blob: d34bf695486688ae8d6399b8ef111c3d8d511bed [file] [log] [blame]
//
// Copyright © 2017 Arm Ltd. All rights reserved.
// SPDX-License-Identifier: MIT
//
#include <boost/test/unit_test.hpp>
#include <armnn/Descriptors.hpp>
#include <armnn/IRuntime.hpp>
#include <armnn/INetwork.hpp>
#include <backends/test/QuantizeHelper.hpp>
#include <boost/core/ignore_unused.hpp>
#include <set>
BOOST_AUTO_TEST_SUITE(EndToEnd)
namespace
{
template<typename T>
bool IsFloatIterFunc(T iter)
{
boost::ignore_unused(iter);
return IsFloatingPointIterator<T>::value;
}
} //namespace
BOOST_AUTO_TEST_CASE(QuantizedHelper)
{
std::vector<float> fArray;
BOOST_TEST(IsFloatIterFunc(fArray.begin()) == true);
BOOST_TEST(IsFloatIterFunc(fArray.cbegin()) == true);
std::vector<double> dArray;
BOOST_TEST(IsFloatIterFunc(dArray.begin()) == true);
std::vector<int> iArray;
BOOST_TEST(IsFloatIterFunc(iArray.begin()) == false);
float floats[5];
BOOST_TEST(IsFloatIterFunc(&floats[0]) == true);
int ints[5];
BOOST_TEST(IsFloatIterFunc(&ints[0]) == false);
}
BOOST_AUTO_TEST_CASE(Unsigned8)
{
using namespace armnn;
// Create runtime in which test will run
armnn::IRuntime::CreationOptions options;
armnn::IRuntimePtr runtime(armnn::IRuntime::Create(options));
// Builds up the structure of the network.
armnn::INetworkPtr net(INetwork::Create());
IConnectableLayer* input = net->AddInputLayer(0, "input");
IConnectableLayer* softmax = net->AddSoftmaxLayer(SoftmaxDescriptor(), "softmax");
IConnectableLayer* output = net->AddOutputLayer(0, "output");
input->GetOutputSlot(0).Connect(softmax->GetInputSlot(0));
softmax->GetOutputSlot(0).Connect(output->GetInputSlot(0));
// Sets the tensors in the network.
TensorInfo inputTensorInfo(TensorShape({1, 5}), DataType::QuantisedAsymm8);
inputTensorInfo.SetQuantizationOffset(100);
inputTensorInfo.SetQuantizationScale(10000.0f);
input->GetOutputSlot(0).SetTensorInfo(inputTensorInfo);
TensorInfo outputTensorInfo(TensorShape({1, 5}), DataType::QuantisedAsymm8);
outputTensorInfo.SetQuantizationOffset(0);
outputTensorInfo.SetQuantizationScale(1.0f/255.0f);
softmax->GetOutputSlot(0).SetTensorInfo(outputTensorInfo);
// optimize the network
std::vector<armnn::BackendId> backends = {armnn::Compute::CpuRef};
IOptimizedNetworkPtr optNet = Optimize(*net, backends, runtime->GetDeviceSpec());
// Loads it into the runtime.
NetworkId netId;
auto error = runtime->LoadNetwork(netId, std::move(optNet));
BOOST_TEST(error == Status::Success);
// Creates structures for input & output.
std::vector<uint8_t> inputData
{
1, 10, 3, 200, 5 // Some inputs - one of which is sufficiently larger than the others to saturate softmax.
};
std::vector<uint8_t> outputData(5);
armnn::InputTensors inputTensors
{
{0, armnn::ConstTensor(runtime->GetInputTensorInfo(netId, 0), inputData.data())}
};
armnn::OutputTensors outputTensors
{
{0, armnn::Tensor(runtime->GetOutputTensorInfo(netId, 0), outputData.data())}
};
// Does the inference.
runtime->EnqueueWorkload(netId, inputTensors, outputTensors);
// Checks the results.
