensorInfo outputStateInInfo = GetTensorInfoForTfLiteTensor(tfLiteTensors[tfLiteNode->inputs->data[18]]);
armnn::TensorInfo cellStateInInfo = GetTensorInfoForTfLiteTensor(tfLiteTensors[tfLiteNode->inputs->data[19]]);
// Layer norm coefficient tensors of size {n_cell}, representing a diagonal matrix.
if (IsOptionalOperandPresent(tfLiteNode, 20))
{
params.m_InputLayerNormWeights = GetConstTensorForTfLiteTensor(tfLiteTensors, tfLiteNode, 20);
}
if (IsOptionalOperandPresent(tfLiteNode, 21))
{
params.m_ForgetLayerNormWeights = GetConstTensorForTfLiteTensor(tfLiteTensors, tfLiteNode, 21);
}
if (IsOptionalOperandPresent(tfLiteNode, 22))
{
params.m_CellLayerNormWeights = GetConstTensorForTfLiteTensor(tfLiteTensors, tfLiteNode, 22);
}
if (IsOptionalOperandPresent(tfLiteNode, 23))
{
params.m_OutputLayerNormWeights = GetConstTensorForTfLiteTensor(tfLiteTensors, tfLiteNode, 23);
}
// set the layer descriptor
armnn::UnidirectionalSequenceLstmDescriptor desc;
desc.m_ActivationFunc = NonNegative(nodeParams->activation, nodeIndex);
desc.m_ClippingThresCell = nodeParams->cell_clip;
desc.m_ClippingThresProj = nodeParams->proj_clip;
desc.m_CifgEnabled = (params.m_InputToInputWeights == nullptr
|| params.m_RecurrentToInputWeights == nullptr
|| params.m_InputGateBias == nullptr);
desc.m_PeepholeEnabled = (params.m_CellToForgetWeights != nullptr || params.m_CellToOutputWeights != nullptr);
desc.m_ProjectionEnabled = (params.m_ProjectionWeights != nullptr);
desc.m_LayerNormEnabled = (params.m_InputLayerNormWeights != nullptr
|| params.m_ForgetLayerNormWeights != nullptr
|| params.m_CellLayerNormWeights != nullptr
|| params.m_OutputLayerNormWeights != nullptr);
desc.m_TimeMajor = nodeParams->time_major;
if (tfLiteNode->intermediates->size > 3 && desc.m_LayerNormEnabled)
{
auto inputIntermediateTensorInfo = GetTensorInfoForTfLiteTensor(
tfLiteTensors[tfLiteNode->intermediates->data[0]]);
auto forgetIntermediateTensorInfo = GetTensorInfoForTfLiteTensor(
tfLiteTensors[tfLiteNode->intermediates->data[1]]);
auto cellIntermediateTensorInfo = GetTensorInfoForTfLiteTensor(
tfLiteTensors[tfLiteNode->intermediates->data[2]]);
auto outputIntermediateTensorInfo = GetTensorInfoForTfLiteTensor(
tfLiteTensors[tfLiteNode->intermediates->data[3]]);
desc.m_InputIntermediateScale = inputIntermediateTensorInfo.GetQuantizationScale();
desc.m_ForgetIntermediateScale = forgetIntermediateTensorInfo.GetQuantizationScale();
desc.m_CellIntermediateScale = cellIntermediateTensorInfo.GetQuantizationScale();
desc.m_OutputIntermediateScale = outputIntermediateTensorInfo.GetQuantizationScale();
}
else
{
float defaultIntermediate = std::pow(2, -12);
desc.m_InputIntermediateScale = defaultIntermediate;
desc.m_ForgetIntermediateScale = defaultIntermediate;
desc.m_CellIntermediateScale = defaultIntermediate;
desc.m_OutputIntermediateScale = defaultIntermediate;
}
if (tfLiteNode->intermediates->size > 4)
{
auto hiddentensorInfo = GetTensorInfoForTfLiteTensor(tfLiteTensors[tfLiteNode->intermediates->data[4]]);
desc.m_HiddenStateScale = hiddentensorInfo.GetQuantizationScale();
desc.m_HiddenStateZeroPoint = hiddentensorInfo.GetQuantizationOffset();
}
const armnn::TensorInfo& inputTensorInfo = GetTensorInfoForTfLiteTensor(tfLiteInputTensor);
const armnn::TensorInfo& outputTensorInfo = GetTensorInfoForTfLiteTensor(tfLiteOutputTensor, true);
unsigned int batchSize = inputTensorInfo.GetShape()[0];
unsigned int outputSize = outputTensorInfo.GetShape()[2];
unsigned int numUnits = cellStateInInfo.GetShape()[1];
armnn::DataType dataType = inputTensorInfo.GetDataType();
float qScale = inputTensorInfo.GetQuantizationScale();
float qOffset = inputTensorInfo.GetQuantizationOffset();
armnn::TensorInfo scratchBufferTensorInfo({batchSize, numUnits * 3}, dataType, qScale, qOffset);
