blob: 3e04a19df4b14cbaf16817262b76802c78eef505 [file] [log] [blame]
//
// Copyright © 2017-2024 Arm Ltd and Contributors. All rights reserved.
// SPDX-License-Identifier: MIT
//
#include "RefLayerSupport.hpp"
#include <armnn/TypesUtils.hpp>
#include <armnn/Types.hpp>
#include <armnn/utility/IgnoreUnused.hpp>
#include <armnn/utility/NumericCast.hpp>
#include <armnn/utility/PolymorphicDowncast.hpp>
#include <LayerSupportCommon.hpp>
#include <backendsCommon/LayerSupportRules.hpp>
#include <array>
#include <vector>
namespace armnn
{
namespace
{
template<typename Float32Func, typename Uint8Func, typename ... Params>
bool IsSupportedForDataTypeRef(Optional<std::string&> reasonIfUnsupported,
DataType dataType,
Float32Func floatFuncPtr,
Uint8Func uint8FuncPtr,
Params&&... params)
{
return IsSupportedForDataTypeGeneric(reasonIfUnsupported,
dataType,
&FalseFunc<Params...>,
floatFuncPtr,
uint8FuncPtr,
&FalseFunc<Params...>,
&FalseFunc<Params...>,
std::forward<Params>(params)...);
}
} // anonymous namespace
namespace
{
std::string CreateIncorrectDimensionsErrorMsg(unsigned int expected,
unsigned int actual,
std::string& layerStr,
std::string& tensorName)
{
std::string errorMsg = "Reference " + layerStr + ": Expected " + std::to_string(expected) + " dimensions but got" +
" " + std::to_string(actual) + " dimensions instead, for the '" + tensorName + "' tensor.";
return errorMsg;
}
} // anonymous namespace
bool RefLayerSupport::IsLayerSupported(const LayerType& type,
const std::vector<TensorInfo>& infos,
const BaseDescriptor& descriptor,
const Optional<LstmInputParamsInfo>& lstmParamsInfo,
const Optional<QuantizedLstmInputParamsInfo>& quantizedLstmInputParamsInfo,
Optional<std::string&> reasonIfUnsupported) const
{
switch (type)
{
case LayerType::Activation:
return IsActivationSupported(infos[0],
infos[1],
*(PolymorphicDowncast<const ActivationDescriptor*>(&descriptor)),
reasonIfUnsupported);
case LayerType::Addition:
return IsAdditionSupported(infos[0], infos[1], infos[2], reasonIfUnsupported);
case LayerType::ArgMinMax:
return IsArgMinMaxSupported(infos[0],
infos[1],
*(PolymorphicDowncast<const ArgMinMaxDescriptor*>(&descriptor)),
reasonIfUnsupported);
case LayerType::BatchMatMul:
return IsBatchMatMulSupported(infos[0],
infos[1],
infos[2],
*(PolymorphicDowncast<const BatchMatMulDescriptor*>(&descriptor)),
reasonIfUnsupported);
case LayerType::BatchNormalization:
return IsBatchNormalizationSupported(infos[0],
infos[1],
infos[2],
infos[3],
infos[4],
infos[5],
*(PolymorphicDowncast<const BatchNormalizationDescriptor*>
(&descriptor)),
reasonIfUnsupported);
case LayerType::BatchToSpaceNd:
return IsBatchToSpaceNdSupported(infos[0],
infos[1],
*(PolymorphicDowncast<const BatchToSpaceNdDescriptor*>(&descriptor)),
reasonIfUnsupported);
case LayerType::BroadcastTo:
return IsBroadcastToSupported(infos[0],
infos[1],
*(PolymorphicDowncast<const BroadcastToDescriptor*>(&descriptor)),
reasonIfUnsupported);
case LayerType::Comparison:
return IsComparisonSupported(infos[0],
infos[1],
infos[2],
*(PolymorphicDowncast<const ComparisonDescriptor*>(&descriptor)),
reasonIfUnsupported);
case LayerType::Concat:
{
std::vector<const TensorInfo*> inputInfos;
for (uint32_t i = 0; i < (infos.size() - 1); i++)
{
inputInfos.push_back(&infos[i]);
}
return IsConcatSupported(inputInfos,
infos[infos.size() - 1],
*(PolymorphicDowncast<const OriginsDescriptor*>(&descriptor)),
reasonIfUnsupported);
}
case LayerType::Constant:
return IsConstantSupported(infos[0], reasonIfUnsupported);
case LayerType::ConvertFp16ToFp32:
return IsConvertFp16ToFp32Supported(infos[0], infos[1], reasonIfUnsupported);
case LayerType::ConvertFp32ToFp16:
return IsConvertFp32ToFp16Supported(infos[0], infos[1], reasonIfUnsupported);
case LayerType::Convolution2d:
{
if (infos.size() != 4)
{
throw InvalidArgumentException("Invalid number of Convolution2d TensorInfos. "
"TensorInfos should be of format: {input, output, weights, biases}.");
}
auto desc = *(PolymorphicDowncast<const Convolution2dDescriptor*>(&descriptor));
if (infos[3] == TensorInfo())
{
return IsConvolution2dSupported(infos[0],
infos[1],
desc,
infos[2],
EmptyOptional(),
reasonIfUnsupported);
}
else
{
return IsConvolution2dSupported(infos[0],
infos[1],
desc,
infos[2],
infos[3],
reasonIfUnsupported);
}
}
case LayerType::DepthToSpace:
return IsDepthToSpaceSupported(infos[0],
infos[1],
*(PolymorphicDowncast<const DepthToSpaceDescriptor*>(&descriptor)),
reasonIfUnsupported);
case LayerType::DepthwiseConvolution2d:
{
if (infos.size() != 4)
{
throw InvalidArgumentException("Invalid number of DepthwiseConvolution2d TensorInfos. "
"TensorInfos should be of format: {input, output, weights, biases}.");
}
auto desc = *(PolymorphicDowncast<const DepthwiseConvolution2dDescriptor*>(&descriptor));
if (infos[3] == TensorInfo())
{
return IsDepthwiseConvolutionSupported(infos[0],
infos[1],
desc,
infos[2],
EmptyOptional(),
reasonIfUnsupported);
}
else
{
return IsDepthwiseConvolutionSupported(infos[0],
infos[1],
desc,
infos[2],
infos[3],
reasonIfUnsupported);
}
}
case LayerType::Dequantize:
return IsDequantizeSupported(infos[0], infos[1], reasonIfUnsupported);
case LayerType::Division:
return IsDivisionSupported(infos[0], infos[1], infos[2], reasonIfUnsupported);
case LayerType::ElementwiseBinary:
{
std::array<DataType, 7> supportedTypes =
{
DataType::Float32,
DataType::Float16,
DataType::QAsymmS8,
DataType::QAsymmU8,
DataType::QSymmS16,
DataType::Signed32
};
bool supported = true;
supported &= CheckSupportRule(TypeAnyOf(infos[0], supportedTypes), reasonIfUnsupported,
"Reference elementwise unary: input type not supported");
supported &= CheckSupportRule(TypeAnyOf(infos[1], supportedTypes), reasonIfUnsupported,
"Reference elementwise unary: input type not supported");
supported &= CheckSupportRule(TypeAnyOf(infos[2], supportedTypes), reasonIfUnsupported,
"Reference elementwise unary: output type not supported");
supported &= CheckSupportRule(TypesAreEqual(infos[0], infos[1]), reasonIfUnsupported,
"Reference elementwise unary: input types not matching");
supported &= CheckSupportRule(TypesAreEqual(infos[0], infos[2]), reasonIfUnsupported,
"Reference elementwise unary: input and output types not matching");
return supported;
}
case LayerType::ElementwiseUnary:
return IsElementwiseUnarySupported(infos[0],
infos[1],
*(PolymorphicDowncast<const ElementwiseUnaryDescriptor*>(&descriptor)),
reasonIfUnsupported);
case LayerType::Fill:
return IsFillSupported(infos[0],
infos[1],
*(PolymorphicDowncast<const FillDescriptor*>(&descriptor)),
reasonIfUnsupported);
case LayerType::Floor:
return IsFloorSupported(infos[0], infos[1], reasonIfUnsupported);
case LayerType::FullyConnected:
return IsFullyConnectedSupported(infos[0],
infos[1],
infos[2],
infos[3],
*(PolymorphicDowncast<const FullyConnectedDescriptor*>(&descriptor)),
reasonIfUnsupported);
case LayerType::Gather:
return IsGatherSupported(infos[0],
infos[1],
infos[2],
*(PolymorphicDowncast<const GatherDescriptor*>(&descriptor)),
reasonIfUnsupported);
case LayerType::GatherNd:
return IsGatherNdSupported(infos[0],
infos[1],
infos[2],
reasonIfUnsupported);
case LayerType::Input:
return IsInputSupported(infos[0], reasonIfUnsupported);
case LayerType::InstanceNormalization:
return IsInstanceNormalizationSupported(infos[0],
infos[1],
*(PolymorphicDowncast<const InstanceNormalizationDescriptor*>
(&descriptor)),
reasonIfUnsupported);
case LayerType::L2Normalization:
return IsL2NormalizationSupported(infos[0],
infos[1],
*(PolymorphicDowncast<const L2NormalizationDescriptor*>(&descriptor)),
reasonIfUnsupported);
case LayerType::LogicalBinary:
return IsLogicalBinarySupported(infos[0],
infos[1],
infos[2],
*(PolymorphicDowncast<const LogicalBinaryDescriptor*>(&descriptor)),
reasonIfUnsupported);
case LayerType::LogSoftmax:
return IsLogSoftmaxSupported(infos[0],
infos[1],
*(PolymorphicDowncast<const LogSoftmaxDescriptor*>(&descriptor)),
reasonIfUnsupported);
case LayerType::Lstm:
return IsLstmSupported(infos[0],
infos[1],
infos[2],
infos[3],
infos[4],
infos[5],
infos[6],
*(PolymorphicDowncast<const LstmDescriptor*>(&descriptor)),
lstmParamsInfo.value(),
reasonIfUnsupported);
case LayerType::QLstm:
return IsQLstmSupported(infos[0],
infos[1],
infos[2],
infos[3],
infos[4],
infos[5],
*(PolymorphicDowncast<const QLstmDescriptor*>(&descriptor)),
lstmParamsInfo.value(),
reasonIfUnsupported);
case LayerType::Maximum:
return IsMaximumSupported(infos[0], infos[1], infos[2], reasonIfUnsupported);
case LayerType::Mean:
return IsMeanSupported(infos[0],
infos[1],
*(PolymorphicDowncast<const MeanDescriptor*>(&descriptor)),
reasonIfUnsupported);
case LayerType::Minimum:
return IsMinimumSupported(infos[0], infos[1], infos[2], reasonIfUnsupported);
case LayerType::Multiplication:
return IsMultiplicationSupported(infos[0], infos[1], infos[2], reasonIfUnsupported);
case LayerType::Normalization:
return IsNormalizationSupported(infos[0],
infos[1],
*(PolymorphicDowncast<const NormalizationDescriptor*>(&descriptor)),
reasonIfUnsupported);
case LayerType::Output:
return IsOutputSupported(infos[0], reasonIfUnsupported);
case LayerType::Pad:
return IsPadSupported(infos[0],
infos[1],
*(PolymorphicDowncast<const PadDescriptor*>(&descriptor)),
reasonIfUnsupported);
case LayerType::Permute:
return IsPermuteSupported(infos[0],
infos[1],
*(PolymorphicDowncast<const PermuteDescriptor*>(&descriptor)),
reasonIfUnsupported);
case LayerType::Pooling2d:
return IsPooling2dSupported(infos[0],
infos[1],
*(PolymorphicDowncast<const Pooling2dDescriptor*>(&descriptor)),
reasonIfUnsupported);
case LayerType::Prelu:
return IsPreluSupported(infos[0], infos[1], infos[2], reasonIfUnsupported);
case LayerType::Quantize:
return IsQuantizeSupported(infos[0], infos[1], reasonIfUnsupported);
case LayerType::Reshape:
return IsReshapeSupported(infos[0],
infos[1],
*(PolymorphicDowncast<const ReshapeDescriptor*>(&descriptor)),
reasonIfUnsupported);
case LayerType::Resize:
return IsResizeSupported(infos[0],
infos[1],
*(PolymorphicDowncast<const ResizeDescriptor*>(&descriptor)),
reasonIfUnsupported);
case LayerType::ReverseV2:
return IsReverseV2Supported(infos[0],
infos[1],
infos[2],
reasonIfUnsupported);
case LayerType::Reduce:
return IsReduceSupported(infos[0],
infos[1],
*(PolymorphicDowncast<const ReduceDescriptor*>(&descriptor)),
reasonIfUnsupported);
case LayerType::ScatterNd:
return IsScatterNdSupported(infos[0],
infos[1],
infos[2],
infos[3],
*(PolymorphicDowncast<const ScatterNdDescriptor*>(&descriptor)),
reasonIfUnsupported);
case LayerType::Slice:
return IsSliceSupported(infos[0],
infos[1],
*(PolymorphicDowncast<const SliceDescriptor*>(&descriptor)),
reasonIfUnsupported);
case LayerType::Softmax:
return IsSoftmaxSupported(infos[0],
infos[1],
*(PolymorphicDowncast<const SoftmaxDescriptor*>(&descriptor)),
reasonIfUnsupported);
case LayerType::SpaceToBatchNd:
return IsSpaceToBatchNdSupported(infos[0],
infos[1],
*(PolymorphicDowncast<const SpaceToBatchNdDescriptor*>(&descriptor)),
reasonIfUnsupported);
case LayerType::SpaceToDepth:
return IsSpaceToDepthSupported(infos[0],
infos[1],
*(PolymorphicDowncast<const SpaceToDepthDescriptor*>(&descriptor)),
reasonIfUnsupported);
case LayerType::Splitter:
{
std::vector<TensorInfo> outputInfos;
for (uint32_t i = 1; i < infos.size(); i++)
{
outputInfos.push_back(infos[i]);
}
return IsSplitterSupported(infos[0],
{outputInfos.begin(), outputInfos.end()},
*(PolymorphicDowncast<const ViewsDescriptor*>(&descriptor)),
reasonIfUnsupported);
}
case LayerType::Stack:
{
std::vector<const TensorInfo*> inputInfos;
for (uint32_t i = 0; i < infos.size() - 1; i++)
{
inputInfos.push_back(&infos[i]);
}
return IsStackSupported(inputInfos,
infos[infos.size() - 1],