BOOST_TEST(outputData[0] == 0);
BOOST_TEST(outputData[1] == 0);
BOOST_TEST(outputData[2] == 0);
BOOST_TEST(outputData[3] == 255); // softmax has been saturated.
BOOST_TEST(outputData[4] == 0);
}
template <typename T>
void ConstantUsageTest(const std::vector<armnn::BackendId>& computeDevice,
const armnn::TensorInfo& commonTensorInfo,
const std::vector<T>& inputData,
const std::vector<T>& constantData,
const std::vector<T>& expectedOutputData)
{
using namespace armnn;
// Create runtime in which test will run
armnn::IRuntime::CreationOptions options;
armnn::IRuntimePtr runtime(armnn::IRuntime::Create(options));
// Builds up the structure of the network.
INetworkPtr net(INetwork::Create());
IConnectableLayer* input = net->AddInputLayer(0);
IConnectableLayer* constant = net->AddConstantLayer(ConstTensor(commonTensorInfo, constantData));
IConnectableLayer* add = net->AddAdditionLayer();
IConnectableLayer* output = net->AddOutputLayer(0);
input->GetOutputSlot(0).Connect(add->GetInputSlot(0));
constant->GetOutputSlot(0).Connect(add->GetInputSlot(1));
add->GetOutputSlot(0).Connect(output->GetInputSlot(0));
// Sets the tensors in the network.
input->GetOutputSlot(0).SetTensorInfo(commonTensorInfo);
constant->GetOutputSlot(0).SetTensorInfo(commonTensorInfo);
add->GetOutputSlot(0).SetTensorInfo(commonTensorInfo);
// optimize the network
IOptimizedNetworkPtr optNet = Optimize(*net, computeDevice, runtime->GetDeviceSpec());
// Loads it into the runtime.
NetworkId netId;
runtime->LoadNetwork(netId, std::move(optNet));
// Creates structures for input & output.
std::vector<T> outputData(inputData.size());
InputTensors inputTensors
{
{0, armnn::ConstTensor(runtime->GetInputTensorInfo(netId, 0), inputData.data())}
};
OutputTensors outputTensors
{
{0, armnn::Tensor(runtime->GetOutputTensorInfo(netId, 0), outputData.data())}
};
// Does the inference.
runtime->EnqueueWorkload(netId, inputTensors, outputTensors);
// Checks the results.
BOOST_TEST(outputData == expectedOutputData);
}
static void ConstantUsageFloat32Test(const std::vector<armnn::BackendId>& computeDevice)
{
const armnn::TensorInfo commonTensorInfo({ 2, 3 }, armnn::DataType::Float32);
ConstantUsageTest(computeDevice,
commonTensorInfo,
std::vector<float>{ 1.f, 2.f, 3.f, 4.f, 5.f, 6.f }, // Input.
std::vector<float>{ 6.f, 5.f, 4.f, 3.f, 2.f, 1.f }, // Const input.
std::vector<float>{ 7.f, 7.f, 7.f, 7.f, 7.f, 7.f } // Expected output.
);
}
static void ConstantUsageUint8Test(const std::vector<armnn::BackendId>& computeDevice)
{
armnn::TensorInfo commonTensorInfo({ 2, 3 }, armnn::DataType::QuantisedAsymm8);
const float scale = 0.023529f;
const int8_t offset = -43;
commonTensorInfo.SetQuantizationScale(scale);
commonTensorInfo.SetQuantizationOffset(offset);
ConstantUsageTest(computeDevice,
commonTensorInfo,
QuantizedVector<uint8_t>(scale, offset, { 1.f, 2.f, 3.f, 4.f, 5.f, 6.f }), // Input.
QuantizedVector<uint8_t>(scale, offset, { 6.f, 5.f, 4.f, 3.f, 2.f, 1.f }), // Const input.
