blob: f651ad5e7e6cabaf4a2341f7449bfb34ca2e98c9 [file] [log] [blame]
//
// Copyright © 2020, 2023 Arm Ltd and Contributors. All rights reserved.
// SPDX-License-Identifier: MIT
//
#pragma once
#include "TestUtils.hpp"
#include <armnn_delegate.hpp>
#include <DelegateTestInterpreter.hpp>
#include <flatbuffers/flatbuffers.h>
#include <tensorflow/lite/interpreter.h>
#include <tensorflow/lite/kernels/register.h>
#include <tensorflow/lite/model.h>
#include <tensorflow/lite/version.h>
#include <doctest/doctest.h>
namespace
{
template <typename T, typename B = float>
std::vector<char> CreateConv2dTfLiteModel(tflite::BuiltinOperator convolutionOperatorCode,
tflite::TensorType tensorType,
uint32_t strideX,
uint32_t strideY,
uint32_t dilationX,
uint32_t dilationY,
tflite::Padding padding,
tflite::ActivationFunctionType fused_activation_function,
const std::vector <int32_t>& inputTensorShape,
const std::vector <int32_t>& filterTensorShape,
const std::vector <int32_t>& biasTensorShape,
const std::vector <int32_t>& outputTensorShape,
const std::vector <T>& filterData,
const std::vector <B>& biasData,
const std::vector<float> biasScales = {1.0f},
const std::vector<int64_t> biasOffsets = {0},
const std::vector<float> filterScales = {1.0f},
const std::vector<int64_t> filterOffsets = {0},
float outputQuantScale = 2.0f,
int outputQuantOffset = 0,
float quantScale = 1.0f,
int quantOffset = 0,
int32_t depth_multiplier = 1,
int32_t filterQuantizationDim = 0)
{
using namespace tflite;
flatbuffers::FlatBufferBuilder flatBufferBuilder;
std::array<flatbuffers::Offset<tflite::Buffer>, 5> buffers;
buffers[0] = CreateBuffer(flatBufferBuilder);
buffers[1] = CreateBuffer(flatBufferBuilder);
buffers[2] = CreateBuffer(flatBufferBuilder,
flatBufferBuilder.CreateVector(reinterpret_cast<const uint8_t*>(filterData.data()),
sizeof(T) * filterData.size()));
buffers[3] = CreateBuffer(flatBufferBuilder,
flatBufferBuilder.CreateVector(reinterpret_cast<const uint8_t*>(biasData.data()),
sizeof(B) * biasData.size()));
buffers[4] = CreateBuffer(flatBufferBuilder);
auto quantizationParameters =
CreateQuantizationParameters(flatBufferBuilder,
0,
0,
flatBufferBuilder.CreateVector<float>({ quantScale }),
flatBufferBuilder.CreateVector<int64_t>({ quantOffset }));
auto outputQuantizationParameters =
CreateQuantizationParameters(flatBufferBuilder,
0,
0,
flatBufferBuilder.CreateVector<float>({ outputQuantScale }),
flatBufferBuilder.CreateVector<int64_t>({ outputQuantOffset }));
auto filterQuantizationParameters =
CreateQuantizationParameters(flatBufferBuilder,
0,
0,
flatBufferBuilder.CreateVector<float>(filterScales),
flatBufferBuilder.CreateVector<int64_t>(filterOffsets),
tflite::QuantizationDetails_NONE,
0,
filterQuantizationDim);
auto biasQuantizationParameters =
CreateQuantizationParameters(flatBufferBuilder,
0,
0,
flatBufferBuilder.CreateVector<float>(biasScales),
flatBufferBuilder.CreateVector<int64_t>(biasOffsets));
std::array<flatbuffers::Offset<Tensor>, 4> tensors;
tensors[0] = CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(inputTensorShape.data(),
inputTensorShape.size()),
tensorType,
1,
flatBufferBuilder.CreateString("input"),
quantizationParameters);
tensors[1] = CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(filterTensorShape.data(),
filterTensorShape.size()),
tensorType,
2,
flatBufferBuilder.CreateString("filter"),
filterQuantizationParameters);
auto biasTensorType = ::tflite::TensorType_FLOAT32;
if (tensorType == ::tflite::TensorType_INT8 || tensorType == ::tflite::TensorType_UINT8)
{
biasTensorType = ::tflite::TensorType_INT32;
}
tensors[2] = CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(biasTensorShape.data(), biasTensorShape.size()),
biasTensorType,
3,
flatBufferBuilder.CreateString("bias"),
biasQuantizationParameters);
tensors[3] = CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(outputTensorShape.data(),
outputTensorShape.size()),
tensorType,
4,
