blob: 9439ddb61e8e8ac4881f96ca16124a50647ee415 [file] [log] [blame]
//
// Copyright © 2020 Arm Ltd and Contributors. All rights reserved.
// SPDX-License-Identifier: MIT
//
#pragma once
#include <armnn/backends/OptimizationViews.hpp>
#include <armnn/utility/Assert.hpp>
#include <aclCommon/ArmComputeUtils.hpp>
namespace armnn
{
namespace
{
//
// this helper only works if all layers where the inputs connect to are not selected
//
SubgraphView::InputSlots CreateInputsFrom(const std::vector<Layer*>& layers)
{
SubgraphView::InputSlots result;
for (auto&& layer : layers)
{
for (auto&& it = layer->BeginInputSlots(); it != layer->EndInputSlots(); ++it)
{
result.push_back(&(*it));
}
}
return result;
}
//
// this helper only works if all layers where the outputs connect to are not selected
//
SubgraphView::OutputSlots CreateOutputsFrom(const std::vector<Layer*>& layers)
{
SubgraphView::OutputSlots result;
for (auto&& layer : layers)
{
for (auto&& it = layer->BeginOutputSlots(); it != layer->EndOutputSlots(); ++it)
{
result.push_back(&(*it));
}
}
return result;
}
bool checkDataTypeInputandOutput(const Layer& layer)
{
auto inputInfo = layer.GetInputSlot(0).GetConnection()->GetTensorInfo();
auto outputInfo = layer.GetOutputSlot(0).GetTensorInfo();
bool sameDataType = (inputInfo.GetDataType() == outputInfo.GetDataType());
// Check is same quantization info (same scale and offset)
if (sameDataType)
{
if (IsQuantizedType(inputInfo.GetDataType()))
{
bool sameScale = (inputInfo.GetQuantizationScale() == outputInfo.GetQuantizationScale());
bool sameOffset = (inputInfo.GetQuantizationOffset() == outputInfo.GetQuantizationOffset());
return (sameScale && sameOffset);
}
else
{
return true;
}
}
else
{
return false;
}
}
} // namespace
inline void ReportUntouchedLayers(OptimizationViews& optimizationViews, std::map<LayerGuid, Layer*> untouched)
{
std::vector<Layer*> untouchedVector;
for (const auto& pair : untouched)
{
Layer* layer = pair.second;
SubgraphView subgraphView(CreateInputsFrom({layer}),
CreateOutputsFrom({layer}),
{layer});
optimizationViews.AddUntouchedSubgraph(std::move(subgraphView));
}
}
template<typename LayerType>
LayerType* FuseLayerWithoutParameters(OptimizationViews& optimizationViews,
LayerType* baseLayer,
ActivationLayer* activationLayer,
ActivationDescriptor& activationDesc,
std::string name)
{
LayerType* replacementLayer = optimizationViews.GetGraph().AddLayer<LayerType>(name.c_str());
replacementLayer->SetAdditionalInfoForObject(std::make_shared<ActivationDescriptor>(activationDesc));
SubgraphView substitutionSubgraph(CreateInputsFrom({baseLayer}),
CreateOutputsFrom({activationLayer}),
{baseLayer, activationLayer});
SubgraphView replacementSubgraph(replacementLayer);
optimizationViews.AddSubstitution({substitutionSubgraph, replacementSubgraph});
return replacementLayer;
}
template<typename LayerType>
LayerType* FuseLayerWithParameters(OptimizationViews& optimizationViews,
LayerType* baseLayer,
ActivationLayer* activationLayer,
ActivationDescriptor& activationDesc,
std::string name)
{
LayerType* replacementLayer = optimizationViews.GetGraph().AddLayer<LayerType>(baseLayer->GetParameters(),
name.c_str());
replacementLayer->SetAdditionalInfoForObject(std::make_shared<ActivationDescriptor>(activationDesc));
SubgraphView substitutionSubgraph(CreateInputsFrom({baseLayer}),
CreateOutputsFrom({activationLayer}),
{baseLayer, activationLayer});
SubgraphView replacementSubgraph(replacementLayer);
optimizationViews.AddSubstitution({substitutionSubgraph, replacementSubgraph});
return replacementLayer;
}
template<typename LayerType>
LayerType* FuseLayerWithWeightsAndBiases(OptimizationViews& optimizationViews,
LayerType* baseLayer,
ActivationLayer* activationLayer,
ActivationDescriptor& activationDesc,
std::string name)
{
LayerType* replacementLayer = FuseLayerWithParameters(optimizationViews,
baseLayer,
activationLayer,
activationDesc,
name);
replacementLayer->m_Weight = std::move(baseLayer->m_Weight);
replacementLayer->m_Bias = std::move(baseLayer->m_Bias);
return replacementLayer;
}
//
// If reduce layer has multiple axes, add new layer for each axis to simulate the same behaviour
// as currently only one axis is supported.