QuantizedVector<uint8_t>(scale, offset, { 7.f, 7.f, 7.f, 7.f, 7.f, 7.f }) // Expected output.
);
}
BOOST_AUTO_TEST_CASE(ConstantUsage_Ref_Float32)
{
std::vector<armnn::BackendId> backends = {armnn::Compute::CpuRef};
ConstantUsageFloat32Test(backends);
}
#if ARMCOMPUTENEON_ENABLED
BOOST_AUTO_TEST_CASE(ConstantUsage_Neon_Float32)
{
ConstantUsageFloat32Test({armnn::Compute::CpuAcc});
}
#endif
#if ARMCOMPUTECL_ENABLED
BOOST_AUTO_TEST_CASE(ConstantUsage_Cl_Float32)
{
ConstantUsageFloat32Test({armnn::Compute::GpuAcc});
}
#endif
BOOST_AUTO_TEST_CASE(ConstantUsage_Ref_Uint8)
{
std::vector<armnn::BackendId> backends = {armnn::Compute::CpuRef};
ConstantUsageUint8Test(backends);
}
BOOST_AUTO_TEST_CASE(TrivialAdd)
{
// This test was designed to match "AddTwo" in android nn/runtime/test/TestTrivialModel.cpp.
using namespace armnn;
// Create runtime in which test will run
armnn::IRuntime::CreationOptions options;
armnn::IRuntimePtr runtime(armnn::IRuntime::Create(options));
// Builds up the structure of the network.
armnn::INetworkPtr net(INetwork::Create());
IConnectableLayer* input1 = net->AddInputLayer(0);
IConnectableLayer* input2 = net->AddInputLayer(1);
IConnectableLayer* add = net->AddAdditionLayer();
IConnectableLayer* output = net->AddOutputLayer(0);
input1->GetOutputSlot(0).Connect(add->GetInputSlot(0));
input2->GetOutputSlot(0).Connect(add->GetInputSlot(1));
add->GetOutputSlot(0).Connect(output->GetInputSlot(0));
// Sets the tensors in the network.
TensorInfo tensorInfo(TensorShape({3, 4}), DataType::Float32);
input1->GetOutputSlot(0).SetTensorInfo(tensorInfo);
input2->GetOutputSlot(0).SetTensorInfo(tensorInfo);
add->GetOutputSlot(0).SetTensorInfo(tensorInfo);
// optimize the network
std::vector<armnn::BackendId> backends = {armnn::Compute::CpuRef};
IOptimizedNetworkPtr optNet = Optimize(*net, backends, runtime->GetDeviceSpec());
// Loads it into the runtime.
NetworkId netId;
runtime->LoadNetwork(netId, std::move(optNet));
// Creates structures for input & output - matching android nn test.
std::vector<float> input1Data
{
1.f, 2.f, 3.f, 4.f, 5.f, 6.f, 7.f, 8.f, 9.f, 10.f, 11.f, 12.f
};
std::vector<float> input2Data
{
100.f, 200.f, 300.f, 400.f, 500.f, 600.f, 700.f, 800.f, 900.f, 1000.f, 1100.f, 1200.f
};
std::vector<float> outputData(12);
InputTensors inputTensors
{
{0,armnn::ConstTensor(runtime->GetInputTensorInfo(netId, 0), input1Data.data())},
{1,armnn::ConstTensor(runtime->GetInputTensorInfo(netId, 0), input2Data.data())}
};
OutputTensors outputTensors
{
{0,armnn::Tensor(runtime->GetOutputTensorInfo(netId, 0), outputData.data())}
};
// Does the inference.