flatBufferBuilder.CreateString("output"),
outputQuantizationParameters);
flatbuffers::Offset<void> operatorBuiltinOptions;
tflite::BuiltinOptions operatorBuiltinOptionsType;
if(convolutionOperatorCode == tflite::BuiltinOperator_DEPTHWISE_CONV_2D)
{
operatorBuiltinOptionsType = tflite::BuiltinOptions_DepthwiseConv2DOptions;
operatorBuiltinOptions = CreateDepthwiseConv2DOptions(flatBufferBuilder,
padding,
strideX,
strideY,
depth_multiplier,
fused_activation_function,
dilationX,
dilationY).Union();
}
if(convolutionOperatorCode == tflite::BuiltinOperator_CONV_2D)
{
operatorBuiltinOptionsType = tflite::BuiltinOptions_Conv2DOptions;
operatorBuiltinOptions = CreateConv2DOptions(flatBufferBuilder,
padding,
strideX,
strideY,
fused_activation_function,
dilationX,
dilationY).Union();
}
// create operator
const std::vector<int> operatorInputs{0, 1, 2};
const std::vector<int> operatorOutputs{3};
flatbuffers::Offset <Operator> convolutionOperator =
CreateOperator(flatBufferBuilder,
0,
flatBufferBuilder.CreateVector<int32_t>(operatorInputs.data(), operatorInputs.size()),
flatBufferBuilder.CreateVector<int32_t>(operatorOutputs.data(), operatorOutputs.size()),
operatorBuiltinOptionsType,
operatorBuiltinOptions);
const std::vector<int> subgraphInputs{0, 1, 2};
const std::vector<int> subgraphOutputs{3};
flatbuffers::Offset <SubGraph> subgraph =
CreateSubGraph(flatBufferBuilder,
flatBufferBuilder.CreateVector(tensors.data(), tensors.size()),
flatBufferBuilder.CreateVector<int32_t>(subgraphInputs.data(), subgraphInputs.size()),
flatBufferBuilder.CreateVector<int32_t>(subgraphOutputs.data(), subgraphOutputs.size()),
flatBufferBuilder.CreateVector(&convolutionOperator, 1));
flatbuffers::Offset <flatbuffers::String> modelDescription =
flatBufferBuilder.CreateString("ArmnnDelegate: Convolution2d Operator Model");
flatbuffers::Offset <OperatorCode> operatorCode = CreateOperatorCode(flatBufferBuilder, convolutionOperatorCode);
flatbuffers::Offset <Model> flatbufferModel =
CreateModel(flatBufferBuilder,
TFLITE_SCHEMA_VERSION,
flatBufferBuilder.CreateVector(&operatorCode, 1),
flatBufferBuilder.CreateVector(&subgraph, 1),
modelDescription,
flatBufferBuilder.CreateVector(buffers.data(), buffers.size()));
flatBufferBuilder.Finish(flatbufferModel, armnnDelegate::FILE_IDENTIFIER);
return std::vector<char>(flatBufferBuilder.GetBufferPointer(),
flatBufferBuilder.GetBufferPointer() + flatBufferBuilder.GetSize());
}
template <typename T, typename B = float>
void ConvolutionTest(tflite::BuiltinOperator convolutionOperatorCode,
tflite::TensorType tensorType,
uint32_t strideX,
uint32_t strideY,
uint32_t dilationX,
uint32_t dilationY,
tflite::Padding padding,
tflite::ActivationFunctionType fused_activation_function,
std::vector<int32_t>& inputShape,
std::vector<int32_t>& filterShape,
std::vector<int32_t>& outputShape,
std::vector<T>& inputValues,
std::vector<T>& filterValues,
std::vector<T>& expectedOutputValues,
const std::vector<int32_t>& biasShape = {},
const std::vector<B>& biasValues = {},
const std::vector<float> biasScales = {1.0f},
const std::vector<int64_t> biasOffsets = {0},
const std::vector<float> filterScales = {1.0f},
const std::vector<int64_t> filterOffsets = {0},
float outputQuantScale = 2.0f,
int outputQuantOffset = 0,
float quantScale = 1.0f,
int quantOffset = 0,
int32_t depth_multiplier = 1,
int32_t filterQuantizationDim = 3,
const std::vector<armnn::BackendId>& backends = {})
{
using namespace delegateTestInterpreter;
std::vector<char> modelBuffer;
modelBuffer = CreateConv2dTfLiteModel(convolutionOperatorCode,
tensorType,
strideX,
strideY,
dilationX,
dilationY,
padding,
fused_activation_function,
inputShape,
filterShape,
biasShape,
outputShape,
filterValues,
biasValues,
biasScales,
biasOffsets,
filterScales,
filterOffsets,
outputQuantScale,
outputQuantOffset,
quantScale,
quantOffset,
depth_multiplier,
filterQuantizationDim);
// Setup interpreter with just TFLite Runtime.
