blob: fdc52ef79712fb9f318bcb1cbb36fb5fc568ac17 [file] [log] [blame]
//
// Copyright © 2017-2024 Arm Ltd and Contributors. All rights reserved.
// SPDX-License-Identifier: MIT
//
#include "NeonConvolution2dWorkload.hpp"
#include <aclCommon/ArmComputeTensorUtils.hpp>
#include <aclCommon/ArmComputeUtils.hpp>
#include <armnn/utility/PolymorphicDowncast.hpp>
#include <armnn/backends/TensorHandle.hpp>
#include <neon/workloads/NeonWorkloadUtils.hpp>
#include <arm_compute/runtime/NEON/functions/NEConvolutionLayer.h>
#include <armnn/Types.hpp>
#include <Half.hpp>
namespace armnn
{
using namespace armcomputetensorutils;
arm_compute::Status NeonConvolution2dWorkloadValidate(const TensorInfo& input,
const TensorInfo& output,
const Convolution2dDescriptor& descriptor,
const TensorInfo& weights,
const Optional<TensorInfo>& biases,
bool isFastMathEnabled,
const ActivationDescriptor* activationDescriptor)
{
const arm_compute::TensorInfo aclInputInfo = BuildArmComputeTensorInfo(input, descriptor.m_DataLayout);
const arm_compute::TensorInfo aclOutputInfo = BuildArmComputeTensorInfo(output, descriptor.m_DataLayout);
arm_compute::TensorInfo aclWeightsInfo = BuildArmComputeTensorInfo(weights, descriptor.m_DataLayout);
aclWeightsInfo.set_are_values_constant(weights.IsConstant());
const arm_compute::Size2D aclDilationInfo = BuildArmComputeSize2D(descriptor.m_DilationX,
descriptor.m_DilationY);
arm_compute::TensorInfo aclBiasesInfo;
arm_compute::TensorInfo *optionalAclBiasesInfo = nullptr;
if (descriptor.m_BiasEnabled)
{
if (!biases.has_value())
{
return arm_compute::Status{arm_compute::ErrorCode::RUNTIME_ERROR,
"ArmNN NeonConvolution2dWorkload has empty bias value."};
}
aclBiasesInfo = BuildArmComputeTensorInfo(biases.value(), descriptor.m_DataLayout);
aclBiasesInfo.set_are_values_constant(biases.value().IsConstant());
optionalAclBiasesInfo = &aclBiasesInfo;
}
arm_compute::PadStrideInfo layerInfo = BuildArmComputePadStrideInfo(descriptor);
const arm_compute::ActivationLayerInfo activationInfo = ConvertActivationDescriptorToAclActivationLayerInfo(
activationDescriptor);
return arm_compute::NEConvolutionLayer::validate(&aclInputInfo,
&aclWeightsInfo,
optionalAclBiasesInfo,
&aclOutputInfo,
layerInfo,
arm_compute::WeightsInfo(),
aclDilationInfo,
activationInfo,
isFastMathEnabled);
}
NeonConvolution2dWorkload::NeonConvolution2dWorkload(
const Convolution2dQueueDescriptor& descriptor,
const WorkloadInfo& info,
std::shared_ptr<arm_compute::MemoryManagerOnDemand>& memoryManager,
const bool isFastMathEnabled)
: NeonBaseWorkload<Convolution2dQueueDescriptor>(descriptor, info)
{
using arm_compute::NEConvolutionLayer;
uint32_t numInputs = m_Data.m_Parameters.m_BiasEnabled ? 3: 2;
m_Data.ValidateInputsOutputs("NeonConvolution2dWorkload", numInputs, 1);
arm_compute::ITensor& input = PolymorphicDowncast<IAclTensorHandle*>(m_Data.m_Inputs[0])->GetTensor();
arm_compute::ITensor& output = PolymorphicDowncast<IAclTensorHandle*>(m_Data.m_Outputs[0])->GetTensor();