runtime->EnqueueWorkload(netId, inputTensors, outputTensors);
// Checks the results
BOOST_TEST(outputData[0] == 101);
BOOST_TEST(outputData[1] == 202);
BOOST_TEST(outputData[2] == 303);
BOOST_TEST(outputData[3] == 404);
BOOST_TEST(outputData[4] == 505);
BOOST_TEST(outputData[5] == 606);
BOOST_TEST(outputData[6] == 707);
BOOST_TEST(outputData[7] == 808);
BOOST_TEST(outputData[8] == 909);
BOOST_TEST(outputData[9] == 1010);
BOOST_TEST(outputData[10] == 1111);
BOOST_TEST(outputData[11] == 1212);
}
BOOST_AUTO_TEST_CASE(MultipleOutputs)
{
using namespace armnn;
// Create runtime in which test will run
armnn::IRuntime::CreationOptions options;
armnn::IRuntimePtr runtime(armnn::IRuntime::Create(options));
// Builds up the structure of the network.
INetworkPtr net(INetwork::Create());
IConnectableLayer* input = net->AddInputLayer(0);
// ReLu1
ActivationDescriptor activation1Descriptor;
activation1Descriptor.m_Function = ActivationFunction::BoundedReLu;
activation1Descriptor.m_A = 1.f;
activation1Descriptor.m_B = -1.f;
IConnectableLayer* activation1 = net->AddActivationLayer(activation1Descriptor);
// ReLu6
ActivationDescriptor activation2Descriptor;
activation2Descriptor.m_Function = ActivationFunction::BoundedReLu;
activation2Descriptor.m_A = 6.0f;
IConnectableLayer* activation2 = net->AddActivationLayer(activation2Descriptor);
// BoundedReLu(min=2, max=5)
ActivationDescriptor activation3Descriptor;
activation3Descriptor.m_Function = ActivationFunction::BoundedReLu;
activation3Descriptor.m_A = 5.0f;
activation3Descriptor.m_B = 2.0f;
IConnectableLayer* activation3 = net->AddActivationLayer(activation3Descriptor);
IConnectableLayer* output1 = net->AddOutputLayer(0);
IConnectableLayer* output2 = net->AddOutputLayer(1);
IConnectableLayer* output3 = net->AddOutputLayer(2);
input->GetOutputSlot(0).Connect(activation1->GetInputSlot(0));
input->GetOutputSlot(0).Connect(activation2->GetInputSlot(0));
input->GetOutputSlot(0).Connect(activation3->GetInputSlot(0));
activation1->GetOutputSlot(0).Connect(output1->GetInputSlot(0));
activation2->GetOutputSlot(0).Connect(output2->GetInputSlot(0));
activation3->GetOutputSlot(0).Connect(output3->GetInputSlot(0));
// Sets the tensors in the network.
TensorInfo tensorInfo(TensorShape({ 10 }), DataType::Float32);
input->GetOutputSlot(0).SetTensorInfo(tensorInfo);
activation1->GetOutputSlot(0).SetTensorInfo(tensorInfo);
activation2->GetOutputSlot(0).SetTensorInfo(tensorInfo);
activation3->GetOutputSlot(0).SetTensorInfo(tensorInfo);
// optimize the network
std::vector<armnn::BackendId> backends = {armnn::Compute::CpuRef};
IOptimizedNetworkPtr optNet = Optimize(*net, backends, runtime->GetDeviceSpec());
// Loads it into the runtime.
NetworkId netId;
runtime->LoadNetwork(netId, std::move(optNet));
// Creates structures for input & output.
const std::vector<float> inputData{ 3.f, 5.f, 2.f, 3.f, 7.f, 0.f, -2.f, -1.f, 3.f, 3.f };
std::vector<float> output1Data(inputData.size());
std::vector<float> output2Data(inputData.size());
std::vector<float> output3Data(inputData.size());
InputTensors inputTensors
{
{0,armnn::ConstTensor(runtime->GetInputTensorInfo(netId, 0), inputData.data())}
};
OutputTensors outputTensors
{
{0,armnn::Tensor(runtime->GetOutputTensorInfo(netId, 0), output1Data.data())},
{1,armnn::Tensor(runtime->GetOutputTensorInfo(netId, 1), output2Data.data())},
{2,armnn::Tensor(runtime->GetOutputTensorInfo(netId, 2), output3Data.data())}
};
// Does the inference.
runtime->EnqueueWorkload(netId, inputTensors, outputTensors);
// Checks the results.