auto tfLiteInterpreter = DelegateTestInterpreter(modelBuffer);
CHECK(tfLiteInterpreter.AllocateTensors() == kTfLiteOk);
CHECK(tfLiteInterpreter.FillInputTensor<T>(inputValues, 0) == kTfLiteOk);
CHECK(tfLiteInterpreter.Invoke() == kTfLiteOk);
std::vector<T> tfLiteOutputValues = tfLiteInterpreter.GetOutputResult<T>(0);
std::vector<int32_t> tfLiteOutputShape = tfLiteInterpreter.GetOutputShape(0);
// Setup interpreter with Arm NN Delegate applied.
auto armnnInterpreter = DelegateTestInterpreter(modelBuffer, CaptureAvailableBackends(backends));
CHECK(armnnInterpreter.AllocateTensors() == kTfLiteOk);
CHECK(armnnInterpreter.FillInputTensor<T>(inputValues, 0) == kTfLiteOk);
CHECK(armnnInterpreter.Invoke() == kTfLiteOk);
std::vector<T> armnnOutputValues = armnnInterpreter.GetOutputResult<T>(0);
std::vector<int32_t> armnnOutputShape = armnnInterpreter.GetOutputShape(0);
armnnDelegate::CompareOutputData<T>(tfLiteOutputValues, armnnOutputValues, expectedOutputValues);
armnnDelegate::CompareOutputShape(tfLiteOutputShape, armnnOutputShape, outputShape);
tfLiteInterpreter.Cleanup();
armnnInterpreter.Cleanup();
}
// Conv3d is only correctly supported for external delegates from TF Lite v2.6, as there was a breaking bug in v2.5.
#if defined(ARMNN_POST_TFLITE_2_5)
template <typename T, typename B = float>
std::vector<char> CreateConv3dTfLiteModel(tflite::BuiltinOperator convolutionOperatorCode,
tflite::TensorType tensorType,
std::vector<uint32_t> strides,
std::vector<uint32_t> dilation,
tflite::Padding padding,
tflite::ActivationFunctionType fused_activation_function,
const std::vector<int32_t>& inputTensorShape,
const std::vector<int32_t>& filterTensorShape,
const std::vector<int32_t>& biasTensorShape,
const std::vector<int32_t>& outputTensorShape,
const std::vector<T>& filterData,
const std::vector<B>& biasData,
const std::vector<float> biasScales = {1.0f},
const std::vector<int64_t> biasOffsets = {0},
const std::vector<float> filterScales = {1.0f},
const std::vector<int64_t> filterOffsets = {0},
float outputQuantScale = 2.0f,
int outputQuantOffset = 0,
float quantScale = 1.0f,
int quantOffset = 0,
int32_t depth_multiplier = 1,
int32_t filterQuantizationDim = 0)
{
using namespace tflite;
flatbuffers::FlatBufferBuilder flatBufferBuilder;
std::array<flatbuffers::Offset<tflite::Buffer>, 3> buffers;
buffers[0] = CreateBuffer(flatBufferBuilder);
buffers[1] = CreateBuffer(flatBufferBuilder,
flatBufferBuilder.CreateVector(reinterpret_cast<const uint8_t*>(filterData.data()),
sizeof(T) * filterData.size()));
buffers[2] = CreateBuffer(flatBufferBuilder,
flatBufferBuilder.CreateVector(reinterpret_cast<const uint8_t*>(biasData.data()),
sizeof(B) * biasData.size()));
auto quantizationParameters =
CreateQuantizationParameters(flatBufferBuilder,
0,
0,
flatBufferBuilder.CreateVector<float>({ quantScale }),
flatBufferBuilder.CreateVector<int64_t>({ quantOffset }));
auto outputQuantizationParameters =
CreateQuantizationParameters(flatBufferBuilder,
0,
0,
flatBufferBuilder.CreateVector<float>({ outputQuantScale }),
flatBufferBuilder.CreateVector<int64_t>({ outputQuantOffset }));