*(PolymorphicDowncast<const StackDescriptor*>(&descriptor)),
reasonIfUnsupported);
}
case LayerType::StridedSlice:
return IsStridedSliceSupported(infos[0],
infos[1],
*(PolymorphicDowncast<const StridedSliceDescriptor*>(&descriptor)),
reasonIfUnsupported);
case LayerType::Subtraction:
return IsSubtractionSupported(infos[0], infos[1], infos[2], reasonIfUnsupported);
case LayerType::Tile:
return IsTileSupported(infos[0],
infos[1],
*(PolymorphicDowncast<const TileDescriptor*>(&descriptor)),
reasonIfUnsupported);
case LayerType::Transpose:
return IsTransposeSupported(infos[0],
infos[1],
*(PolymorphicDowncast<const TransposeDescriptor*>(&descriptor)),
reasonIfUnsupported);
case LayerType::TransposeConvolution2d:
{
if (infos.size() != 4)
{
throw InvalidArgumentException("Invalid number of TransposeConvolution2d TensorInfos. "
"TensorInfos should be of format: {input, output, weights, biases}.");
}
auto desc = *(PolymorphicDowncast<const TransposeConvolution2dDescriptor*>(&descriptor));
if (infos[3] == TensorInfo())
{
return IsTransposeConvolution2dSupported(infos[0],
infos[1],
desc,
infos[2],
EmptyOptional(),
reasonIfUnsupported);
}
else
{
return IsTransposeConvolution2dSupported(infos[0],
infos[1],
desc,
infos[2],
infos[3],
reasonIfUnsupported);
}
}
case LayerType::Cast:
return IsCastSupported(infos[0], infos[1], reasonIfUnsupported);
case LayerType::ChannelShuffle:
return IsChannelShuffleSupported(infos[0],
infos[1],
*(PolymorphicDowncast<const ChannelShuffleDescriptor*>(&descriptor)),
reasonIfUnsupported);
case LayerType::Convolution3d:
{
if (infos.size() != 4)
{
throw InvalidArgumentException("Invalid number of Convolution3d TensorInfos. "
"TensorInfos should be of format: {input, output, weights, biases}.");
}
auto desc = *(PolymorphicDowncast<const Convolution3dDescriptor*>(&descriptor));
if (infos[3] == TensorInfo())
{
return IsConvolution3dSupported(infos[0],
infos[1],
desc,
infos[2],
EmptyOptional(),
reasonIfUnsupported);
}
else
{
return IsConvolution3dSupported(infos[0],
infos[1],
desc,
infos[2],
infos[3],
reasonIfUnsupported);
}
}
case LayerType::Debug:
return IsDebugSupported(infos[0], infos[1], reasonIfUnsupported);
case LayerType::DetectionPostProcess:
return IsDetectionPostProcessSupported(infos[0],
infos[1],
infos[2],
infos[3],
infos[4],
infos[5],
infos[6],
*(PolymorphicDowncast<const DetectionPostProcessDescriptor*>
(&descriptor)),
reasonIfUnsupported);
case LayerType::FakeQuantization:
return IsFakeQuantizationSupported(infos[0],
*(PolymorphicDowncast<const FakeQuantizationDescriptor*>(&descriptor)),
reasonIfUnsupported);
case LayerType::MemCopy:
return IsMemCopySupported(infos[0], infos[1], reasonIfUnsupported);
case LayerType::Rank:
return IsRankSupported(infos[0], infos[1], reasonIfUnsupported);
case LayerType::Shape:
return IsShapeSupported(infos[0], infos[1], reasonIfUnsupported);
case LayerType::UnidirectionalSequenceLstm:
{
if (infos.size() != 6)
{
throw InvalidArgumentException("Invalid number of UnidirectionalSequenceLstm TensorInfos. TensorInfos "
"should be of format: {input, outputStateIn, cellStateIn, "
"hiddenStateOutputVal, cellStateOutputVal, output}");
}
auto desc = *(PolymorphicDowncast<const UnidirectionalSequenceLstmDescriptor*>(&descriptor));
return IsUnidirectionalSequenceLstmSupported(infos[0],
infos[1],
infos[2],
infos[3],
infos[4],
infos[5],
desc,
lstmParamsInfo.value(),
reasonIfUnsupported);
}
case LayerType::Pooling3d:
return IsPooling3dSupported(infos[0],
infos[1],
*(PolymorphicDowncast<const Pooling3dDescriptor*>(&descriptor)),
reasonIfUnsupported);
case LayerType::Map:
return true;
case LayerType::Unmap:
return true;
case LayerType::MemImport:
return LayerSupportBase::IsMemImportSupported(infos[0], infos[1], reasonIfUnsupported);
case LayerType::Merge:
return LayerSupportBase::IsMergeSupported(infos[0], infos[1], infos[2], reasonIfUnsupported);
case LayerType::QuantizedLstm:
return LayerSupportBase::IsQuantizedLstmSupported(infos[0],
infos[1],
infos[2],
infos[3],
infos[4],
quantizedLstmInputParamsInfo.value(),
reasonIfUnsupported);
default:
// layers not supported in reference by default:
// precompiled, standin, switch, fused
return false;
}
}
bool RefLayerSupport::IsActivationSupported(const TensorInfo& input,
const TensorInfo& output,
const ActivationDescriptor& descriptor,
Optional<std::string&> reasonIfUnsupported) const
{
bool supported = true;
// Define supported types.
std::array<DataType,6> supportedTypes = {
DataType::Float32,
DataType::Float16,
DataType::QAsymmS8,
DataType::QAsymmU8,
DataType::QSymmS16
};
supported &= CheckSupportRule(TypeAnyOf(input, supportedTypes), reasonIfUnsupported,
"Reference activation: input type not supported.");
supported &= CheckSupportRule(TypeAnyOf(output, supportedTypes), reasonIfUnsupported,
"Reference activation: output type not supported.");
supported &= CheckSupportRule(TypesAreEqual(input, output), reasonIfUnsupported,
"Reference activation: input and output types mismatched.");
supported &= CheckSupportRule(ShapesAreSameRank(input, output), reasonIfUnsupported,
"Reference activation: input and output shapes are of different rank.");
struct ActivationFunctionSupported : public Rule
{
ActivationFunctionSupported(const ActivationDescriptor& desc)
{
switch(desc.m_Function)
{
case ActivationFunction::Abs:
case ActivationFunction::BoundedReLu:
case ActivationFunction::Elu:
case ActivationFunction::Gelu:
case ActivationFunction::HardSwish:
case ActivationFunction::LeakyReLu:
case ActivationFunction::Linear:
case ActivationFunction::ReLu:
case ActivationFunction::Sigmoid:
case ActivationFunction::SoftReLu:
case ActivationFunction::Sqrt:
case ActivationFunction::Square:
case ActivationFunction::TanH:
{
m_Res = true;
break;
}
default:
{
m_Res = false;
break;
}
}
}
};
// Function is supported
supported &= CheckSupportRule(ActivationFunctionSupported(descriptor), reasonIfUnsupported,
"Reference activation: function not supported.");
return supported;
}
bool RefLayerSupport::IsAdditionSupported(const TensorInfo& input0,
const TensorInfo& input1,
const TensorInfo& output,
Optional<std::string&> reasonIfUnsupported) const
{
bool supported = true;
std::array<DataType,7> supportedTypes = {
DataType::Float32,
DataType::Float16,
DataType::QAsymmS8,
DataType::QAsymmU8,
DataType::QSymmS16,
DataType::Signed32
};
supported &= CheckSupportRule(TypeAnyOf(input0, supportedTypes), reasonIfUnsupported,
"Reference addition: input 0 is not a supported type.");
supported &= CheckSupportRule(TypeAnyOf(input1, supportedTypes), reasonIfUnsupported,
"Reference addition: input 1 is not a supported type.");
supported &= CheckSupportRule(TypeAnyOf(output, supportedTypes), reasonIfUnsupported,
"Reference addition: output is not a supported type.");
supported &= CheckSupportRule(TypesAreEqual(input0, input1), reasonIfUnsupported,
"Reference addition: input 0 and Input 1 types are mismatched");
supported &= CheckSupportRule(TypesAreEqual(input0, output), reasonIfUnsupported,
"Reference addition: input and output types are mismatched");
supported &= CheckSupportRule(ShapesAreBroadcastCompatible(input0, input1, output), reasonIfUnsupported,
"Reference addition: shapes are not suitable for implicit broadcast.");
return supported;
}
bool RefLayerSupport::IsArgMinMaxSupported(const armnn::TensorInfo &input, const armnn::TensorInfo &output,
const armnn::ArgMinMaxDescriptor &descriptor,
armnn::Optional<std::string &> reasonIfUnsupported) const
{
IgnoreUnused(descriptor);
std::array<DataType, 8> supportedInputTypes =
{
DataType::Float16,
DataType::Float32,
DataType::QAsymmS8,
DataType::QAsymmU8,
DataType::QSymmS16,
DataType::Signed32,
DataType::Signed64
};
std::array<DataType,2> supportedOutputTypes = {
DataType::Signed32,
DataType::Signed64
};
bool supported = true;
supported &= CheckSupportRule(TypeAnyOf(input, supportedInputTypes), reasonIfUnsupported,
"Reference ArgMinMax: input is not a supported type.");
supported &= CheckSupportRule(TypeAnyOf(output, supportedOutputTypes), reasonIfUnsupported,
"Reference ArgMinMax: output type not supported");
return supported;
}
bool RefLayerSupport::IsBatchMatMulSupported(const TensorInfo& inputX,
const TensorInfo& inputY,
const TensorInfo& output,
const BatchMatMulDescriptor& descriptor,
Optional<std::string &> reasonIfUnsupported) const
{
IgnoreUnused(descriptor);
std::array<DataType, 6> supportedTypes =
{
DataType::Float16,
DataType::Float32,
DataType::QAsymmS8,
DataType::QAsymmU8,
DataType::QSymmS16
};
bool supported = true;
supported &= CheckSupportRule(TypeAnyOf(inputX, supportedTypes), reasonIfUnsupported,
"Reference batch matrix multiplication: input X is not a supported type");
supported &= CheckSupportRule(TypeAnyOf(inputY, supportedTypes), reasonIfUnsupported,
"Reference batch matrix multiplication: input Y is not a supported type");
supported &= CheckSupportRule(TypeAnyOf(output, supportedTypes), reasonIfUnsupported,
"Reference batch matrix multiplication: output is not a supported type");
supported &= CheckSupportRule(TypesAreEqual(inputX, inputY), reasonIfUnsupported,
"Reference batch matrix multiplication: input X and input Y types are mismatched");
supported &= CheckSupportRule(TypesAreEqual(inputX, output), reasonIfUnsupported,
"Reference batch matrix multiplication: inputs and output types are mismatched");
supported &= CheckSupportRule(TensorNumDimensionsAreGreaterOrEqualTo(inputX, 2),
reasonIfUnsupported,
"Reference batch matrix multiplication: input X is not of rank 2 or greater");
supported &= CheckSupportRule(TensorNumDimensionsAreGreaterOrEqualTo(inputY, 2),
reasonIfUnsupported,
"Reference batch matrix multiplication: input Y is not of rank 2 or greater");
return supported;
}
bool RefLayerSupport::IsBatchNormalizationSupported(const TensorInfo& input,
const TensorInfo& output,
const TensorInfo& mean,
const TensorInfo& variance,
const TensorInfo& beta,
const TensorInfo& gamma,
const BatchNormalizationDescriptor& descriptor,
Optional<std::string&> reasonIfUnsupported) const
{
IgnoreUnused(descriptor);
std::array<DataType, 6> supportedTypes =
{
DataType::Float32,
DataType::Float16,
DataType::QAsymmS8,
DataType::QAsymmU8,
DataType::QSymmS16
};
bool supported = true;
supported &= CheckSupportRule(TypeAnyOf(input, supportedTypes), reasonIfUnsupported,
"Reference batch normalization: input is not a supported type.");
supported &= CheckSupportRule(TypeAnyOf(output, supportedTypes), reasonIfUnsupported,
"Reference batch normalization: output is not a supported type.");
supported &= CheckSupportRule(TypesAreEqual(input, output), reasonIfUnsupported,
"Reference batch normalization: input and output types are mismatched");
supported &= CheckSupportRule(TypeAnyOf(mean, supportedTypes), reasonIfUnsupported,
"Reference batch normalization: mean is not a supported type.");
supported &= CheckSupportRule(TypeAnyOf(variance, supportedTypes), reasonIfUnsupported,
"Reference batch normalization: variance is not a supported type.");
supported &= CheckSupportRule(TypeAnyOf(beta, supportedTypes), reasonIfUnsupported,
"Reference batch normalization: beta is not a supported type.");
supported &= CheckSupportRule(TypeAnyOf(gamma, supportedTypes), reasonIfUnsupported,
"Reference batch normalization: gamma is not a supported type.");
return supported;
}
bool RefLayerSupport::IsBatchToSpaceNdSupported(const TensorInfo& input,
const TensorInfo& output,
const BatchToSpaceNdDescriptor& descriptor,
Optional<std::string&> reasonIfUnsupported) const
{
IgnoreUnused(descriptor);
bool supported = true;
std::string batchToSpaceNdLayerStr = "batchToSpaceNd";
std::string inputTensorStr = "input";
std::string outputTensorStr = "output";
// Define supported types.