BOOST_TEST(output1Data == std::vector<float>({ 1.f, 1.f, 1.f, 1.f, 1.f, 0.f, -1.f, -1.f, 1.f, 1.f })); // ReLu1
BOOST_TEST(output2Data == std::vector<float>({ 3.f, 5.f, 2.f, 3.f, 6.f, 0.f, 0.f, 0.f, 3.f, 3.f })); // ReLu6
BOOST_TEST(output3Data == std::vector<float>({ 3.f, 5.f, 2.f, 3.f, 5.f, 2.f, 2.f, 2.f, 3.f, 3.f })); // [2, 5]
}
#if ARMCOMPUTENEON_ENABLED
BOOST_AUTO_TEST_CASE(FallbackToCpuRef)
{
using namespace armnn;
// Create runtime in which test will run and allow fallback to CpuRef.
IRuntime::CreationOptions options;
IRuntimePtr runtime(IRuntime::Create(options));
// Builds up the structure of the network.
INetworkPtr net(INetwork::Create());
IConnectableLayer* input = net->AddInputLayer(0);
// This layer configuration isn't supported by CpuAcc but we allow fallback to CpuRef so it shoud pass.
NormalizationDescriptor descriptor;
IConnectableLayer* pooling = net->AddNormalizationLayer(descriptor);
IConnectableLayer* output = net->AddOutputLayer(0);
input->GetOutputSlot(0).Connect(pooling->GetInputSlot(0));
pooling->GetOutputSlot(0).Connect(output->GetInputSlot(0));
input->GetOutputSlot(0).SetTensorInfo(TensorInfo({ 1, 1, 4, 4 }, DataType::Float32));
pooling->GetOutputSlot(0).SetTensorInfo(TensorInfo({ 1, 1, 4, 4 }, DataType::Float32));
// optimize the network
std::vector<BackendId> backends = {Compute::CpuAcc, Compute::CpuRef};
IOptimizedNetworkPtr optNet = Optimize(*net, backends, runtime->GetDeviceSpec());
// Load it into the runtime. It should pass.
NetworkId netId;
BOOST_TEST(runtime->LoadNetwork(netId, std::move(optNet)) == Status::Success);
}
#endif // ARMCOMPUTENEON_ENABLED
BOOST_AUTO_TEST_CASE(ErrorOnLoadNetwork)
{
using namespace armnn;
// Create runtime in which test will run
// Note we don't allow falling back to CpuRef if an operation (excluding inputs, outputs, etc.) isn't supported
IRuntime::CreationOptions options;
IRuntimePtr runtime(IRuntime::Create(options));
// build up the structure of the network
INetworkPtr net(INetwork::Create());
IConnectableLayer* input = net->AddInputLayer(0);
// This layer configuration isn't supported by CpuAcc and isn't allowed to fall back, so Optimize will return null.
NormalizationDescriptor descriptor;
IConnectableLayer* pooling = net->AddNormalizationLayer(descriptor);
IConnectableLayer* output = net->AddOutputLayer(0);
input->GetOutputSlot(0).Connect(pooling->GetInputSlot(0));
pooling->GetOutputSlot(0).Connect(output->GetInputSlot(0));
input->GetOutputSlot(0).SetTensorInfo(TensorInfo({ 1, 1, 4, 4 }, DataType::Float32));
pooling->GetOutputSlot(0).SetTensorInfo(TensorInfo({ 1, 1, 4, 4 }, DataType::Float32));
// optimize the network
std::vector<BackendId> backends = {Compute::CpuAcc};
IOptimizedNetworkPtr optNet = Optimize(*net, backends, runtime->GetDeviceSpec());
BOOST_CHECK(!optNet);
}
BOOST_AUTO_TEST_SUITE_END()