auto filterQuantizationParameters =
CreateQuantizationParameters(flatBufferBuilder,
0,
0,
flatBufferBuilder.CreateVector<float>(filterScales),
flatBufferBuilder.CreateVector<int64_t>(filterOffsets),
tflite::QuantizationDetails_NONE,
0,
filterQuantizationDim);
auto biasQuantizationParameters =
CreateQuantizationParameters(flatBufferBuilder,
0,
0,
flatBufferBuilder.CreateVector<float>(biasScales),
flatBufferBuilder.CreateVector<int64_t>(biasOffsets));
std::array<flatbuffers::Offset<Tensor>, 4> tensors;
tensors[0] = CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(inputTensorShape.data(),
inputTensorShape.size()),
tensorType,
0,
flatBufferBuilder.CreateString("input"),
quantizationParameters);
tensors[1] = CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(filterTensorShape.data(),
filterTensorShape.size()),
tensorType,
1,
flatBufferBuilder.CreateString("filter"),
filterQuantizationParameters);
auto biasTensorType = ::tflite::TensorType_FLOAT32;
if (tensorType == ::tflite::TensorType_INT8 || tensorType == ::tflite::TensorType_UINT8)
{
biasTensorType = ::tflite::TensorType_INT32;
}
tensors[2] = CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(biasTensorShape.data(), biasTensorShape.size()),
biasTensorType,
2,
flatBufferBuilder.CreateString("bias"),
biasQuantizationParameters);
tensors[3] = CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(outputTensorShape.data(),
outputTensorShape.size()),
tensorType,
0,
flatBufferBuilder.CreateString("output"),
outputQuantizationParameters);
tflite::BuiltinOptions operatorBuiltinOptionsType = tflite::BuiltinOptions_Conv3DOptions;
flatbuffers::Offset<void> operatorBuiltinOptions = CreateConv3DOptions(flatBufferBuilder,
padding,
strides[2], // Depth
strides[0], // Width
strides[1], // Height
fused_activation_function,
dilation[2],
dilation[0],
dilation[1]).Union();
// Create operator
const std::vector<int> operatorInputs{0, 1, 2};
const std::vector<int> operatorOutputs{3};
flatbuffers::Offset <Operator> convolutionOperator =
CreateOperator(flatBufferBuilder,
0,
flatBufferBuilder.CreateVector<int32_t>(operatorInputs.data(), operatorInputs.size()),
flatBufferBuilder.CreateVector<int32_t>(operatorOutputs.data(), operatorOutputs.size()),
operatorBuiltinOptionsType,
operatorBuiltinOptions);
const std::vector<int> subgraphInputs{0, 1, 2};
const std::vector<int> subgraphOutputs{3};
flatbuffers::Offset <SubGraph> subgraph =
CreateSubGraph(flatBufferBuilder,
flatBufferBuilder.CreateVector(tensors.data(), tensors.size()),
flatBufferBuilder.CreateVector<int32_t>(subgraphInputs.data(), subgraphInputs.size()),
flatBufferBuilder.CreateVector<int32_t>(subgraphOutputs.data(), subgraphOutputs.size()),
flatBufferBuilder.CreateVector(&convolutionOperator, 1));
flatbuffers::Offset <flatbuffers::String> modelDescription =
flatBufferBuilder.CreateString("ArmnnDelegate: Convolution 3d Operator Model");
// If using an operator with a code greater than 127 then the enum value should be passed as the fifth
// parameter rather than the second like in other tests.