if (!desc.m_CifgEnabled)
{
scratchBufferTensorInfo = armnn::TensorInfo({batchSize, numUnits * 4}, dataType, qScale, qOffset);
}
armnn::TensorInfo cellStateOutTensorInfo({batchSize, numUnits},
cellStateInInfo.GetDataType(),
cellStateInInfo.GetQuantizationScale(),
cellStateInInfo.GetQuantizationOffset());
armnn::TensorInfo outputStateOutTensorInfo({batchSize, outputSize}, dataType, qScale, qOffset);
armnn::LstmInputParamsInfo paramsInfo;
paramsInfo.m_InputToForgetWeights = &(params.m_InputToForgetWeights->GetInfo());
paramsInfo.m_InputToCellWeights = &(params.m_InputToCellWeights->GetInfo());
paramsInfo.m_InputToOutputWeights = &(params.m_InputToOutputWeights->GetInfo());
paramsInfo.m_RecurrentToForgetWeights = &(params.m_RecurrentToForgetWeights->GetInfo());
paramsInfo.m_RecurrentToCellWeights = &(params.m_RecurrentToCellWeights->GetInfo());
paramsInfo.m_RecurrentToOutputWeights = &(params.m_RecurrentToOutputWeights->GetInfo());
paramsInfo.m_ForgetGateBias = &(params.m_ForgetGateBias->GetInfo());
paramsInfo.m_CellBias = &(params.m_CellBias->GetInfo());
paramsInfo.m_OutputGateBias = &(params.m_OutputGateBias->GetInfo());
if (!desc.m_CifgEnabled)
{
paramsInfo.m_InputToInputWeights = &(params.m_InputToInputWeights->GetInfo());
paramsInfo.m_RecurrentToInputWeights = &(params.m_RecurrentToInputWeights->GetInfo());
if (params.m_CellToInputWeights != nullptr)
{
paramsInfo.m_CellToInputWeights = &(params.m_CellToInputWeights->GetInfo());
}
paramsInfo.m_InputGateBias = &(params.m_InputGateBias->GetInfo());
}
if (desc.m_ProjectionEnabled)
{
paramsInfo.m_ProjectionWeights = &(params.m_ProjectionWeights->GetInfo());
if (params.m_ProjectionBias != nullptr)
{
paramsInfo.m_ProjectionBias = &(params.m_ProjectionBias->GetInfo());
}
}
if (desc.m_PeepholeEnabled)
{
paramsInfo.m_CellToForgetWeights = &(params.m_CellToForgetWeights->GetInfo());
paramsInfo.m_CellToOutputWeights = &(params.m_CellToOutputWeights->GetInfo());
}
if (desc.m_LayerNormEnabled)
{
if(!desc.m_CifgEnabled)
{
paramsInfo.m_InputLayerNormWeights = &(params.m_InputLayerNormWeights->GetInfo());
}
paramsInfo.m_ForgetLayerNormWeights = &(params.m_ForgetLayerNormWeights->GetInfo());
paramsInfo.m_CellLayerNormWeights = &(params.m_CellLayerNormWeights->GetInfo());
paramsInfo.m_OutputLayerNormWeights = &(params.m_OutputLayerNormWeights->GetInfo());
}
bool isSupported = false;
auto validateFunc = [&](const armnn::TensorInfo& outputInfo, bool& isSupported)
{
FORWARD_LAYER_SUPPORT_FUNC("UNIDIRECTIONAL_SEQUENCE_LSTM",
tfLiteContext,
IsUnidirectionalSequenceLstmSupported,
delegateData.m_Backends,
isSupported,
inputTensorInfo,
outputStateInInfo,
cellStateInInfo,
outputStateOutTensorInfo,
cellStateOutTensorInfo,
outputInfo,
desc,
paramsInfo);
};
if (!delegateData.m_Network)
{
validateFunc(outputTensorInfo, isSupported);
return isSupported ? kTfLiteOk : kTfLiteError;
}
armnn::IConnectableLayer* layer = delegateData.m_Network->AddUnidirectionalSequenceLstmLayer(desc, params);
ARMNN_ASSERT(layer != nullptr);
layer->GetOutputSlot(0).SetTensorInfo(outputStateOutTensorInfo);
layer->GetOutputSlot(1).SetTensorInfo(cellStateOutTensorInfo);
layer->GetOutputSlot(2).SetTensorInfo(outputTensorInfo);
// Connect the inputs
// input_layer
delegateData.m_OutputSlotForNode[tfLiteNode->inputs->data[0]]->Connect(layer->GetInputSlot(0));
// cellStateIn
delegateData.m_OutputSlotForNode[tfLiteNode->inputs->data[18]]->Connect(layer->GetInputSlot(1));
//outputStateIn
delegateData.m_OutputSlotForNode[tfLiteNode->inputs->data[19]]->Connect(layer->GetInputSlot(2));
armnn::IOutputSlot& outputSlot = layer->GetOutputSlot(2);
delegateData.m_OutputSlotForNode[static_cast<unsigned long>(tfLiteNode->outputs->data[0])] = &outputSlot;
return kTfLiteOk;
}
} // namespace armnnDelegate