arm_compute::DataLayout aclDataLayout = ConvertDataLayout(m_Data.m_Parameters.m_DataLayout);
input.info()->set_data_layout(aclDataLayout);
output.info()->set_data_layout(aclDataLayout);
m_KernelTensor = std::make_unique<arm_compute::Tensor>();
BuildArmComputeTensor(*m_KernelTensor, info.m_InputTensorInfos[1], m_Data.m_Parameters.m_DataLayout);
m_KernelTensor->info()->set_are_values_constant(info.m_InputTensorInfos[1].IsConstant());
if (m_Data.m_Parameters.m_BiasEnabled)
{
m_BiasTensor = std::make_unique<arm_compute::Tensor>();
BuildArmComputeTensor(*m_BiasTensor, info.m_InputTensorInfos[2], m_Data.m_Parameters.m_DataLayout);
m_BiasTensor->info()->set_are_values_constant(info.m_InputTensorInfos[2].IsConstant());
}
arm_compute::PadStrideInfo padStrideInfo = BuildArmComputePadStrideInfo(m_Data.m_Parameters);
const arm_compute::Size2D aclDilationInfo = BuildArmComputeSize2D(m_Data.m_Parameters.m_DilationX,
m_Data.m_Parameters.m_DilationY);
const arm_compute::ActivationLayerInfo activationInfo = ConvertAdditionalInfoToAclActivationLayerInfo(descriptor);
auto convolutionLayer = std::make_unique<arm_compute::NEConvolutionLayer>(memoryManager);
convolutionLayer->configure(&input,
m_KernelTensor.get(),
m_BiasTensor.get(),
&output,
padStrideInfo,
arm_compute::WeightsInfo(),
aclDilationInfo,
activationInfo,
isFastMathEnabled);
m_ConvolutionMethod =
convolutionLayer->get_convolution_method(input.info(),
m_KernelTensor->info(),
output.info(),
padStrideInfo,
arm_compute::WeightsInfo(),
aclDilationInfo,
activationInfo,
isFastMathEnabled);
// Add details for profiling output
WorkloadInfo detailsInfo;
detailsInfo.m_InputTensorInfos = info.m_InputTensorInfos;
detailsInfo.m_OutputTensorInfos = info.m_OutputTensorInfos;
detailsInfo.m_ConvolutionMethod = armnn::Optional<std::string>(GetConvolutionMethodString(m_ConvolutionMethod));
// Report Profiling Details
ARMNN_REPORT_PROFILING_WORKLOAD_DESC("NeonConvolution2dWorkload_Construct",
descriptor.m_Parameters,
detailsInfo,
GetGuid());
m_ConvolutionLayer.reset(convolutionLayer.release());
m_KernelTensorInfo = info.m_InputTensorInfos[1];
if (m_Data.m_Parameters.m_BiasEnabled)
{
m_BiasTensorInfo = info.m_InputTensorInfos[2];
}
}
void NeonConvolution2dWorkload::Execute() const
{
ARMNN_SCOPED_PROFILING_EVENT_NEON_NAME_GUID("NeonConvolution2dWorkload_Execute");
// The constant tensors may not be fully in place until the workload is Executed
if (!prepared)
{
InitializeArmComputeTensorData(*m_KernelTensor, m_KernelTensorInfo, m_Data.m_Inputs[1]);
if (m_Data.m_Parameters.m_BiasEnabled)
{
InitializeArmComputeTensorData(*m_BiasTensor, m_BiasTensorInfo, m_Data.m_Inputs[2]);
}
m_ConvolutionLayer->prepare();
FreeTensorIfUnused(m_KernelTensor);
FreeTensorIfUnused(m_BiasTensor);
prepared = true;
}
m_ConvolutionLayer->run();
}
arm_compute::ConvolutionMethod NeonConvolution2dWorkload::GetConvolutionMethod() const
{
return m_ConvolutionMethod;
}
} //namespace armnn