flatbuffers::Offset <OperatorCode> operatorCode =
CreateOperatorCode(flatBufferBuilder, 0, 0, 1, tflite::BuiltinOperator_CONV_3D);
flatbuffers::Offset <Model> flatbufferModel =
CreateModel(flatBufferBuilder,
TFLITE_SCHEMA_VERSION,
flatBufferBuilder.CreateVector(&operatorCode, 1),
flatBufferBuilder.CreateVector(&subgraph, 1),
modelDescription,
flatBufferBuilder.CreateVector(buffers.data(), buffers.size()));
flatBufferBuilder.Finish(flatbufferModel, armnnDelegate::FILE_IDENTIFIER);
return std::vector<char>(flatBufferBuilder.GetBufferPointer(),
flatBufferBuilder.GetBufferPointer() + flatBufferBuilder.GetSize());
}
template <typename T, typename B = float>
void Convolution3dTest(tflite::BuiltinOperator convolutionOperatorCode,
tflite::TensorType tensorType,
std::vector<uint32_t> strides,
std::vector<uint32_t> dilation,
tflite::Padding padding,
tflite::ActivationFunctionType fused_activation_function,
std::vector<int32_t>& inputShape,
std::vector<int32_t>& filterShape,
std::vector<int32_t>& outputShape,
std::vector<T>& inputValues,
std::vector<T>& filterValues,
std::vector<T>& expectedOutputValues,
const std::vector<int32_t>& biasShape = {},
const std::vector<B>& biasValues = {},
const std::vector<float> biasScales = {1.0f},
const std::vector<int64_t> biasOffsets = {0},
const std::vector<float> filterScales = {1.0f},
const std::vector<int64_t> filterOffsets = {0},
float outputQuantScale = 2.0f,
int outputQuantOffset = 0,
float quantScale = 1.0f,
int quantOffset = 0,
int32_t depth_multiplier = 1,
int32_t filterQuantizationDim = 3,
const std::vector<armnn::BackendId>& backends = {})
{
using namespace delegateTestInterpreter;
std::vector<char> modelBuffer;
modelBuffer = CreateConv3dTfLiteModel(convolutionOperatorCode,
tensorType,
strides,
dilation,
padding,
fused_activation_function,
inputShape,
filterShape,
biasShape,
outputShape,
filterValues,
biasValues,
biasScales,
biasOffsets,
filterScales,
filterOffsets,
outputQuantScale,
outputQuantOffset,
quantScale,
quantOffset,
depth_multiplier,
filterQuantizationDim);
// Setup interpreter with just TFLite Runtime.
auto tfLiteInterpreter = DelegateTestInterpreter(modelBuffer);
CHECK(tfLiteInterpreter.AllocateTensors() == kTfLiteOk);
CHECK(tfLiteInterpreter.FillInputTensor<T>(inputValues, 0) == kTfLiteOk);
CHECK(tfLiteInterpreter.Invoke() == kTfLiteOk);
std::vector<T> tfLiteOutputValues = tfLiteInterpreter.GetOutputResult<T>(0);
std::vector<int32_t> tfLiteOutputShape = tfLiteInterpreter.GetOutputShape(0);
// Setup interpreter with Arm NN Delegate applied.