//
template<typename LayerType>
void ChainReduceLayers(OptimizationViews& optimizationViews,
LayerType* baseLayer,
ReduceDescriptor& reduceDescriptor)
{
// If layer has single axis don't chain layers.
if (!reduceDescriptor.m_vAxis.empty() && reduceDescriptor.m_vAxis.size() > 1)
{
// Save base layer output shape to compare against the output of the final layer added.
const TensorInfo baseLayerInfo = baseLayer->GetOutputSlot(0).GetTensorInfo();
// Vector of new chained layers, used for substitution.
std::vector<Layer*> layers;
// Vector of axes so each layer is reshaped correctly.
std::vector<uint32_t> reduceAxis;
unsigned int recalulateAxis = 0;
for (unsigned int i = 0; i != reduceDescriptor.m_vAxis.size(); ++i)
{
// Get TensorInfo to populate subsequent layers with.
TensorInfo layerInfoToModify = baseLayer->GetInputSlot(0).GetConnectedOutputSlot()->GetTensorInfo();
reduceAxis.emplace_back(reduceDescriptor.m_vAxis[i]);
// Calculate new shape based on the axes.
const TensorShape& reducedShape = ComputeReductionTensorShape(layerInfoToModify,
reduceAxis,
reduceDescriptor.m_KeepDims);
layerInfoToModify.SetShape(reducedShape);
// Create a vector for the single axis to be assigned to the descriptor.
// Update axis if keepDims is set reduce layers correctly.
std::vector<uint32_t> singleAxis(1, reduceDescriptor.m_vAxis[i] - recalulateAxis);
// Create a descriptor and assign single axis.
ReduceDescriptor newReduceDescriptor = baseLayer->GetParameters();
newReduceDescriptor.m_vAxis.assign(singleAxis.begin(), singleAxis.end());
// Add new layer to graph.
std::string layerName = "reduce_layer_" + std::to_string(i);
Layer* replacementLayer = optimizationViews.GetGraph().AddLayer<LayerType>(newReduceDescriptor,
layerName.c_str());
// Connect previous layer with new layer.
// The first and last layer will be connected when the subgraph is replaced.
if (!layers.empty())
{
layers[i - 1]->GetOutputSlot(0).Connect(replacementLayer->GetInputSlot(0));
}
// Set updated tensorInfo for new layer.
replacementLayer->GetOutputSlot(0).SetTensorInfo(layerInfoToModify);
if (!reduceDescriptor.m_KeepDims)
{
recalulateAxis++;
}
layers.emplace_back(replacementLayer);
}
// Check if the TensorInfo from the last layer equals the inferred output from the original layer.
ARMNN_ASSERT(baseLayerInfo == layers.back()->GetOutputSlot().GetTensorInfo());
std::list<Layer*> replacementLayers(layers.begin(), layers.end());
// Substitute new chained subgraph for original reduce layer.
SubgraphView substitutionSubgraph(baseLayer);
SubgraphView replacementSubgraph(CreateInputsFrom({replacementLayers.front()}),
CreateOutputsFrom({replacementLayers.back()}),
std::move(replacementLayers));
optimizationViews.AddSubstitution({substitutionSubgraph, replacementSubgraph});
}
}
} // namespace armnn