std::array<DataType,6> supportedTypes =
{
DataType::Float32,
DataType::Float16,
DataType::QAsymmS8,
DataType::QAsymmU8,
DataType::QSymmS16
};
supported &= CheckSupportRule(TypeAnyOf(input, supportedTypes), reasonIfUnsupported,
"Reference BatchToSpaceNd: input type not supported.");
supported &= CheckSupportRule(TypeAnyOf(output, supportedTypes), reasonIfUnsupported,
"Reference BatchToSpaceNd: output type not supported.");
supported &= CheckSupportRule(TypesAreEqual(input, output), reasonIfUnsupported,
"Reference BatchToSpaceNd: input and output types mismatched.");
return supported;
}
bool RefLayerSupport::IsBroadcastToSupported(const TensorInfo& input,
const TensorInfo& output,
const BroadcastToDescriptor& descriptor,
Optional<std::string&> reasonIfUnsupported) const
{
IgnoreUnused(descriptor);
bool supported = true;
std::array<DataType, 8> supportedTypes
{
DataType::Float32,
DataType::Float16,
DataType::QAsymmS8,
DataType::QAsymmU8,
DataType::QSymmS8,
DataType::QSymmS16,
DataType::Signed32,
DataType::Signed64
};
supported &= CheckSupportRule(TypeAnyOf(input, supportedTypes), reasonIfUnsupported,
"BroadcastTo: input type not supported.");
supported &= CheckSupportRule(TypeAnyOf(output, supportedTypes), reasonIfUnsupported,
"BroadcastTo: output type not supported");
return supported;
}
bool RefLayerSupport::IsCastSupported(const TensorInfo& input,
const TensorInfo& output,
Optional<std::string&> reasonIfUnsupported) const
{
std::array<DataType, 10> supportedInputTypes =
{
DataType::Float32,
DataType::Float16,
DataType::QSymmS8,
DataType::QAsymmS8,
DataType::QAsymmU8,
DataType::QSymmS16,
DataType::Signed32,
DataType::Signed64
};
bool supported = true;
supported &= CheckSupportRule(TypeAnyOf(input, supportedInputTypes), reasonIfUnsupported,
"Reference cast: input is not a supported type");
supported &= CheckSupportRule(TypeAnyOf(output, supportedInputTypes), reasonIfUnsupported,
"Reference cast: output is not a supported type");
supported &= CheckSupportRule(ShapesAreSameTotalSize(input, output), reasonIfUnsupported,
"Reference cast: input and output shapes have different number of total elements");
return supported;
}
bool RefLayerSupport::IsChannelShuffleSupported(const TensorInfo& input,
const TensorInfo& output,
const ChannelShuffleDescriptor& descriptor,
Optional<std::string&> reasonIfUnsupported) const
{
IgnoreUnused(descriptor);
bool supported = true;
// Define supported output and inputs types.
std::array<DataType, 7> supportedTypes =
{
DataType::Float32,
DataType::Float16,
DataType::QAsymmS8,
DataType::QAsymmU8,
DataType::QSymmS8,
DataType::QSymmS16
};
supported &= CheckSupportRule(TypeAnyOf(input, supportedTypes), reasonIfUnsupported,
"Reference ChannelShuffle: input is not a supported type.");
supported &= CheckSupportRule(TypeAnyOf(output, supportedTypes), reasonIfUnsupported,
"Reference ChannelShuffle: output is not a supported type.");
supported &= CheckSupportRule(TypesAreEqual(input, output), reasonIfUnsupported,
"Reference ChannelShuffle: input and output types are mismatched.");
return supported;
}
bool RefLayerSupport::IsComparisonSupported(const TensorInfo& input0,
const TensorInfo& input1,
const TensorInfo& output,
const ComparisonDescriptor& descriptor,
Optional<std::string&> reasonIfUnsupported) const
{
IgnoreUnused(descriptor);
std::array<DataType, 8> supportedInputTypes =
{
DataType::Boolean,
DataType::Float32,
DataType::Float16,
DataType::QAsymmS8,
DataType::QAsymmU8,
DataType::QSymmS16,
DataType::Signed32
};
bool supported = true;
supported &= CheckSupportRule(TypeAnyOf(input0, supportedInputTypes), reasonIfUnsupported,
"Reference comparison: input 0 is not a supported type");
supported &= CheckSupportRule(TypesAreEqual(input0, input1), reasonIfUnsupported,
"Reference comparison: input 0 and Input 1 types are mismatched");
supported &= CheckSupportRule(TypeIs(output, DataType::Boolean), reasonIfUnsupported,
"Reference comparison: output is not of type Boolean");
supported &= CheckSupportRule(ShapesAreBroadcastCompatible(input0, input1, output), reasonIfUnsupported,
"Reference comparison: shapes are not suitable for implicit broadcast.");
return supported;
}
bool RefLayerSupport::IsConcatSupported(const std::vector<const TensorInfo*> inputs,
const TensorInfo& output,
const OriginsDescriptor& descriptor,
Optional<std::string&> reasonIfUnsupported) const
{
IgnoreUnused(descriptor);
bool supported = true;
std::array<DataType,7> supportedTypes =
{
DataType::Float32,
DataType::Float16,
DataType::QAsymmS8,
DataType::QAsymmU8,
DataType::QSymmS16,
DataType::Signed32
};
supported &= CheckSupportRule(TypeAnyOf(output, supportedTypes), reasonIfUnsupported,
"Reference concatenation: output type not supported");
for (const TensorInfo* input : inputs)
{
supported &= CheckSupportRule(TypeAnyOf(*input, supportedTypes), reasonIfUnsupported,
"Reference concatenation: input type not supported");
supported &= CheckSupportRule(TypesAreEqual(*input, output), reasonIfUnsupported,
"Reference concatenation: input and output types mismatched.");
}
return supported;
}
bool RefLayerSupport::IsConstantSupported(const TensorInfo& output,
Optional<std::string&> reasonIfUnsupported) const
{
std::array<DataType,8> supportedTypes =
{
DataType::Float16,
DataType::Float32,
DataType::QAsymmS8,
DataType::QAsymmU8,
DataType::QSymmS8,
DataType::QSymmS16,
DataType::Signed32
};
return CheckSupportRule(TypeAnyOf(output, supportedTypes), reasonIfUnsupported,
"Reference constant: output is not a supported type.");
}
bool RefLayerSupport::IsConvertFp16ToFp32Supported(const TensorInfo& input,
const TensorInfo& output,
Optional<std::string&> reasonIfUnsupported) const
{
return (IsSupportedForDataTypeGeneric(reasonIfUnsupported,
input.GetDataType(),
&TrueFunc<>,
&FalseInputFuncF32<>,
&FalseFuncU8<>,
&FalseFuncI32<>,
&FalseFuncU8<>) &&
IsSupportedForDataTypeGeneric(reasonIfUnsupported,
output.GetDataType(),
&FalseOutputFuncF16<>,
&TrueFunc<>,
&FalseFuncU8<>,
&FalseFuncI32<>,
&FalseFuncU8<>));
}
bool RefLayerSupport::IsConvertFp32ToFp16Supported(const TensorInfo& input,
const TensorInfo& output,
Optional<std::string&> reasonIfUnsupported) const
{
return (IsSupportedForDataTypeGeneric(reasonIfUnsupported,
input.GetDataType(),
&FalseInputFuncF16<>,
&TrueFunc<>,
&FalseFuncU8<>,
&FalseFuncI32<>,
&FalseFuncU8<>) &&
IsSupportedForDataTypeGeneric(reasonIfUnsupported,
output.GetDataType(),
&TrueFunc<>,
&FalseOutputFuncF32<>,
&FalseFuncU8<>,
&FalseFuncI32<>,
&FalseFuncU8<>));
}
bool RefLayerSupport::IsConvolution2dSupported(const TensorInfo& input,
const TensorInfo& output,
const Convolution2dDescriptor& descriptor,
const TensorInfo& weights,
const Optional<TensorInfo>& biases,
Optional<std::string&> reasonIfUnsupported) const
{
bool supported = true;
// Define supported types.
std::array<DataType,7> supportedTypes =
{
DataType::Float32,
DataType::Float16,
DataType::QAsymmS8,
DataType::QAsymmU8,
DataType::QSymmS8,
DataType::QSymmS16
};
supported &= CheckSupportRule(TypeAnyOf(input, supportedTypes), reasonIfUnsupported,
"Reference Convolution2d: input is not a supported type.");
supported &= CheckSupportRule(TypeAnyOf(output, supportedTypes), reasonIfUnsupported,
"Reference Convolution2d: output is not a supported type.");
supported &= CheckSupportRule(TypesAreEqual(input, output), reasonIfUnsupported,
"Reference Convolution2d: input and output types mismatched.");
const DataType inputType = input.GetDataType();
if (IsQuantized8BitType(inputType))
{
std::array<DataType, 3> supportedWeightTypes =
{
DataType::QAsymmS8,
DataType::QAsymmU8,
DataType::QSymmS8
};
supported &= CheckSupportRule(TypeAnyOf(weights, supportedWeightTypes), reasonIfUnsupported,
"Reference Convolution2d: weights type not supported for quantized input.");
}
else
{
supported &= CheckSupportRule(TypeAnyOf(weights, supportedTypes), reasonIfUnsupported,
"Reference Convolution2d: weights is not a supported type.");
supported &= CheckSupportRule(TypesAreEqual(input, weights), reasonIfUnsupported,
"Reference Convolution2d: input and weights types mismatched.");
}
if (biases.has_value())
{
std::array<DataType,4> biasesSupportedTypes =
{
DataType::Float32,
DataType::Float16,
DataType::Signed32
};
supported &= CheckSupportRule(TypeAnyOf(biases.value(), biasesSupportedTypes), reasonIfUnsupported,
"Reference Convolution2d: biases is not a supported type.");
}
IgnoreUnused(descriptor);
return supported;
}
bool RefLayerSupport::IsConvolution3dSupported(const TensorInfo& input,
const TensorInfo& output,
const Convolution3dDescriptor& descriptor,
const TensorInfo& weights,
const Optional<TensorInfo>& biases,
Optional<std::string&> reasonIfUnsupported) const
{
bool supported = true;
// Define supported types.
std::array<DataType,7> supportedTypes =
{
DataType::Float32,
DataType::Float16,
DataType::QAsymmS8,
DataType::QAsymmU8,
DataType::QSymmS8,
DataType::QSymmS16
};
supported &= CheckSupportRule(TypeAnyOf(input, supportedTypes), reasonIfUnsupported,
"Reference Convolution3d: input is not a supported type.");
supported &= CheckSupportRule(TypeAnyOf(output, supportedTypes), reasonIfUnsupported,
"Reference Convolution3d: output is not a supported type.");
supported &= CheckSupportRule(TypesAreEqual(input, output), reasonIfUnsupported,
"Reference Convolution3d: input and output types mismatched.");
const DataType inputType = input.GetDataType();
if (IsQuantized8BitType(inputType))
{
std::array<DataType, 3> supportedWeightTypes =
{
DataType::QAsymmS8,
DataType::QAsymmU8,
DataType::QSymmS8
};
supported &= CheckSupportRule(TypeAnyOf(weights, supportedWeightTypes), reasonIfUnsupported,
"Reference Convolution3d: weights type not supported for quantized input.");
}
else
{
supported &= CheckSupportRule(TypeAnyOf(weights, supportedTypes), reasonIfUnsupported,
"Reference Convolution3d: weights is not a supported type.");
supported &= CheckSupportRule(TypesAreEqual(input, weights), reasonIfUnsupported,
"Reference Convolution3d: input and weights types mismatched.");
}
if (biases.has_value())
{
std::array<DataType,4> biasesSupportedTypes =
{
DataType::Float32,
DataType::Float16,
DataType::Signed32
};
supported &= CheckSupportRule(TypeAnyOf(biases.value(), biasesSupportedTypes), reasonIfUnsupported,
"Reference Convolution3d: biases is not a supported type.");
}
IgnoreUnused(descriptor);
return supported;
}
bool RefLayerSupport::IsDebugSupported(const TensorInfo& input,
const TensorInfo& output,
Optional<std::string&> reasonIfUnsupported) const
{
bool supported = true;
std::array<DataType, 8> supportedTypes =
{
DataType::BFloat16,
DataType::Float16,
DataType::Float32,
DataType::QAsymmS8,
DataType::QAsymmU8,
DataType::QSymmS8,
DataType::QSymmS16,
DataType::Signed32
};
supported &= CheckSupportRule(TypeAnyOf(input, supportedTypes), reasonIfUnsupported,
"Reference for Debug layer: input type not supported");
supported &= CheckSupportRule(TypeAnyOf(output, supportedTypes), reasonIfUnsupported,
"Reference for Debug layer: output type not supported");
supported &= CheckSupportRule(TypesAreEqual(input, output), reasonIfUnsupported,
"Reference for Debug layer: input and output types are mismatched");
return supported;
}
bool RefLayerSupport::IsDepthToSpaceSupported(const TensorInfo& input,
const TensorInfo& output,
const DepthToSpaceDescriptor& descriptor,
Optional<std::string&> reasonIfUnsupported) const
{
IgnoreUnused(descriptor);
bool supported = true;
std::array<DataType,6> supportedTypes =
{
DataType::Float32,
DataType::Float16,
DataType::QAsymmS8,
DataType::QAsymmU8,
DataType::QSymmS16
};
supported &= CheckSupportRule(TypeAnyOf(input, supportedTypes), reasonIfUnsupported,
"Reference DepthToSpace: input type not supported");
supported &= CheckSupportRule(TypeAnyOf(output, supportedTypes), reasonIfUnsupported,
"Reference DepthToSpace: output type not supported");
supported &= CheckSupportRule(TypesAreEqual(input, output), reasonIfUnsupported,
"Reference DepthToSpace: input and output types are mismatched");
return supported;
}
bool RefLayerSupport::IsDepthwiseConvolutionSupported(const TensorInfo& input,
const TensorInfo& output,
const DepthwiseConvolution2dDescriptor& descriptor,
const TensorInfo& weights,
const Optional<TensorInfo>& biases,
Optional<std::string&> reasonIfUnsupported) const
{
IgnoreUnused(descriptor);
bool supported = true;
// Define supported types.