auto armnnInterpreter = DelegateTestInterpreter(modelBuffer, CaptureAvailableBackends(backends));
CHECK(armnnInterpreter.AllocateTensors() == kTfLiteOk);
CHECK(armnnInterpreter.FillInputTensor<T>(inputValues, 0) == kTfLiteOk);
CHECK(armnnInterpreter.Invoke() == kTfLiteOk);
std::vector<T> armnnOutputValues = armnnInterpreter.GetOutputResult<T>(0);
std::vector<int32_t> armnnOutputShape = armnnInterpreter.GetOutputShape(0);
armnnDelegate::CompareOutputShape(tfLiteOutputShape, armnnOutputShape, outputShape);
armnnDelegate::CompareData(expectedOutputValues.data(), armnnOutputValues.data(), expectedOutputValues.size(), 1);
armnnDelegate::CompareData(expectedOutputValues.data(), tfLiteOutputValues.data(), expectedOutputValues.size(), 1);
armnnDelegate::CompareData(tfLiteOutputValues.data(), armnnOutputValues.data(), expectedOutputValues.size(), 1);
tfLiteInterpreter.Cleanup();
armnnInterpreter.Cleanup();
}
#endif
template <typename T>
std::vector<char> CreateTransposeConvTfLiteModel(tflite::TensorType tensorType,
uint32_t strideX,
uint32_t strideY,
tflite::Padding padding,
const std::vector <int32_t>& transposeTensorShape,
const std::vector <int32_t>& filterTensorShape,
const std::vector <int32_t>& inputTensorShape,
const std::vector <int32_t>& outputTensorShape,
const std::vector <int32_t>& transposeData,
const std::vector <T>& filterData,
float filterScale = 1.0f,
int filterOffset = 0,
float outputQuantScale = 2.0f,
int outputQuantOffset = 0,
float quantScale = 1.0f,
int quantOffset = 0)
{
using namespace tflite;
flatbuffers::FlatBufferBuilder flatBufferBuilder;
std::array<flatbuffers::Offset<tflite::Buffer>, 3> buffers;
buffers[0] = CreateBuffer(flatBufferBuilder);
buffers[1] = CreateBuffer(flatBufferBuilder,
flatBufferBuilder.CreateVector(reinterpret_cast<const uint8_t*>(transposeData.data()),
sizeof(int32_t) * transposeData.size()));
buffers[2] = CreateBuffer(flatBufferBuilder,
flatBufferBuilder.CreateVector(reinterpret_cast<const uint8_t*>(filterData.data()),
sizeof(T) * filterData.size()));
auto quantizationParameters =
CreateQuantizationParameters(flatBufferBuilder,
0,
0,
flatBufferBuilder.CreateVector<float>({ quantScale }),
flatBufferBuilder.CreateVector<int64_t>({ quantOffset }));
auto outputQuantizationParameters =
CreateQuantizationParameters(flatBufferBuilder,
0,
0,
flatBufferBuilder.CreateVector<float>({ outputQuantScale }),
flatBufferBuilder.CreateVector<int64_t>({ outputQuantOffset }));
auto filterQuantizationParameters =
CreateQuantizationParameters(flatBufferBuilder,
0,
0,
flatBufferBuilder.CreateVector<float>({ filterScale }),
flatBufferBuilder.CreateVector<int64_t>({ filterOffset }));
std::array<flatbuffers::Offset<Tensor>, 4> tensors;
tensors[0] = CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(transposeTensorShape.data(),
transposeTensorShape.size()),
tflite::TensorType_INT32,
1);
tensors[1] = CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(filterTensorShape.data(),
filterTensorShape.size()),
tensorType,
2,
flatBufferBuilder.CreateString("filter"),
filterQuantizationParameters);
tensors[2] = CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(inputTensorShape.data(),
inputTensorShape.size()),
tensorType,
0,
flatBufferBuilder.CreateString("input"),
quantizationParameters);
tensors[3] = CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(outputTensorShape.data(),
outputTensorShape.size()),
tensorType,
0,
flatBufferBuilder.CreateString("output"),
outputQuantizationParameters);
tflite::BuiltinOptions operatorBuiltinOptionsType = tflite::BuiltinOptions_TransposeConvOptions;
flatbuffers::Offset<void> operatorBuiltinOptions =
CreateTransposeConvOptions(flatBufferBuilder, padding, strideX, strideY).Union();
// create operator
const std::vector<int> operatorInputs{0, 1, 2};
