blob: ca5c8202cd570fd1d2511a0c8dad0a4c7068d1f2 [file] [log] [blame]
//
// Copyright © 2017 Arm Ltd. All rights reserved.
// See LICENSE file in the project root for full license information.
//
#include "NeonBatchNormalizationFloat32Workload.hpp"
#include "backends/CpuTensorHandle.hpp"
#include "backends/ArmComputeTensorUtils.hpp"
#include "../../../../include/armnn/ArmNN.hpp"
namespace armnn
{
using namespace armcomputetensorutils;
arm_compute::Status NeonBatchNormalizationValidate(const TensorInfo& input,
const TensorInfo& output,
const TensorInfo& mean,
const TensorInfo& var,
const TensorInfo& beta,
const TensorInfo& gamma,
const BatchNormalizationDescriptor& descriptor)
{
const arm_compute::TensorInfo aclInputInfo = BuildArmComputeTensorInfo(input);
const arm_compute::TensorInfo aclOutputInfo = BuildArmComputeTensorInfo(output);
const arm_compute::TensorInfo aclMeanInfo = BuildArmComputeTensorInfo(mean);
const arm_compute::TensorInfo aclVarInfo = BuildArmComputeTensorInfo(var);
const arm_compute::TensorInfo aclBetaInfo = BuildArmComputeTensorInfo(beta);
const arm_compute::TensorInfo aclGammaInfo = BuildArmComputeTensorInfo(gamma);
return arm_compute::NEBatchNormalizationLayer::validate(&aclInputInfo,
&aclOutputInfo,
&aclMeanInfo,
&aclVarInfo,
&aclBetaInfo,
&aclGammaInfo,
descriptor.m_Eps);
}
NeonBatchNormalizationFloat32Workload::NeonBatchNormalizationFloat32Workload(
const BatchNormalizationQueueDescriptor& descriptor, const WorkloadInfo& info)
: FloatWorkload<BatchNormalizationQueueDescriptor>(descriptor, info)
{
m_Data.ValidateInputsOutputs("NeonBatchNormalizationFloat32Workload", 1, 1);
arm_compute::ITensor& input = boost::polymorphic_downcast<INeonTensorHandle*>(m_Data.m_Inputs[0])->GetTensor();
arm_compute::ITensor& output = boost::polymorphic_downcast<INeonTensorHandle*>(m_Data.m_Outputs[0])->GetTensor();
m_Mean = std::make_unique<arm_compute::Tensor>();
BuildArmComputeTensor(*m_Mean, m_Data.m_Mean->GetTensorInfo());
m_Variance = std::make_unique<arm_compute::Tensor>();
BuildArmComputeTensor(*m_Variance, m_Data.m_Variance->GetTensorInfo());
m_Gamma = std::make_unique<arm_compute::Tensor>();
BuildArmComputeTensor(*m_Gamma, m_Data.m_Gamma->GetTensorInfo());
m_Beta = std::make_unique<arm_compute::Tensor>();
BuildArmComputeTensor(*m_Beta, m_Data.m_Beta->GetTensorInfo());
m_Layer.configure(&input,
&output,
m_Mean.get(),
m_Variance.get(),
m_Beta.get(),
m_Gamma.get(),
m_Data.m_Parameters.m_Eps);
InitializeArmComputeTensorDataForFloatTypes(*m_Mean, m_Data.m_Mean);
InitializeArmComputeTensorDataForFloatTypes(*m_Variance, m_Data.m_Variance);
InitializeArmComputeTensorDataForFloatTypes(*m_Gamma, m_Data.m_Gamma);
InitializeArmComputeTensorDataForFloatTypes(*m_Beta, m_Data.m_Beta);
// Force Compute Library to perform the necessary copying and reshaping, after which
// delete all the input tensors that will no longer be needed
m_Layer.prepare();
FreeUnusedTensors();
}
void NeonBatchNormalizationFloat32Workload::Execute() const
{
ARMNN_SCOPED_PROFILING_EVENT_NEON("NeonBatchNormalizationFloat32Workload_Execute");
m_Layer.run();
}
void NeonBatchNormalizationFloat32Workload::FreeUnusedTensors()
{
FreeTensorIfUnused(m_Mean);
FreeTensorIfUnused(m_Variance);
FreeTensorIfUnused(m_Gamma);
FreeTensorIfUnused(m_Beta);
}
} //namespace armnn