std::array<DataType,7> supportedTypes =
{
DataType::Float32,
DataType::Float16,
DataType::QAsymmS8,
DataType::QAsymmU8,
DataType::QSymmS8,
DataType::QSymmS16
};
supported &= CheckSupportRule(TypeAnyOf(input, supportedTypes), reasonIfUnsupported,
"Reference DepthwiseConvolution2d: input is not a supported type.");
supported &= CheckSupportRule(TypeAnyOf(output, supportedTypes), reasonIfUnsupported,
"Reference DepthwiseConvolution2d: output is not a supported type.");
supported &= CheckSupportRule(TypesAreEqual(input, output), reasonIfUnsupported,
"Reference DepthwiseConvolution2d: input and output types mismatched.");
const DataType inputType = input.GetDataType();
if (IsQuantized8BitType(inputType))
{
std::array<DataType, 3> supportedWeightTypes =
{
DataType::QAsymmS8,
DataType::QAsymmU8,
DataType::QSymmS8,
};
supported &= CheckSupportRule(TypeAnyOf(weights, supportedWeightTypes), reasonIfUnsupported,
"Reference DepthwiseConvolution2d: weights type not supported for "
"quantized input.");
}
else
{
supported &= CheckSupportRule(TypeAnyOf(weights, supportedTypes), reasonIfUnsupported,
"Reference DepthwiseConvolution2d: weights is not a supported type.");
supported &= CheckSupportRule(TypesAreEqual(input, weights), reasonIfUnsupported,
"Reference DepthwiseConvolution2d: input and weights types mismatched.");
}
if (biases.has_value())
{
std::array<DataType,4> biasesSupportedTypes =
{
DataType::Float32,
DataType::Float16,
DataType::Signed32
};
supported &= CheckSupportRule(TypeAnyOf(biases.value(), biasesSupportedTypes), reasonIfUnsupported,
"Reference DepthwiseConvolution2d: biases is not a supported type.");
}
return supported;
}
bool RefLayerSupport::IsDequantizeSupported(const TensorInfo& input,
const TensorInfo& output,
Optional<std::string&> reasonIfUnsupported) const
{
bool supported = true;
std::array<DataType,5> supportedInputTypes = {
DataType::QAsymmS8,
DataType::QAsymmU8,
DataType::QSymmS8,
DataType::QSymmS16,
DataType::Float16
};
supported &= CheckSupportRule(TypeAnyOf(input, supportedInputTypes), reasonIfUnsupported,
"Reference for Dequantize layer: input type not supported.");
supported &= CheckSupportRule(TypeNotPerAxisQuantized(input), reasonIfUnsupported,
"Reference for Dequantize layer: per-axis quantized input not supported.");
std::array<DataType,3> supportedOutputTypes = {
DataType::Float32,
DataType::Float16
};
supported &= CheckSupportRule(TypeAnyOf(output, supportedOutputTypes), reasonIfUnsupported,
"Reference for Dequantize layer: output type not supported.");
supported &= CheckSupportRule(ShapesAreSameTotalSize(input, output), reasonIfUnsupported,
"Reference for Dequantize layer: input/output shapes have different num total "
"elements.");
return supported;
}
bool RefLayerSupport::IsDetectionPostProcessSupported(const TensorInfo& boxEncodings,
const TensorInfo& scores,
const TensorInfo& anchors,
const TensorInfo& detectionBoxes,
const TensorInfo& detectionClasses,
const TensorInfo& detectionScores,
const TensorInfo& numDetections,
const DetectionPostProcessDescriptor& descriptor,
Optional<std::string&> reasonIfUnsupported) const
{
IgnoreUnused(anchors, detectionBoxes, detectionClasses, detectionScores, numDetections, descriptor);
bool supported = true;
std::array<DataType,6> supportedInputTypes =
{
DataType::Float32,
DataType::Float16,
DataType::QAsymmS8,
DataType::QAsymmU8,
DataType::QSymmS16
};
supported &= CheckSupportRule(TypeAnyOf(boxEncodings, supportedInputTypes), reasonIfUnsupported,
"Reference DetectionPostProcess: input 0 is not a supported type.");
supported &= CheckSupportRule(TypeAnyOf(scores, supportedInputTypes), reasonIfUnsupported,
"Reference DetectionPostProcess: input 1 is not a supported type.");
return supported;
}
bool RefLayerSupport::IsDilatedDepthwiseConvolutionSupported(const TensorInfo& input,
const TensorInfo& output,
const DepthwiseConvolution2dDescriptor& descriptor,
const TensorInfo& weights,
const Optional<TensorInfo>& biases,
Optional<std::string&> reasonIfUnsupported) const
{
return IsDepthwiseConvolutionSupported(input, output, descriptor, weights, biases, reasonIfUnsupported);
}
bool RefLayerSupport::IsDivisionSupported(const TensorInfo& input0,
const TensorInfo& input1,
const TensorInfo& output,
Optional<std::string&> reasonIfUnsupported) const
{
bool supported = true;
std::array<DataType,7> supportedTypes = {
DataType::Float32,
DataType::Float16,
DataType::QAsymmS8,
DataType::QAsymmU8,
DataType::QSymmS16,
DataType::Signed32
};
supported &= CheckSupportRule(TypeAnyOf(input0, supportedTypes), reasonIfUnsupported,
"Reference division: input 0 is not a supported type.");
supported &= CheckSupportRule(TypeAnyOf(input1, supportedTypes), reasonIfUnsupported,
"Reference division: input 1 is not a supported type.");
supported &= CheckSupportRule(TypeAnyOf(output, supportedTypes), reasonIfUnsupported,
"Reference division: output is not a supported type.");
supported &= CheckSupportRule(TypesAreEqual(input0, input1), reasonIfUnsupported,
"Reference division: input 0 and Input 1 types are mismatched");
supported &= CheckSupportRule(TypesAreEqual(input0, output), reasonIfUnsupported,
"Reference division: input and output types are mismatched");
supported &= CheckSupportRule(ShapesAreBroadcastCompatible(input0, input1, output), reasonIfUnsupported,
"Reference division: shapes are not suitable for implicit broadcast.");
return supported;
}
bool RefLayerSupport::IsElementwiseUnarySupported(const TensorInfo& input,
const TensorInfo& output,
const ElementwiseUnaryDescriptor& descriptor,
Optional<std::string&> reasonIfUnsupported) const
{
IgnoreUnused(descriptor);
std::array<DataType, 7> supportedTypes =
{
DataType::Float32,
DataType::Float16,
DataType::QAsymmS8,
DataType::QAsymmU8,
DataType::QSymmS16,
DataType::Signed32
};
std::array<DataType, 1> logicalSupportedTypes =
{
DataType::Boolean
};
bool supported = true;
if (descriptor.m_Operation == UnaryOperation::LogicalNot)
{
supported &= CheckSupportRule(TypeAnyOf(input, logicalSupportedTypes), reasonIfUnsupported,
"Reference elementwise unary: input type not supported");
supported &= CheckSupportRule(TypeAnyOf(output, logicalSupportedTypes), reasonIfUnsupported,
"Reference elementwise unary: output type not supported");
}
else
{
supported &= CheckSupportRule(TypeAnyOf(input, supportedTypes), reasonIfUnsupported,
"Reference elementwise unary: input type not supported");
supported &= CheckSupportRule(TypeAnyOf(output, supportedTypes), reasonIfUnsupported,
"Reference elementwise unary: output type not supported");
}
supported &= CheckSupportRule(TypesAreEqual(input, output), reasonIfUnsupported,
"Reference elementwise unary: input and output types not matching");
supported &= CheckSupportRule(ShapesAreSameTotalSize(input, output), reasonIfUnsupported,
"Reference elementwise unary: input and output shapes"
"have different number of total elements");
return supported;
}
bool RefLayerSupport::IsFakeQuantizationSupported(const TensorInfo& input,
const FakeQuantizationDescriptor& descriptor,
Optional<std::string&> reasonIfUnsupported) const
{
IgnoreUnused(descriptor);
bool supported = true;
std::array<DataType,1> supportedTypes =
{
DataType::Float32
};
supported &= CheckSupportRule(TypeAnyOf(input, supportedTypes), reasonIfUnsupported,
"Reference fake quantization: input type not supported.");
return supported;
}
bool RefLayerSupport::IsFillSupported(const TensorInfo& input,
const TensorInfo& output,
const FillDescriptor& descriptor,
Optional<std::string&> reasonIfUnsupported) const
{
IgnoreUnused(descriptor);
IgnoreUnused(output);
bool supported = true;
std::array<DataType,3> supportedTypes =
{
DataType::Float32,
DataType::Float16,
DataType::Signed32
};
supported &= CheckSupportRule(TypeIs(input, DataType::Signed32), reasonIfUnsupported,
"Reference Fill: input type not supported.");
supported &= CheckSupportRule(TypeAnyOf(output, supportedTypes), reasonIfUnsupported,
"Reference Fill: output type not supported.");
return supported;
}
bool RefLayerSupport::IsFloorSupported(const TensorInfo& input,
const TensorInfo& output,
Optional<std::string&> reasonIfUnsupported) const
{
IgnoreUnused(output);
bool supported = true;
std::array<DataType,3> supportedTypes =
{
DataType::Float32,
DataType::Float16
};
supported &= CheckSupportRule(TypeAnyOf(input, supportedTypes), reasonIfUnsupported,
"Reference Floor: input type not supported.");
supported &= CheckSupportRule(TypeAnyOf(output, supportedTypes), reasonIfUnsupported,
"Reference Floor: output type not supported.");
return supported;
}
bool RefLayerSupport::IsFullyConnectedSupported(const TensorInfo& input,
const TensorInfo& output,
const TensorInfo& weights,
const TensorInfo& biases,
const FullyConnectedDescriptor& descriptor,
Optional<std::string&> reasonIfUnsupported) const
{
bool supported = true;
// Define supported types.
