blob: 14b6d9fe79296fe7bde06039cee8ac3b8d53a043 [file] [log] [blame]
//
// Copyright © 2020 Arm Ltd and Contributors. All rights reserved.
// SPDX-License-Identifier: MIT
//
#pragma once
#include <vector>
#include <cstdint>
#include <cmath>
#include <limits>
#include <string>
/* MFCC's consolidated parameters */
class MfccParams
{
public:
float m_samplingFreq;
int m_numFbankBins;
float m_melLoFreq;
float m_melHiFreq;
int m_numMfccFeatures;
int m_frameLen;
int m_frameLenPadded;
bool m_useHtkMethod;
int m_numMfccVectors;
/** @brief Constructor */
MfccParams(const float samplingFreq, const int numFbankBins,
const float melLoFreq, const float melHiFreq,
const int numMfccFeats, const int frameLen,
const bool useHtkMethod, const int numMfccVectors);
/* Delete the default constructor */
MfccParams() = delete;
/* Default destructor */
~MfccParams() = default;
/** @brief String representation of parameters */
std::string Str();
};
/**
* @brief Class for MFCC feature extraction.
* Based on https://github.com/ARM-software/ML-KWS-for-MCU/blob/master/Deployment/Source/MFCC/mfcc.cpp
* This class is designed to be generic and self-sufficient but
* certain calculation routines can be overridden to accommodate
* use-case specific requirements.
*/
class MFCC
{
public:
/**
* @brief Extract MFCC features for one single small frame of
* audio data e.g. 640 samples.
* @param[in] audioData - Vector of audio samples to calculate
* features for.
* @return Vector of extracted MFCC features.
**/
std::vector<float> MfccCompute(const std::vector<float>& audioData);
MfccParams _m_params;
/**
* @brief Constructor
* @param[in] params - MFCC parameters
*/
MFCC(const MfccParams& params);
/* Delete the default constructor */
MFCC() = delete;
/** @brief Default destructor */
~MFCC() = default;
/** @brief Initialise */
void Init();
/**
* @brief Extract MFCC features and quantise for one single small
* frame of audio data e.g. 640 samples.
* @param[in] audioData - Vector of audio samples to calculate
* features for.
* @param[in] quantScale - quantisation scale.
* @param[in] quantOffset - quantisation offset
* @return Vector of extracted quantised MFCC features.
**/
template<typename T>
std::vector<T> MfccComputeQuant(const std::vector<float>& audioData,
const float quantScale,
const int quantOffset)
{
this->_MfccComputePreFeature(audioData);
float minVal = std::numeric_limits<T>::min();
float maxVal = std::numeric_limits<T>::max();
std::vector<T> mfccOut(this->_m_params.m_numMfccFeatures);
const size_t numFbankBins = this->_m_params.m_numFbankBins;
/* Take DCT. Uses matrix mul. */
for (size_t i = 0, j = 0; i < mfccOut.size(); ++i, j += numFbankBins)
{
float sum = 0;
for (size_t k = 0; k < numFbankBins; ++k)
{
sum += this->_m_dctMatrix[j + k] * this->_m_melEnergies[k];
}
/* Quantize to T. */
sum = std::round((sum / quantScale) + quantOffset);
mfccOut[i] = static_cast<T>(std::min<float>(std::max<float>(sum, minVal), maxVal));
}
return mfccOut;
}
/* Constants */
static constexpr float logStep = 1.8562979903656 / 27.0;
static constexpr float freqStep = 200.0 / 3;
static constexpr float minLogHz = 1000.0;
static constexpr float minLogMel = minLogHz / freqStep;
protected:
/**
* @brief Project input frequency to Mel Scale.
* @param[in] freq - input frequency in floating point
* @param[in] useHTKmethod - bool to signal if HTK method is to be
* used for calculation
* @return Mel transformed frequency in floating point
**/
static float MelScale(const float freq,
const bool useHTKMethod = true);
/**
* @brief Inverse Mel transform - convert MEL warped frequency
* back to normal frequency
* @param[in] freq - Mel frequency in floating point
* @param[in] useHTKmethod - bool to signal if HTK method is to be
* used for calculation
* @return Real world frequency in floating point
**/
static float InverseMelScale(const float melFreq,
const bool useHTKMethod = true);
/**
* @brief Populates MEL energies after applying the MEL filter
* bank weights and adding them up to be placed into
* bins, according to the filter bank's first and last
* indices (pre-computed for each filter bank element
* by _CreateMelFilterBank function).
* @param[in] fftVec Vector populated with FFT magnitudes
* @param[in] melFilterBank 2D Vector with filter bank weights
* @param[in] filterBankFilterFirst Vector containing the first indices of filter bank
* to be used for each bin.
* @param[in] filterBankFilterLast Vector containing the last indices of filter bank
* to be used for each bin.
* @param[out] melEnergies Pre-allocated vector of MEL energies to be
* populated.
* @return true if successful, false otherwise
*/
virtual bool ApplyMelFilterBank(
std::vector<float>& fftVec,
std::vector<std::vector<float>>& melFilterBank,
std::vector<int32_t>& filterBankFilterFirst,
std::vector<int32_t>& filterBankFilterLast,
std::vector<float>& melEnergies);
/**
* @brief Converts the Mel energies for logarithmic scale
* @param[in/out] melEnergies - 1D vector of Mel energies
**/
virtual void ConvertToLogarithmicScale(std::vector<float>& melEnergies);
/**
* @brief Create a matrix used to calculate Discrete Cosine
* Transform.
* @param[in] inputLength - input length of the buffer on which
* DCT will be performed
* @param[in] coefficientCount - Total coefficients per input
* length
* @return 1D vector with inputLength x coefficientCount elements
* populated with DCT coefficients.
*/
virtual std::vector<float> CreateDCTMatrix(
const int32_t inputLength,
const int32_t coefficientCount);
/**
* @brief Given the low and high Mel values, get the normaliser
* for weights to be applied when populating the filter
* bank.
* @param[in] leftMel - low Mel frequency value
* @param[in] rightMel - high Mel frequency value
* @param[in] useHTKMethod - bool to signal if HTK method is to be
* used for calculation
*/
virtual float GetMelFilterBankNormaliser(
const float& leftMel,
const float& rightMel,
const bool useHTKMethod);
private:
std::vector<float> _m_frame;
std::vector<float> _m_buffer;
std::vector<float> _m_melEnergies;
std::vector<float> _m_windowFunc;
std::vector<std::vector<float>> _m_melFilterBank;
std::vector<float> _m_dctMatrix;
std::vector<int32_t> _m_filterBankFilterFirst;
std::vector<int32_t> _m_filterBankFilterLast;
bool _m_filterBankInitialised;
/**
* @brief Initialises the filter banks and the DCT matrix **/
void _InitMelFilterBank();
/**
* @brief Signals whether the instance of MFCC has had its
* required buffers initialised
* @return True if initialised, false otherwise
**/
bool _IsMelFilterBankInited();
/**
* @brief Create mel filter banks for MFCC calculation.
* @return 2D vector of floats
**/
std::vector<std::vector<float>> _CreateMelFilterBank();
/**
* @brief Computes and populates internal memeber buffers used
* in MFCC feature calculation
* @param[in] audioData - 1D vector of 16-bit audio data
*/
void _MfccComputePreFeature(const std::vector<float>& audioData);
/** @brief Computes the magnitude from an interleaved complex array */
void _ConvertToPowerSpectrum();
};