const std::vector<int> operatorOutputs{3};
flatbuffers::Offset <Operator> convolutionOperator =
CreateOperator(flatBufferBuilder,
0,
flatBufferBuilder.CreateVector<int32_t>(operatorInputs.data(), operatorInputs.size()),
flatBufferBuilder.CreateVector<int32_t>(operatorOutputs.data(), operatorOutputs.size()),
operatorBuiltinOptionsType,
operatorBuiltinOptions);
const std::vector<int> subgraphInputs{0, 1, 2};
const std::vector<int> subgraphOutputs{3};
flatbuffers::Offset <SubGraph> subgraph =
CreateSubGraph(flatBufferBuilder,
flatBufferBuilder.CreateVector(tensors.data(), tensors.size()),
flatBufferBuilder.CreateVector<int32_t>(subgraphInputs.data(), subgraphInputs.size()),
flatBufferBuilder.CreateVector<int32_t>(subgraphOutputs.data(), subgraphOutputs.size()),
flatBufferBuilder.CreateVector(&convolutionOperator, 1));
flatbuffers::Offset <flatbuffers::String> modelDescription =
flatBufferBuilder.CreateString("ArmnnDelegate: TransposeConv Operator Model");
flatbuffers::Offset <OperatorCode> operatorCode =
CreateOperatorCode(flatBufferBuilder, tflite::BuiltinOperator_TRANSPOSE_CONV);
flatbuffers::Offset <Model> flatbufferModel =
CreateModel(flatBufferBuilder,
TFLITE_SCHEMA_VERSION,
flatBufferBuilder.CreateVector(&operatorCode, 1),
flatBufferBuilder.CreateVector(&subgraph, 1),
modelDescription,
flatBufferBuilder.CreateVector(buffers.data(), buffers.size()));
flatBufferBuilder.Finish(flatbufferModel, armnnDelegate::FILE_IDENTIFIER);
return std::vector<char>(flatBufferBuilder.GetBufferPointer(),
flatBufferBuilder.GetBufferPointer() + flatBufferBuilder.GetSize());
}
template <typename T>
void TransposeConvTest(tflite::TensorType tensorType,
uint32_t strideX,
uint32_t strideY,
tflite::Padding padding,
const std::vector <int32_t>& transposeTensorShape,
const std::vector <int32_t>& filterTensorShape,
const std::vector <int32_t>& inputTensorShape,
const std::vector <int32_t>& outputTensorShape,
const std::vector <int32_t>& transposeData,
const std::vector <T>& filterData,
std::vector<T>& inputValues,
std::vector<T>& expectedOutputValues,
float filterScale = 1.0f,
int filterOffset = 0,
float outputQuantScale = 1.0f,
int outputQuantOffset = 0,
float quantScale = 1.0f,
int quantOffset = 0,
const std::vector<armnn::BackendId>& backends = {})
{
using namespace delegateTestInterpreter;
std::vector<char> modelBuffer;
modelBuffer = CreateTransposeConvTfLiteModel<T>(tensorType,
strideX,
strideY,
padding,
transposeTensorShape,
filterTensorShape,
inputTensorShape,
outputTensorShape,
transposeData,
filterData,
filterScale,
filterOffset,
outputQuantScale,
outputQuantOffset,
quantScale,
quantOffset);
// Setup interpreter with just TFLite Runtime.
auto tfLiteInterpreter = DelegateTestInterpreter(modelBuffer);
CHECK(tfLiteInterpreter.AllocateTensors() == kTfLiteOk);
CHECK(tfLiteInterpreter.FillInputTensor<T>(inputValues, 2) == kTfLiteOk);
CHECK(tfLiteInterpreter.Invoke() == kTfLiteOk);
std::vector<T> tfLiteOutputValues = tfLiteInterpreter.GetOutputResult<T>(0);
std::vector<int32_t> tfLiteOutputShape = tfLiteInterpreter.GetOutputShape(0);
// Setup interpreter with Arm NN Delegate applied.
auto armnnInterpreter = DelegateTestInterpreter(modelBuffer, CaptureAvailableBackends(backends));
CHECK(armnnInterpreter.AllocateTensors() == kTfLiteOk);
CHECK(armnnInterpreter.FillInputTensor<T>(inputValues, 2) == kTfLiteOk);
CHECK(armnnInterpreter.Invoke() == kTfLiteOk);
std::vector<T> armnnOutputValues = armnnInterpreter.GetOutputResult<T>(0);
std::vector<int32_t> armnnOutputShape = armnnInterpreter.GetOutputShape(0);
armnnDelegate::CompareOutputData<T>(tfLiteOutputValues, armnnOutputValues, expectedOutputValues);
armnnDelegate::CompareOutputShape(tfLiteOutputShape, armnnOutputShape, outputTensorShape);
tfLiteInterpreter.Cleanup();
armnnInterpreter.Cleanup();
}
} // anonymous namespace