std::array<DataType,6> supportedTypes =
{
DataType::Float32,
DataType::Float16,
DataType::QAsymmS8,
DataType::QAsymmU8,
DataType::QSymmS16
};
supported &= CheckSupportRule(TypeAnyOf(input, supportedTypes), reasonIfUnsupported,
"Reference Fully Connected: input type not supported.");
supported &= CheckSupportRule(TypeAnyOf(output, supportedTypes), reasonIfUnsupported,
"Reference Fully Connected: output type not supported.");
supported &= CheckSupportRule(TypeAnyOf(weights, supportedTypes), reasonIfUnsupported,
"Reference Fully Connected: weights type not supported.");
supported &= CheckSupportRule(TypesAreEqual(input, output), reasonIfUnsupported,
"Reference Fully Connected: input and output types mismatched.");
supported &= CheckSupportRule(TypeAnyOf(weights, supportedTypes), reasonIfUnsupported,
"Reference Fully Connected: weights is not a supported type.");
supported &= CheckSupportRule(TypesAreEqual(input, weights), reasonIfUnsupported,
"Reference Fully Connected: input and weights types mismatched.");
if (descriptor.m_BiasEnabled)
{
// Defined supported types for bias
std::array<DataType, 5>
supportedBiasTypes =
{
DataType::Float32,
DataType::Float16,
DataType::Signed32,
DataType::QAsymmS8
};
supported &= CheckSupportRule(TypeAnyOf(biases, supportedBiasTypes), reasonIfUnsupported,
"Reference Fully Connected: bias type not supported.");
supported &= CheckSupportRule(BiasAndWeightsTypesMatch(biases, weights), reasonIfUnsupported,
"Reference Fully Connected: bias and weight types mismatch.");
supported &= CheckSupportRule(BiasAndWeightsTypesCompatible(weights, supportedBiasTypes), reasonIfUnsupported,
"Reference Fully Connected: bias type inferred from weights is incompatible.");
supported &= CheckSupportRule(TensorNumDimensionsAreCorrect(biases, 1U), reasonIfUnsupported,
"Reference Fully Connected: bias must have 1 dimension.");
}
return supported;
}
bool RefLayerSupport::IsGatherNdSupported(const armnn::TensorInfo& input0,
const armnn::TensorInfo& input1,
const armnn::TensorInfo& output,
armnn::Optional<std::string&> reasonIfUnsupported) const
{
bool supported = true;
std::array<DataType,7> supportedTypes =
{
DataType::Float32,
DataType::Float16,
DataType::QAsymmS8,
DataType::QAsymmU8,
DataType::QSymmS16,
DataType::Signed32
};
supported &= CheckSupportRule(TypeAnyOf(input0, supportedTypes), reasonIfUnsupported,
"Reference GatherNd: input type not supported");
supported &= CheckSupportRule(TypeAnyOf(output, supportedTypes), reasonIfUnsupported,
"Reference GatherNd: output type not supported");
supported &= CheckSupportRule(TypeIs(input1, DataType::Signed32), reasonIfUnsupported,
"Reference GatherNd: indices (input1) type not supported");
supported &= CheckSupportRule(TypesAreEqual(input0, output), reasonIfUnsupported,
"Reference GatherNd: input and output types not matching");
return supported;
}
bool RefLayerSupport::IsGatherSupported(const armnn::TensorInfo& input0,
const armnn::TensorInfo& input1,
const armnn::TensorInfo& output,
const GatherDescriptor& descriptor,
armnn::Optional<std::string&> reasonIfUnsupported) const
{
bool supported = true;
std::array<DataType,7> supportedTypes =
{
DataType::Float32,
DataType::Float16,
DataType::QAsymmS8,
DataType::QAsymmU8,
DataType::QSymmS16,
DataType::Signed32
};
IgnoreUnused(descriptor);
supported &= CheckSupportRule(TypeAnyOf(input0, supportedTypes), reasonIfUnsupported,
"Reference Gather: input type not supported");
supported &= CheckSupportRule(TypeAnyOf(output, supportedTypes), reasonIfUnsupported,
"Reference Gather: output type not supported");
supported &= CheckSupportRule(TypeIs(input1, DataType::Signed32), reasonIfUnsupported,
"Reference Gather: indices (input1) type not supported");
supported &= CheckSupportRule(TypesAreEqual(input0, output), reasonIfUnsupported,
"Reference Gather: input and output types not matching");
return supported;
}
bool RefLayerSupport::IsInputSupported(const TensorInfo& /*input*/,
Optional<std::string&> /*reasonIfUnsupported*/) const
{
return true;
}
bool RefLayerSupport::IsInstanceNormalizationSupported(const TensorInfo& input,
const TensorInfo& output,
const InstanceNormalizationDescriptor& descriptor,
Optional<std::string&> reasonIfUnsupported) const
{
IgnoreUnused(descriptor);
// Define supported types
std::array<DataType, 3> supportedTypes =
{
DataType::Float32,
DataType::Float16
};
bool supported = true;
supported &= CheckSupportRule(TypeAnyOf(input, supportedTypes), reasonIfUnsupported,
"Reference Instance Normalization: input type not supported.");
supported &= CheckSupportRule(TypeAnyOf(output, supportedTypes), reasonIfUnsupported,
"Reference Instance Normalization: output type not supported.");
supported &= CheckSupportRule(TypesAreEqual(input, output), reasonIfUnsupported,
"Reference Instance Normalization: input and output types mismatched.");
supported &= CheckSupportRule(ShapesAreSameTotalSize(input, output), reasonIfUnsupported,
"Reference Instance Normalization: input and output shapes have different "
"num total elements.");
return supported;
}
bool RefLayerSupport::IsL2NormalizationSupported(const TensorInfo& input,
const TensorInfo& output,
const L2NormalizationDescriptor& descriptor,
Optional<std::string&> reasonIfUnsupported) const
{
IgnoreUnused(descriptor);
// Define supported types
std::array<DataType, 6> supportedTypes =
{
DataType::Float32,
DataType::Float16,
DataType::QAsymmS8,
DataType::QAsymmU8,
DataType::QSymmS16
};
bool supported = true;
supported &= CheckSupportRule(TypeAnyOf(input, supportedTypes), reasonIfUnsupported,
"Reference L2normalization: input type not supported.");
supported &= CheckSupportRule(TypeAnyOf(output, supportedTypes), reasonIfUnsupported,
"Reference L2normalization: output type not supported.");
supported &= CheckSupportRule(TypesAreEqual(input, output), reasonIfUnsupported,
"Reference L2normalization: input and output types mismatched.");
supported &= CheckSupportRule(ShapesAreSameTotalSize(input, output), reasonIfUnsupported,
"Reference L2normalization: input and output shapes have different "
"num total elements.");
return supported;
}
bool RefLayerSupport::IsLogicalBinarySupported(const TensorInfo& input0,
const TensorInfo& input1,
const TensorInfo& output,
const LogicalBinaryDescriptor& descriptor,
Optional<std::string&> reasonIfUnsupported) const
{
IgnoreUnused(descriptor);
std::array<DataType, 1> supportedTypes =
{
DataType::Boolean
};
bool supported = true;
supported &= CheckSupportRule(TypeAnyOf(input0, supportedTypes), reasonIfUnsupported,
"Reference LogicalBinary: input 0 type not supported");
supported &= CheckSupportRule(TypeAnyOf(input1, supportedTypes), reasonIfUnsupported,
"Reference LogicalBinary: input 1 type not supported");
supported &= CheckSupportRule(TypesAreEqual(input0, output), reasonIfUnsupported,
"Reference LogicalBinary: input and output types do not match");
supported &= CheckSupportRule(ShapesAreBroadcastCompatible(input0, input1, output), reasonIfUnsupported,
"Reference LogicalBinary: shapes are not suitable for implicit broadcast.");
return supported;
}
bool RefLayerSupport::IsLogSoftmaxSupported(const TensorInfo& input,
const TensorInfo& output,
const LogSoftmaxDescriptor& descriptor,
Optional<std::string&> reasonIfUnsupported) const
{
IgnoreUnused(descriptor);
std::array<DataType, 3> supportedTypes =
{
DataType::Float32,
DataType::Float16
};
bool supported = true;
supported &= CheckSupportRule(TypeAnyOf(input, supportedTypes), reasonIfUnsupported,
"Reference LogSoftmax: input type not supported");
supported &= CheckSupportRule(TypeAnyOf(output, supportedTypes), reasonIfUnsupported,
"Reference LogSoftmax: output type not supported");
supported &= CheckSupportRule(TypesAreEqual(input, output), reasonIfUnsupported,
"Reference LogSoftmax: input and output types do not match");
return supported;
}
bool RefLayerSupport::IsLstmSupported(const TensorInfo& input,
const TensorInfo& outputStateIn,
const TensorInfo& cellStateIn,
const TensorInfo& scratchBuffer,
const TensorInfo& outputStateOut,
const TensorInfo& cellStateOut,
const TensorInfo& output,
const LstmDescriptor& descriptor,
const LstmInputParamsInfo& paramsInfo,
Optional<std::string&> reasonIfUnsupported) const
{
IgnoreUnused(descriptor);
IgnoreUnused(paramsInfo);
bool supported = true;
std::array<DataType,3> supportedTypes = {
DataType::Float32,
DataType::QSymmS16
};
// check inputs and outputs
supported &= CheckSupportRule(TypeAnyOf(input, supportedTypes), reasonIfUnsupported,
"Reference Lstm: input is not a supported type.");
supported &= CheckSupportRule(TypesAreEqual(input, outputStateIn), reasonIfUnsupported,
"Reference Lstm: input and outputStateIn types are mismatched");
supported &= CheckSupportRule(TypesAreEqual(input, cellStateIn), reasonIfUnsupported,
"Reference Lstm: input and cellStateIn types are mismatched");
supported &= CheckSupportRule(TypesAreEqual(input, scratchBuffer), reasonIfUnsupported,
"Reference Lstm: input and scratchBuffer types are mismatched");
supported &= CheckSupportRule(TypesAreEqual(input, outputStateOut), reasonIfUnsupported,
"Reference Lstm: input and outputStateOut types are mismatched");
supported &= CheckSupportRule(TypesAreEqual(input, cellStateOut), reasonIfUnsupported,
"Reference Lstm: input and cellStateOut types are mismatched");
supported &= CheckSupportRule(TypesAreEqual(input, output), reasonIfUnsupported,
"Reference Lstm: input and output types are mismatched");
// check layer parameters
supported &= CheckSupportRule(TypesAreEqual(input, paramsInfo.GetInputToForgetWeights()), reasonIfUnsupported,
"Reference Lstm: input and InputToForgetWeights types are mismatched");
supported &= CheckSupportRule(TypesAreEqual(input, paramsInfo.GetInputToCellWeights()), reasonIfUnsupported,
"Reference Lstm: input and InputToCellWeights types are mismatched");
supported &= CheckSupportRule(TypesAreEqual(input, paramsInfo.GetInputToOutputWeights()), reasonIfUnsupported,
"Reference Lstm: input and InputToOutputWeights types are mismatched");
supported &= CheckSupportRule(TypesAreEqual(input, paramsInfo.GetRecurrentToForgetWeights()), reasonIfUnsupported,
"Reference Lstm: input and RecurrentToForgetWeights types are mismatched");
supported &= CheckSupportRule(TypesAreEqual(input, paramsInfo.GetRecurrentToCellWeights()), reasonIfUnsupported,
"Reference Lstm: input and RecurrentToCellWeights types are mismatched");
supported &= CheckSupportRule(TypesAreEqual(input, paramsInfo.GetRecurrentToOutputWeights()), reasonIfUnsupported,
"Reference Lstm: input and RecurrentToOutputWeights types are mismatched");
supported &= CheckSupportRule(TypesAreEqual(input, paramsInfo.GetForgetGateBias()), reasonIfUnsupported,
"Reference Lstm: input and ForgetGateBias types are mismatched");
supported &= CheckSupportRule(TypesAreEqual(input, paramsInfo.GetCellBias()), reasonIfUnsupported,
"Reference Lstm: input and CellBias types are mismatched");
supported &= CheckSupportRule(TypesAreEqual(input, paramsInfo.GetOutputGateBias()), reasonIfUnsupported,
"Reference Lstm: input and OutputGateBias types are mismatched");
if (!descriptor.m_CifgEnabled)
{
supported &= CheckSupportRule(TypesAreEqual(input, paramsInfo.GetInputToInputWeights()), reasonIfUnsupported,
"Reference Lstm: input and InputToInputWeights types are mismatched");
supported &= CheckSupportRule(TypesAreEqual(input, paramsInfo.GetRecurrentToInputWeights()),
reasonIfUnsupported,
"Reference Lstm: input and RecurrentToInputWeights types are mismatched");
supported &= CheckSupportRule(TypesAreEqual(input, paramsInfo.GetInputGateBias()), reasonIfUnsupported,
"Reference Lstm: input and InputGateBias types are mismatched");
if (descriptor.m_PeepholeEnabled)
{
supported &= CheckSupportRule(TypesAreEqual(input, paramsInfo.GetCellToInputWeights()),
reasonIfUnsupported,
"Reference Lstm: input and CellToInputWeights types are mismatched");
}
}
if (descriptor.m_PeepholeEnabled)
{
supported &= CheckSupportRule(TypesAreEqual(input, paramsInfo.GetCellToForgetWeights()), reasonIfUnsupported,
"Reference Lstm: input and CellToForgetWeights types are mismatched");
supported &= CheckSupportRule(TypesAreEqual(input, paramsInfo.GetCellToOutputWeights()), reasonIfUnsupported,
"Reference Lstm: input and CellToOutputWeights types are mismatched");
}
if (descriptor.m_ProjectionEnabled)
{
supported &= CheckSupportRule(TypesAreEqual(input, paramsInfo.GetProjectionWeights()), reasonIfUnsupported,
"Reference Lstm: input and mProjectionWeights types are mismatched");
if (paramsInfo.m_ProjectionBias != nullptr)
{
supported &= CheckSupportRule(TypesAreEqual(input, paramsInfo.GetProjectionBias()), reasonIfUnsupported,
"Reference Lstm: input and ProjectionBias types are mismatched");
}
}
if (descriptor.m_LayerNormEnabled)
{
if (!descriptor.m_CifgEnabled)
{
supported &= CheckSupportRule(TypesAreEqual(input, paramsInfo.GetInputLayerNormWeights()),
reasonIfUnsupported,
"Reference Lstm: input and InputLayerNormWeights types are mismatched");
}
supported &= CheckSupportRule(TypesAreEqual(input, paramsInfo.GetForgetLayerNormWeights()),
reasonIfUnsupported,
"Reference Lstm: input and ForgetLayerNormWeights types are mismatched");
supported &= CheckSupportRule(TypesAreEqual(input, paramsInfo.GetCellLayerNormWeights()),
reasonIfUnsupported,
"Reference Lstm: input and CellLayerNormWeights types are mismatched");
supported &= CheckSupportRule(TypesAreEqual(input, paramsInfo.GetOutputLayerNormWeights()),
reasonIfUnsupported,
"Reference Lstm: input and OutputLayerNormWeights types are mismatched");
}
return supported;
}
bool RefLayerSupport::IsMaximumSupported(const TensorInfo& input0,
const TensorInfo& input1,
const TensorInfo& output,
Optional<std::string&> reasonIfUnsupported) const
{
bool supported = true;
std::array<DataType,7> supportedTypes = {
DataType::Float32,
DataType::Float16,
DataType::QAsymmS8,
DataType::QAsymmU8,
DataType::QSymmS16,
DataType::Signed32
};
supported &= CheckSupportRule(TypeAnyOf(input0, supportedTypes), reasonIfUnsupported,
"Reference maximum: input 0 is not a supported type.");
supported &= CheckSupportRule(TypeAnyOf(input1, supportedTypes), reasonIfUnsupported,
"Reference maximum: input 1 is not a supported type.");
supported &= CheckSupportRule(TypeAnyOf(output, supportedTypes), reasonIfUnsupported,
"Reference maximum: output is not a supported type.");
supported &= CheckSupportRule(TypesAreEqual(input0, input1), reasonIfUnsupported,
"Reference maximum: input 0 and Input 1 types are mismatched");
supported &= CheckSupportRule(TypesAreEqual(input0, output), reasonIfUnsupported,
"Reference maximum: input and output types are mismatched");
supported &= CheckSupportRule(ShapesAreBroadcastCompatible(input0, input1, output), reasonIfUnsupported,
"Reference maximum: shapes are not suitable for implicit broadcast.");
return supported;
}
bool RefLayerSupport::IsMeanSupported(const TensorInfo& input,
const TensorInfo& output,
const MeanDescriptor& descriptor,
Optional<std::string&> reasonIfUnsupported) const
{
bool supported = true;
std::string meanLayerStr = "Mean";
std::string outputTensorStr = "output";
std::array<DataType,6> supportedTypes =
{
DataType::Float32,
DataType::Float16,
DataType::QAsymmS8,
DataType::QAsymmU8,
DataType::QSymmS16
};
supported &= CheckSupportRule(TypeAnyOf(input, supportedTypes), reasonIfUnsupported,
"Reference Mean: input type not supported.");
supported &= CheckSupportRule(TypesAreEqual(input, output), reasonIfUnsupported,
"Reference Mean: input and output types are mismatched");
if (descriptor.m_KeepDims)
{
supported &= CheckSupportRule(TensorNumDimensionsAreCorrect(output, input.GetNumDimensions()),
reasonIfUnsupported,
CreateIncorrectDimensionsErrorMsg(input.GetNumDimensions(),
output.GetNumDimensions(),
meanLayerStr, outputTensorStr).data());
}
else if (descriptor.m_Axis.empty())
{
supported &= CheckSupportRule(TensorNumDimensionsAreCorrect(output, 1),
reasonIfUnsupported,
CreateIncorrectDimensionsErrorMsg(1, output.GetNumDimensions(),
meanLayerStr, outputTensorStr).data());
}
else
{
auto outputDim = input.GetNumDimensions() - armnn::numeric_cast<unsigned int>(descriptor.m_Axis.size());
if (outputDim > 0)
{
supported &= CheckSupportRule(TensorNumDimensionsAreCorrect(output, outputDim),
reasonIfUnsupported,
CreateIncorrectDimensionsErrorMsg(outputDim, output.GetNumDimensions(),
meanLayerStr, outputTensorStr).data());
}
else
{
supported &= CheckSupportRule(TensorNumDimensionsAreCorrect(output, 1),
reasonIfUnsupported,
CreateIncorrectDimensionsErrorMsg(1, output.GetNumDimensions(),
meanLayerStr, outputTensorStr).data());
}
}
return supported;
}
bool RefLayerSupport::IsMemCopySupported(const TensorInfo &input,
const TensorInfo &output,
Optional<std::string &> reasonIfUnsupported) const
{
bool supported = true;
std::array<DataType,7> supportedTypes =
{
DataType::BFloat16,
DataType::Float32,
DataType::Float16,
DataType::QAsymmS8,
DataType::QAsymmU8,
DataType::QSymmS16,
DataType::Boolean
};
supported &= CheckSupportRule(TypeAnyOf(input, supportedTypes), reasonIfUnsupported,
"Reference MemCopy: input type not supported");
supported &= CheckSupportRule(TypeAnyOf(output, supportedTypes), reasonIfUnsupported,
"Reference MemCopy: output type not supported");
supported &= CheckSupportRule(TypesAreEqual(input, output), reasonIfUnsupported,
"Reference MemCopy: input and output types are mismatched");
return supported;
}
bool RefLayerSupport::IsMinimumSupported(const TensorInfo& input0,
const TensorInfo& input1,
const TensorInfo& output,
Optional<std::string&> reasonIfUnsupported) const
{
bool supported = true;
std::array<DataType,7> supportedTypes = {
DataType::Float32,
DataType::Float16,
DataType::QAsymmS8,
DataType::QAsymmU8,
DataType::QSymmS16,
DataType::Signed32
};
supported &= CheckSupportRule(TypeAnyOf(input0, supportedTypes), reasonIfUnsupported,
"Reference minimum: input 0 is not a supported type.");
supported &= CheckSupportRule(TypeAnyOf(input1, supportedTypes), reasonIfUnsupported,
"Reference minimum: input 1 is not a supported type.");
supported &= CheckSupportRule(TypeAnyOf(output, supportedTypes), reasonIfUnsupported,
"Reference minimum: output is not a supported type.");
supported &= CheckSupportRule(TypesAreEqual(input0, input1), reasonIfUnsupported,
"Reference minimum: input 0 and Input 1 types are mismatched");
supported &= CheckSupportRule(TypesAreEqual(input0, output), reasonIfUnsupported,
"Reference minimum: input and output types are mismatched");
supported &= CheckSupportRule(ShapesAreBroadcastCompatible(input0, input1, output), reasonIfUnsupported,
"Reference minimum: shapes are not suitable for implicit broadcast.");
return supported;
}
bool RefLayerSupport::IsMultiplicationSupported(const TensorInfo& input0,
const TensorInfo& input1,
const TensorInfo& output,
Optional<std::string&> reasonIfUnsupported) const
{
bool supported = true;
std::array<DataType,7> supportedTypes = {
DataType::Float32,
DataType::Float16,
DataType::QAsymmS8,
DataType::QAsymmU8,
DataType::QSymmS16,
DataType::Signed32
};
supported &= CheckSupportRule(TypeAnyOf(input0, supportedTypes), reasonIfUnsupported,
"Reference multiplication: input 0 is not a supported type.");
supported &= CheckSupportRule(TypeAnyOf(input1, supportedTypes), reasonIfUnsupported,
"Reference multiplication: input 1 is not a supported type.");
supported &= CheckSupportRule(TypeAnyOf(output, supportedTypes), reasonIfUnsupported,
"Reference multiplication: output is not a supported type.");
supported &= CheckSupportRule(TypesAreEqual(input0, input1), reasonIfUnsupported,
"Reference multiplication: input 0 and Input 1 types are mismatched");
supported &= CheckSupportRule(TypesAreEqual(input0, output), reasonIfUnsupported,
"Reference multiplication: input and output types are mismatched");
supported &= CheckSupportRule(ShapesAreBroadcastCompatible(input0, input1, output), reasonIfUnsupported,
"Reference multiplication: shapes are not suitable for implicit broadcast.");
return supported;
}
bool RefLayerSupport::IsNormalizationSupported(const TensorInfo& input,
const TensorInfo& output,
const NormalizationDescriptor& descriptor,
Optional<std::string&> reasonIfUnsupported) const
{
IgnoreUnused(descriptor);
// Define supported types
std::array<DataType, 6> supportedTypes =
{
DataType::Float16,
DataType::Float32,
DataType::QAsymmS8,
DataType::QAsymmU8,
DataType::QSymmS16
};
bool supported = true;
supported &= CheckSupportRule(TypeAnyOf(input, supportedTypes), reasonIfUnsupported,
"Reference normalization: input type not supported.");
supported &= CheckSupportRule(TypeAnyOf(output, supportedTypes), reasonIfUnsupported,
"Reference normalization: output type not supported.");
supported &= CheckSupportRule(ShapesAreSameTotalSize(input, output), reasonIfUnsupported,
"Reference normalization: input and output shapes have different "
"num total elements.");
return supported;
}
bool RefLayerSupport::IsOutputSupported(const TensorInfo& /*output*/,
Optional<std::string&> /*reasonIfUnsupported*/) const
{
return true;
}
bool RefLayerSupport::IsPadSupported(const TensorInfo& input,
const TensorInfo& output,
const PadDescriptor& descriptor,
Optional<std::string&> reasonIfUnsupported) const
{
IgnoreUnused(descriptor);
bool supported = true;
// Define supported output and inputs types.
std::array<DataType,6> supportedTypes =
{
DataType::Float32,
DataType::Float16,
DataType::QAsymmS8,
DataType::QAsymmU8,
DataType::QSymmS16
};
supported &= CheckSupportRule(TypeAnyOf(input, supportedTypes), reasonIfUnsupported,
"Reference pad: input is not a supported type.");
supported &= CheckSupportRule(TypeAnyOf(output, supportedTypes), reasonIfUnsupported,
"Reference pad: output is not a supported type.");
supported &= CheckSupportRule(TypesAreEqual(input, output), reasonIfUnsupported,
"Reference pad: input and output types are mismatched.");
return supported;
}
bool RefLayerSupport::IsPermuteSupported(const TensorInfo& input,
const TensorInfo& output,
const PermuteDescriptor& descriptor,
Optional<std::string&> reasonIfUnsupported) const
{
IgnoreUnused(descriptor);
bool supported = true;
// Define supported output and inputs types.
std::array<DataType, 6> supportedTypes =
{
DataType::BFloat16,
DataType::Float32,
DataType::Float16,
DataType::QAsymmS8,
DataType::QAsymmU8,
DataType::QSymmS16
};
supported &= CheckSupportRule(TypeAnyOf(input, supportedTypes), reasonIfUnsupported,
"Reference permute: input is not a supported type.");
supported &= CheckSupportRule(TypeAnyOf(output, supportedTypes), reasonIfUnsupported,
"Reference permute: output is not a supported type.");
supported &= CheckSupportRule(TypesAreEqual(input, output), reasonIfUnsupported,
"Reference permute: input and output types are mismatched.");
return supported;
}
bool RefLayerSupport::IsPooling2dSupported(const TensorInfo& input,
const TensorInfo& output,
const Pooling2dDescriptor& descriptor,
Optional<std::string&> reasonIfUnsupported) const
{
IgnoreUnused(descriptor);
bool supported = true;
// Define supported output and inputs types.
std::array<DataType,6> supportedTypes =
{
DataType::Float32,
DataType::Float16,
DataType::QAsymmS8,
DataType::QAsymmU8,
DataType::QSymmS16
};
supported &= CheckSupportRule(TypeAnyOf(input, supportedTypes), reasonIfUnsupported,
"Reference poolind2d: input is not a supported type.");
supported &= CheckSupportRule(TypeAnyOf(output, supportedTypes), reasonIfUnsupported,
"Reference poolind2d: output is not a supported type.");
supported &= CheckSupportRule(TypesAreEqual(input, output), reasonIfUnsupported,
"Reference poolind2d: input and output types are mismatched.");
return supported;
}
bool RefLayerSupport::IsPooling3dSupported(const TensorInfo& input,
const TensorInfo& output,
const Pooling3dDescriptor& descriptor,
Optional<std::string&> reasonIfUnsupported) const
{
IgnoreUnused(descriptor);
bool supported = true;
// Define supported output and inputs types.
std::array<DataType,6> supportedTypes =
{
DataType::Float32,
DataType::Float16,
DataType::QAsymmS8,
DataType::QAsymmU8,
DataType::QSymmS16
};
supported &= CheckSupportRule(TypeAnyOf(input, supportedTypes), reasonIfUnsupported,
"Reference poolind3d: input is not a supported type.");
supported &= CheckSupportRule(TypeAnyOf(output, supportedTypes), reasonIfUnsupported,
"Reference poolind3d: output is not a supported type.");
supported &= CheckSupportRule(TypesAreEqual(input, output), reasonIfUnsupported,
"Reference poolind3d: input and output types are mismatched.");
return supported;
}
bool RefLayerSupport::IsQLstmSupported(const TensorInfo& input,
const TensorInfo& previousOutputIn,
const TensorInfo& previousCellStateIn,
const TensorInfo& outputStateOut,
const TensorInfo& cellStateOut,
const TensorInfo& output,
const QLstmDescriptor& descriptor,
const LstmInputParamsInfo& paramsInfo,
Optional<std::string&> reasonIfUnsupported) const
{
IgnoreUnused(input);
IgnoreUnused(previousOutputIn);
IgnoreUnused(previousCellStateIn);
IgnoreUnused(outputStateOut);
IgnoreUnused(cellStateOut);
IgnoreUnused(output);
IgnoreUnused(descriptor);
IgnoreUnused(paramsInfo);
IgnoreUnused(reasonIfUnsupported);
return true;
}
bool RefLayerSupport::IsQuantizeSupported(const TensorInfo& input,
const TensorInfo& output,
Optional<std::string&> reasonIfUnsupported) const
{
bool supported = true;
// Define supported input types.
std::array<DataType,7> supportedInputTypes = {
DataType::Float32,
DataType::Float16,
DataType::QAsymmS8,
DataType::QAsymmU8,
DataType::QSymmS8,
DataType::QSymmS16
};
supported &= CheckSupportRule(TypeAnyOf(input, supportedInputTypes), reasonIfUnsupported,
"Reference quantize: input type not supported.");
// Define supported output types.
std::array<DataType,4> supportedOutputTypes = {
DataType::QAsymmS8,
DataType::QAsymmU8,
DataType::QSymmS8,
DataType::QSymmS16
};
supported &= CheckSupportRule(TypeAnyOf(output, supportedOutputTypes), reasonIfUnsupported,
"Reference quantize: output type not supported.");
supported &= CheckSupportRule(ShapesAreSameTotalSize(input, output), reasonIfUnsupported,
"Reference quantize: input and output shapes have different num total elements.");
return supported;
}
bool RefLayerSupport::IsRankSupported(const TensorInfo& input,
const TensorInfo& output,
Optional<std::string&> reasonIfUnsupported) const
{
IgnoreUnused(input);
// Define supported output types.
std::array<DataType,1> supportedOutputTypes =
{
DataType::Signed32,
};
return CheckSupportRule(TypeAnyOf(output, supportedOutputTypes), reasonIfUnsupported,
"Reference rank: input type not supported.");
}
bool RefLayerSupport::IsReduceSupported(const TensorInfo& input,
const TensorInfo& output,
const ReduceDescriptor& descriptor,
Optional<std::string&> reasonIfUnsupported) const
{
IgnoreUnused(descriptor);
bool supported = true;
std::array<DataType,7> supportedTypes =
{
DataType::Float32,
DataType::Float16,
DataType::QAsymmS8,
DataType::QAsymmU8,
DataType::QSymmS16,
DataType::Signed32
};
supported &= CheckSupportRule(TypeAnyOf(input, supportedTypes), reasonIfUnsupported,
"Reference Reduce: input type not supported");
supported &= CheckSupportRule(TypeAnyOf(output, supportedTypes), reasonIfUnsupported,
"Reference Reduce: output type not supported");
supported &= CheckSupportRule(TypesAreEqual(input, output), reasonIfUnsupported,
"Reference Reduce: input and output types not matching");
return supported;
}
bool RefLayerSupport::IsReshapeSupported(const TensorInfo& input,
const TensorInfo& output,
const ReshapeDescriptor& descriptor,
Optional<std::string&> reasonIfUnsupported) const
{
IgnoreUnused(output);
IgnoreUnused(descriptor);
// Define supported output types.
std::array<DataType,8> supportedOutputTypes =
{
DataType::BFloat16,
DataType::Float32,
DataType::Float16,
DataType::Signed32,
DataType::QAsymmS8,
DataType::QAsymmU8,
DataType::QSymmS16,
DataType::Boolean
};
return CheckSupportRule(TypeAnyOf(input, supportedOutputTypes), reasonIfUnsupported,
"Reference reshape: input type not supported.");
}
bool RefLayerSupport::IsResizeSupported(const TensorInfo& input,
const TensorInfo& output,
const ResizeDescriptor& descriptor,
Optional<std::string&> reasonIfUnsupported) const
{
IgnoreUnused(descriptor);
bool supported = true;
std::array<DataType,7> supportedTypes =
{
DataType::BFloat16,
DataType::Float32,
DataType::Float16,
DataType::QAsymmS8,
DataType::QAsymmU8,
DataType::QSymmS8,
DataType::QSymmS16
};
supported &= CheckSupportRule(TypeAnyOf(input, supportedTypes), reasonIfUnsupported,
"Reference Resize: input type not supported");
supported &= CheckSupportRule(TypeAnyOf(output, supportedTypes), reasonIfUnsupported,
"Reference Resize: output type not supported");
supported &= CheckSupportRule(TypesAreEqual(input, output), reasonIfUnsupported,
"Reference Resize: input and output types not matching");
return supported;
}
bool RefLayerSupport::IsReverseV2Supported(const TensorInfo& input0,
const TensorInfo& input1,
const TensorInfo& output,
Optional<std::string&> reasonIfUnsupported) const
{
bool supported = true;
// ReverseV2 is data type agnostic so it can support all the types in the Reference backend
std::array<DataType,8> supportedTypes =
{
DataType::BFloat16,
DataType::Float32,
DataType::Float16,
DataType::QAsymmS8,
DataType::QAsymmU8,
DataType::QSymmS8,
DataType::QSymmS16,
DataType::Signed32
};
supported &= CheckSupportRule(TypeAnyOf(input0, supportedTypes), reasonIfUnsupported,
"Reference ReverseV2: input0 type not supported");
supported &= CheckSupportRule(TypeAnyOf(output, supportedTypes), reasonIfUnsupported,
"Reference ReverseV2: output type not supported");
supported &= CheckSupportRule(TypesAreEqual(input0, output), reasonIfUnsupported,
"Reference ReverseV2: input0 and output types not matching");
std::array<DataType,6> input2SupportedTypes =
{
DataType::Signed32
};
supported &= CheckSupportRule(TypeAnyOf(input1, input2SupportedTypes), reasonIfUnsupported,
"Reference ReverseV2: input1 type not supported");
return supported;
}
bool RefLayerSupport::IsScatterNdSupported(const TensorInfo& input,
const TensorInfo& indices,
const TensorInfo& updates,
const TensorInfo& output,
const ScatterNdDescriptor& descriptor,
Optional<std::string&> reasonIfUnsupported) const
{
IgnoreUnused(descriptor);
bool supported = true;
std::array<DataType, 7> supportedTypes
{
DataType::Float32,
DataType::Float16,
DataType::QAsymmS8,
DataType::QAsymmU8,
DataType::QSymmS8,
DataType::QSymmS16,
DataType::Signed32
};
std::array<DataType, 1> indicesSupportedTypes =
{
DataType::Signed32
};
supported &= CheckSupportRule(TypeAnyOf(indices, indicesSupportedTypes), reasonIfUnsupported,
"ScatterNd: indices type not supported.");
supported &= CheckSupportRule(TypeAnyOf(updates, supportedTypes), reasonIfUnsupported,
"ScatterNd: updates type not supported.");
supported &= CheckSupportRule(TypeAnyOf(output, supportedTypes), reasonIfUnsupported,
"ScatterNd: output type not supported");
supported &= CheckSupportRule(TypesAreEqual(updates, output), reasonIfUnsupported,
"ScatterNd: input and updates types are mismatched");
if (descriptor.m_InputEnabled)
{
// If the input slot is enabled, we have the input tensor in this slot
supported &= CheckSupportRule(TypeAnyOf(input, supportedTypes), reasonIfUnsupported,
"ScatterNd: input type not supported.");
supported &= CheckSupportRule(TypesAreEqual(input, output), reasonIfUnsupported,
"ScatterNd: input and output types are mismatched");
}
else
{
// If the input slot is not enabled, we have the shape tensor in this slot
supported &= CheckSupportRule(TypeAnyOf(input, indicesSupportedTypes), reasonIfUnsupported,
"ScatterNd: shape type not supported.");
}
return supported;
}
bool RefLayerSupport::IsShapeSupported(const TensorInfo& input,
const TensorInfo& output,
Optional<std::string&> reasonIfUnsupported) const
{
IgnoreUnused(input);
bool supported = true;
std::array<DataType, 1> supportedTypes =
{
DataType::Signed32
};
supported &= CheckSupportRule(TypeAnyOf(output, supportedTypes), reasonIfUnsupported,
"Reference Shape: output type not supported");
return supported;
}
bool RefLayerSupport::IsSliceSupported(const TensorInfo& input,
const TensorInfo& output,
const SliceDescriptor& descriptor,
Optional<std::string&> reasonIfUnsupported) const
{
IgnoreUnused(descriptor);
bool supported = true;
std::array<DataType, 5> supportedTypes =
{
DataType::Float32,
DataType::QAsymmS8,
DataType::QAsymmU8,
DataType::QSymmS16,
DataType::Signed32
};
supported &= CheckSupportRule(TypeAnyOf(input, supportedTypes), reasonIfUnsupported,
"Reference Slice: input type not supported");
supported &= CheckSupportRule(TypeAnyOf(output, supportedTypes), reasonIfUnsupported,
"Reference Slice: output type not supported");
supported &= CheckSupportRule(TypesAreEqual(input, output), reasonIfUnsupported,
"Reference Slice: input and output types are mismatched");
return supported;
}
bool RefLayerSupport::IsSoftmaxSupported(const TensorInfo& input,
const TensorInfo& output,
const SoftmaxDescriptor& descriptor,
Optional<std::string&> reasonIfUnsupported) const
{
IgnoreUnused(descriptor);
bool supported = true;
std::array<DataType,7> supportedTypes =
{
DataType::Float32,
DataType::Float16,
DataType::QSymmS8,
DataType::QAsymmS8,
DataType::QAsymmU8,
DataType::QSymmS16
};
supported &= CheckSupportRule(TypeAnyOf(input, supportedTypes), reasonIfUnsupported,
"Reference Softmax: output type not supported");
supported &= CheckSupportRule(TypeAnyOf(output, supportedTypes), reasonIfUnsupported,
"Reference Softmax: input type not supported");
supported &= CheckSupportRule(TypesAreEqual(input, output), reasonIfUnsupported,
"Reference Softmax: input type not supported");
return supported;
}
bool RefLayerSupport::IsSpaceToBatchNdSupported(const TensorInfo& input,
const TensorInfo& output,
const SpaceToBatchNdDescriptor& descriptor,
Optional<std::string&> reasonIfUnsupported) const
{
IgnoreUnused(descriptor);
bool supported = true;
std::array<DataType,6> supportedTypes =
{
DataType::Float32,
DataType::Float16,
DataType::QAsymmS8,
DataType::QAsymmU8,
DataType::QSymmS16
};
supported &= CheckSupportRule(TypeAnyOf(input, supportedTypes), reasonIfUnsupported,
"Reference SpaceToBatchNd: input type not supported");
supported &= CheckSupportRule(TypeAnyOf(output, supportedTypes), reasonIfUnsupported,
"Reference SpaceToBatchNd: output type not supported");
supported &= CheckSupportRule(TypesAreEqual(input, output), reasonIfUnsupported,
"Reference SpaceToBatchNd: input and output types are mismatched");
return supported;
}
bool RefLayerSupport::IsSpaceToDepthSupported(const TensorInfo& input,
const TensorInfo& output,
const SpaceToDepthDescriptor& descriptor,
Optional<std::string&> reasonIfUnsupported) const
{
IgnoreUnused(descriptor);
bool supported = true;
std::array<DataType,6> supportedTypes =
{
DataType::Float32,
DataType::Float16,
DataType::QAsymmS8,
DataType::QAsymmU8,
DataType::QSymmS16
};
supported &= CheckSupportRule(TypeAnyOf(input, supportedTypes), reasonIfUnsupported,
"Reference SpaceToDepth: input type not supported");
supported &= CheckSupportRule(TypeAnyOf(output, supportedTypes), reasonIfUnsupported,
"Reference SpaceToDepth: output type not supported");
supported &= CheckSupportRule(TypesAreEqual(input, output), reasonIfUnsupported,
"Reference SpaceToDepth: input and output types are mismatched");
return supported;
}
bool RefLayerSupport::IsSplitterSupported(const TensorInfo& input,
const std::vector<std::reference_wrapper<TensorInfo>>& outputs,
const ViewsDescriptor& descriptor,
Optional<std::string&> reasonIfUnsupported) const
{
IgnoreUnused(descriptor);
bool supported = true;
std::array<DataType,6> supportedTypes =
{
DataType::Float32,
DataType::Float16,
DataType::QAsymmS8,
DataType::QAsymmU8,
DataType::QSymmS16
};
supported &= CheckSupportRule(TypeAnyOf(input, supportedTypes), reasonIfUnsupported,
"Reference splitter: output type not supported");
for (const TensorInfo& output : outputs)
{
supported &= CheckSupportRule(TypeAnyOf(input, supportedTypes), reasonIfUnsupported,
"Reference splitter: input type not supported");
supported &= CheckSupportRule(TypesAreEqual(input, output), reasonIfUnsupported,
"Reference splitter: input and output types mismatched.");
}
return supported;
}
bool RefLayerSupport::IsStackSupported(const std::vector<const TensorInfo*>& inputs,
const TensorInfo& output,
const StackDescriptor& descriptor,
Optional<std::string&> reasonIfUnsupported) const
{
IgnoreUnused(descriptor);
bool supported = true;
std::array<DataType,7> supportedTypes =
{
DataType::Float32,
DataType::Float16,
DataType::QAsymmS8,
DataType::QAsymmU8,
DataType::QSymmS16,
DataType::Signed32
};
supported &= CheckSupportRule(TypeAnyOf(output, supportedTypes), reasonIfUnsupported,
"Reference stack: output type not supported");
for (const TensorInfo* input : inputs)
{
supported &= CheckSupportRule(TypeAnyOf(*input, supportedTypes), reasonIfUnsupported,
"Reference stack: input type not supported");
supported &= CheckSupportRule(TypesAreEqual(*input, output), reasonIfUnsupported,
"Reference stack: input and output types mismatched.");
}
return supported;
}
bool RefLayerSupport::IsStridedSliceSupported(const TensorInfo& input,
const TensorInfo& output,
const StridedSliceDescriptor& descriptor,
Optional<std::string&> reasonIfUnsupported) const
{
IgnoreUnused(descriptor);
bool supported = true;
std::array<DataType,5> supportedTypes =
{
DataType::Float32,
DataType::QAsymmS8,
DataType::QAsymmU8,
DataType::QSymmS16
};
supported &= CheckSupportRule(TypeAnyOf(input, supportedTypes), reasonIfUnsupported,
"Reference StridedSlice: input type not supported");
supported &= CheckSupportRule(TypeAnyOf(output, supportedTypes), reasonIfUnsupported,
"Reference StridedSlice: output type not supported");
supported &= CheckSupportRule(TypesAreEqual(input, output), reasonIfUnsupported,
"Reference StridedSlice: input and output types are mismatched");
return supported;
}
bool RefLayerSupport::IsSubtractionSupported(const TensorInfo& input0,
const TensorInfo& input1,
const TensorInfo& output,
Optional<std::string&> reasonIfUnsupported) const
{
bool supported = true;
std::array<DataType,7> supportedTypes = {
DataType::Float32,
DataType::Float16,
DataType::QAsymmS8,
DataType::QAsymmU8,
DataType::QSymmS16,
DataType::Signed32
};
supported &= CheckSupportRule(TypeAnyOf(input0, supportedTypes), reasonIfUnsupported,
"Reference subtraction: input 0 is not a supported type.");
supported &= CheckSupportRule(TypeAnyOf(input1, supportedTypes), reasonIfUnsupported,
"Reference subtraction: input 1 is not a supported type.");
supported &= CheckSupportRule(TypeAnyOf(output, supportedTypes), reasonIfUnsupported,
"Reference subtraction: output is not a supported type.");
supported &= CheckSupportRule(TypesAreEqual(input0, input1), reasonIfUnsupported,
"Reference subtraction: input 0 and Input 1 types are mismatched");
supported &= CheckSupportRule(TypesAreEqual(input0, output), reasonIfUnsupported,
"Reference subtraction: input and output types are mismatched");
supported &= CheckSupportRule(ShapesAreBroadcastCompatible(input0, input1, output), reasonIfUnsupported,
"Reference subtraction: shapes are not suitable for implicit broadcast.");
return supported;
}
bool RefLayerSupport::IsPreluSupported(const TensorInfo& input,
const TensorInfo& alpha,
const TensorInfo& output,
Optional<std::string&> reasonIfUnsupported) const
{
bool supported = true;
std::array<DataType, 6> supportedTypes
{
DataType::Float32,
DataType::Float16,
DataType::QAsymmS8,
DataType::QAsymmU8,
DataType::QSymmS16
};
supported &= CheckSupportRule(TypeAnyOf(input, supportedTypes), reasonIfUnsupported,
"PReLU: input is not a supported type.");
supported &= CheckSupportRule(TypeAnyOf(alpha, supportedTypes), reasonIfUnsupported,
"PReLU: alpha is not a supported type.");
supported &= CheckSupportRule(TypeAnyOf(output, supportedTypes), reasonIfUnsupported,
"PReLU: output is not a supported type.");
supported &= CheckSupportRule(TypesAreEqual(input, alpha, output), reasonIfUnsupported,
"PReLU: input, alpha and output types are mismatched");
supported &= CheckSupportRule(ShapesAreBroadcastCompatible(input, alpha, output), reasonIfUnsupported,
"PReLU: shapes are not suitable for implicit broadcast");
return supported;
}
bool RefLayerSupport::IsTileSupported(const TensorInfo& input,
const TensorInfo& output,
const TileDescriptor& descriptor,
Optional<std::string&> reasonIfUnsupported) const
{
IgnoreUnused(descriptor);
bool supported = true;
std::array<DataType, 7> supportedTypes
{
DataType::Float32,
DataType::Float16,
DataType::QAsymmS8,
DataType::QAsymmU8,
DataType::QSymmS8,
DataType::QSymmS16,
DataType::Signed32
};
supported &= CheckSupportRule(TypeAnyOf(input, supportedTypes), reasonIfUnsupported,
"Tile: input type not supported.");
supported &= CheckSupportRule(TypeAnyOf(output, supportedTypes), reasonIfUnsupported,
"Tile: output type not supported");
return supported;
}
bool RefLayerSupport::IsTransposeConvolution2dSupported(const TensorInfo& input,
const TensorInfo& output,
const TransposeConvolution2dDescriptor& descriptor,
const TensorInfo& weights,
const Optional<TensorInfo>& biases,
Optional<std::string&> reasonIfUnsupported) const
{
IgnoreUnused(descriptor);
bool supported = true;
std::array<DataType,7> supportedTypes =
{
DataType::Float32,
DataType::Float16,
DataType::QAsymmS8,
DataType::QAsymmU8,
DataType::QSymmS8,
DataType::QSymmS16
};
supported &= CheckSupportRule(TypeAnyOf(input, supportedTypes), reasonIfUnsupported,
"Reference TransposeConvolution2d: input is not a supported type.");
supported &= CheckSupportRule(TypeAnyOf(output, supportedTypes), reasonIfUnsupported,
"Reference TransposeConvolution2d: output is not a supported type.");
supported &= CheckSupportRule(TypesAreEqual(input, output), reasonIfUnsupported,
"Reference TransposeConvolution2d: input and output types mismatched.");
const DataType inputType = input.GetDataType();
if (IsQuantized8BitType(inputType))
{
std::array<DataType, 3> supportedWeightTypes =
{
DataType::QAsymmS8,
DataType::QAsymmU8,
DataType::QSymmS8
};
supported &= CheckSupportRule(TypeAnyOf(weights, supportedWeightTypes), reasonIfUnsupported,
"Reference TransposeConvolution2d: weights type not supported for "
"quantized input.");
}
else
{
supported &= CheckSupportRule(TypeAnyOf(weights, supportedTypes), reasonIfUnsupported,
"Reference TransposeConvolution2d: weights is not a supported type.");
supported &= CheckSupportRule(TypesAreEqual(input, weights), reasonIfUnsupported,
"Reference TransposeConvolution2d: input and weights types mismatched.");
}
if (biases.has_value())
{
std::array<DataType,4> biasesSupportedTypes =
{
DataType::Float32,
DataType::Float16,
DataType::Signed32
};
supported &= CheckSupportRule(TypeAnyOf(biases.value(), biasesSupportedTypes), reasonIfUnsupported,
"Reference TransposeConvolution2d: biases is not a supported type.");
}
return supported;
}
bool RefLayerSupport::IsTransposeSupported(const TensorInfo& input,
const TensorInfo& output,
const TransposeDescriptor& descriptor,
Optional<std::string&> reasonIfUnsupported) const
{
IgnoreUnused(descriptor);
bool supported = true;
// Define supported output and inputs types.
std::array<DataType, 6> supportedTypes =
{
DataType::BFloat16,
DataType::Float32,
DataType::Float16,
DataType::QAsymmS8,
DataType::QAsymmU8,
DataType::QSymmS16
};
supported &= CheckSupportRule(TypeAnyOf(input, supportedTypes), reasonIfUnsupported,
"Reference transpose: input is not a supported type.");
supported &= CheckSupportRule(TypeAnyOf(output, supportedTypes), reasonIfUnsupported,
"Reference transpose: output is not a supported type.");
supported &= CheckSupportRule(TypesAreEqual(input, output), reasonIfUnsupported,
"Reference transpose: input and output types are mismatched.");
return supported;
}
bool RefLayerSupport::IsUnidirectionalSequenceLstmSupported(
const TensorInfo& input,
const TensorInfo& outputStateIn,
const TensorInfo& cellStateIn,
const TensorInfo& outputStateOut,
const TensorInfo& cellStateOut,
const TensorInfo& output,
const UnidirectionalSequenceLstmDescriptor& descriptor,
const LstmInputParamsInfo& paramsInfo,
Optional<std::string&> reasonIfUnsupported) const
{
IgnoreUnused(descriptor);
IgnoreUnused(paramsInfo);
IgnoreUnused(outputStateIn);
IgnoreUnused(cellStateIn);
IgnoreUnused(outputStateOut);
IgnoreUnused(cellStateOut);
bool supported = true;
std::array<DataType, 2> supportedTypes =
{
DataType::Float32,
DataType::QAsymmS8
};
std::array<DataType, 2> supportedWeightTypes =
{
DataType::Float32,
DataType::QAsymmS8
};
std::array<DataType, 3> supportedBiasTypes =
{
DataType::Float32,
DataType::QAsymmS8,
DataType::Signed32
};
// check inputs and outputs
supported &= CheckSupportRule(TypeAnyOf(input, supportedTypes), reasonIfUnsupported,
"Reference UnidirectionalSequenceLstm: input is not a supported type.");
supported &= CheckSupportRule(TypeAnyOf(output, supportedTypes), reasonIfUnsupported,
"Reference UnidirectionalSequenceLstm: output is not a supported type.");
// check layer parameters
supported &= CheckSupportRule(TypeAnyOf(paramsInfo.GetInputToForgetWeights(), supportedWeightTypes),
reasonIfUnsupported,
"Reference UnidirectionalSequenceLstm: InputToForgetWeights "
"is not a supported type.");
supported &= CheckSupportRule(TypeAnyOf(paramsInfo.GetInputToCellWeights(), supportedWeightTypes),
reasonIfUnsupported,
"Reference UnidirectionalSequenceLstm: InputToCellWeights is not a supported type.");
supported &= CheckSupportRule(TypeAnyOf(paramsInfo.GetInputToOutputWeights(), supportedWeightTypes),
reasonIfUnsupported,
"Reference UnidirectionalSequenceLstm: InputToOutputWeights "
"is not a supported type.");
supported &= CheckSupportRule(TypeAnyOf(paramsInfo.GetRecurrentToForgetWeights(), supportedWeightTypes),
reasonIfUnsupported,
"Reference UnidirectionalSequenceLstm: RecurrentToForgetWeights "
"is not a supported type.");
supported &= CheckSupportRule(TypeAnyOf(paramsInfo.GetRecurrentToCellWeights(), supportedWeightTypes),
reasonIfUnsupported,
"Reference UnidirectionalSequenceLstm: RecurrentToCellWeights "
"is not a supported type.");
supported &= CheckSupportRule(TypeAnyOf(paramsInfo.GetRecurrentToOutputWeights(), supportedWeightTypes),
reasonIfUnsupported,
"Reference UnidirectionalSequenceLstm: RecurrentToOutputWeights "
"is not a supported type.");
supported &= CheckSupportRule(TypeAnyOf(paramsInfo.GetForgetGateBias(), supportedBiasTypes), reasonIfUnsupported,
"Reference UnidirectionalSequenceLstm: ForgetGateBias is not a supported type.");
supported &= CheckSupportRule(TypeAnyOf(paramsInfo.GetCellBias(), supportedBiasTypes), reasonIfUnsupported,
"Reference UnidirectionalSequenceLstm: CellBias is not a supported type.");
supported &= CheckSupportRule(TypeAnyOf(paramsInfo.GetOutputGateBias(), supportedBiasTypes), reasonIfUnsupported,
"Reference UnidirectionalSequenceLstm: OutputGateBias is not a supported type.");
if (!descriptor.m_CifgEnabled)
{
supported &= CheckSupportRule(TypeAnyOf(paramsInfo.GetInputToInputWeights(), supportedWeightTypes),
reasonIfUnsupported,
"Reference UnidirectionalSequenceLstm: InputToInputWeights "
"is not a supported type.");
supported &= CheckSupportRule(TypeAnyOf(paramsInfo.GetRecurrentToInputWeights(), supportedWeightTypes),
reasonIfUnsupported,
"Reference UnidirectionalSequenceLstm: RecurrentToInputWeights "
"is not a supported type.");
supported &= CheckSupportRule(TypeAnyOf(paramsInfo.GetInputGateBias(), supportedBiasTypes), reasonIfUnsupported,
"Reference UnidirectionalSequenceLstm: InputGateBias is not a supported type.");
if (descriptor.m_PeepholeEnabled)
{
supported &= CheckSupportRule(TypeAnyOf(paramsInfo.GetCellToInputWeights(), supportedWeightTypes),
reasonIfUnsupported,
"Reference UnidirectionalSequenceLstm: CellToInputWeights "
"is not a supported type.");
}
}
if (descriptor.m_PeepholeEnabled)
{
supported &= CheckSupportRule(TypeAnyOf(paramsInfo.GetCellToForgetWeights(), supportedWeightTypes),
reasonIfUnsupported,
"Reference UnidirectionalSequenceLstm: CellToForgetWeights "
"is not a supported type.");
supported &= CheckSupportRule(TypeAnyOf(paramsInfo.GetCellToOutputWeights(), supportedWeightTypes),
reasonIfUnsupported,
"Reference UnidirectionalSequenceLstm: CellToOutputWeights "
"is not a supported type.");
}
if (descriptor.m_ProjectionEnabled)
{
supported &= CheckSupportRule(TypeAnyOf(paramsInfo.GetProjectionWeights(), supportedWeightTypes),
reasonIfUnsupported,
"Reference UnidirectionalSequenceLstm: ProjectionWeights "
"is not a supported type.");
if (paramsInfo.m_ProjectionBias != nullptr)
{
supported &= CheckSupportRule(TypesAreEqual(input, paramsInfo.GetProjectionBias()), reasonIfUnsupported,
"Reference UnidirectionalSequenceLstm: input and ProjectionBias types "
"are mismatched");
}
}
if (descriptor.m_LayerNormEnabled)
{
if (!descriptor.m_CifgEnabled)
{
supported &= CheckSupportRule(TypeAnyOf(paramsInfo.GetInputLayerNormWeights(), supportedWeightTypes),
reasonIfUnsupported,
"Reference UnidirectionalSequenceLstm: InputLayerNormWeights "
"is not a supported type.");
}
supported &= CheckSupportRule(TypeAnyOf(paramsInfo.GetForgetLayerNormWeights(), supportedWeightTypes),
reasonIfUnsupported,
"Reference UnidirectionalSequenceLstm: ForgetLayerNormWeights "
"is not a supported type.");
supported &= CheckSupportRule(TypeAnyOf(paramsInfo.GetCellLayerNormWeights(), supportedWeightTypes),
reasonIfUnsupported,
"Reference UnidirectionalSequenceLstm: CellLayerNormWeights "
"is not a supported type.");
supported &= CheckSupportRule(TypeAnyOf(paramsInfo.GetOutputLayerNormWeights(), supportedWeightTypes),
reasonIfUnsupported,
"Reference UnidirectionalSequenceLstm: OutputLayerNormWeights "
"is not a supported type.");
}
return supported;
}
} // namespace armnn