blob: bcf3c3380bd5c4ea622a18a30a872a5ff46ddd91 [file] [log] [blame]
//
// Copyright © 2023 Arm Ltd and Contributors. All rights reserved.
// SPDX-License-Identifier: MIT
//
#pragma once
#include <DelegateUtils.hpp>
#include <OpaqueDelegateUtils.hpp>
namespace armnnOpaqueDelegate
{
TfLiteStatus VisitConcatenationOperator(DelegateData& delegateData,
TfLiteOpaqueContext* tfLiteContext,
TfLiteOpaqueNode* tfLiteNode,
int nodeIndex,
int32_t tfLiteConcatOperatorCode)
{
auto numInputs = TfLiteOpaqueNodeNumberOfInputs(tfLiteNode);
if (numInputs < 2)
{
TF_LITE_OPAQUE_MAYBE_KERNEL_LOG(
tfLiteContext,
"TfLiteArmnnOpaqueDelegate: Minimum number of inputs (%d != %d) in node #%d",
2, numInputs, nodeIndex);
return kTfLiteError;
}
TF_LITE_ENSURE_STATUS(ValidateNumOutputs(tfLiteContext, tfLiteNode, 1, nodeIndex));
// Gather input indices and use to get input tensor.
const int* inputTensors;
if (TfLiteOpaqueNodeInputs(tfLiteNode, &inputTensors, &numInputs) != kTfLiteOk)
{
TF_LITE_OPAQUE_MAYBE_KERNEL_LOG(
tfLiteContext,
"TfLiteArmnnOpaqueDelegate: Unable to gather input tensor indices from node #%d: ",
nodeIndex);
return kTfLiteError;
}
std::vector<armnn::TensorInfo> inputTensorInfos;
for (int i = 0; i < numInputs; ++i)
{
const TfLiteOpaqueTensor* inputTensor = TfLiteOpaqueContextGetOpaqueTensor(tfLiteContext, inputTensors[i]);
if (!IsValid(tfLiteContext, inputTensor, tfLiteConcatOperatorCode, nodeIndex))
{
return kTfLiteError;
}
armnn::TensorInfo inputTensorInfo = GetTensorInfoForTfLiteOpaqueTensor(inputTensor);
inputTensorInfos.emplace_back(inputTensorInfo);
}
// Convert input tensors to const armnn::TensorInfo* type for FORWARD_LAYER_SUPPORT_FUNC.
std::vector<const armnn::TensorInfo*> inputConstTensorInfos;
std::transform(inputTensorInfos.begin(),
inputTensorInfos.end(),
std::back_inserter(inputConstTensorInfos),
[](armnn::TensorInfo& t)->const armnn::TensorInfo*{ return &t; });
// Gather output indices and use to get output tensors.
int numOutputs = 0;
const int* outputTensors;
if (TfLiteOpaqueNodeOutputs(tfLiteNode, &outputTensors, &numOutputs) != kTfLiteOk)
{
TF_LITE_OPAQUE_MAYBE_KERNEL_LOG(
tfLiteContext,
"TfLiteArmnnOpaqueDelegate: Unable to gather output tensor indices from node #%d: ",
nodeIndex);
return kTfLiteError;
}
const TfLiteOpaqueTensor* tfLiteOutputTensor = TfLiteOpaqueContextGetOpaqueTensor(tfLiteContext, outputTensors[0]);
if (!IsValid(tfLiteContext, tfLiteOutputTensor, tfLiteConcatOperatorCode, nodeIndex))
{
return kTfLiteError;
}
// Setup OriginsDescriptor, axis and view origin
auto numConcatView = static_cast<unsigned int>(numInputs);
uint32_t inputRank = TfLiteOpaqueTensorNumDims(TfLiteOpaqueContextGetOpaqueTensor(tfLiteContext, inputTensors[0]));
auto* concatenationParameters =
reinterpret_cast<TfLiteConcatenationParams*>(TfLiteOpaqueNodeGetBuiltinData(tfLiteNode));
if(!concatenationParameters)
{
throw armnn::Exception(&"TfLiteArmnnOpaqueDelegate: Concat parameters are null in: " [ nodeIndex ]);
}
const auto concatDimInput = static_cast<unsigned int>(
(static_cast<int>(inputRank) + concatenationParameters->axis) % static_cast<int>(inputRank));
armnn::OriginsDescriptor concatDescriptor(static_cast<uint32_t>(numConcatView), inputRank);
concatDescriptor.SetConcatAxis(concatDimInput);
unsigned int mergeDimOrigin = 0;
for (unsigned int viewIndex = 0; viewIndex < numConcatView; ++viewIndex)
{
armnn::TensorInfo inputTensorInfo = GetTensorInfoForTfLiteOpaqueTensor(
TfLiteOpaqueContextGetOpaqueTensor(tfLiteContext, inputTensors[viewIndex]));
// Sets up concatDescriptor view origin
SetupConcatViewOrigin(inputTensorInfo, concatDescriptor, concatDimInput, viewIndex, mergeDimOrigin);
}
const armnn::TensorInfo& outputTensorInfo = GetTensorInfoForTfLiteOpaqueTensor(tfLiteOutputTensor, true);
// Verify we support the fused activation before attempting to create a layer
TfLiteFusedActivation activationType = concatenationParameters->activation;
TfLiteStatus activationStatus = ValidateFusedActivationOperator(delegateData, tfLiteContext, outputTensorInfo,
outputTensorInfo, activationType);
if(activationStatus != kTfLiteOk)
{
return kTfLiteError;
}
// Check if supported
bool isSupported = false;
armnn::BackendId setBackend;
auto validateFunc = [&](const armnn::TensorInfo& outputTensorInfo, bool& isSupported)
{
FORWARD_LAYER_OPAQUE_SUPPORT_FUNC("CONCATENATION",
tfLiteContext,
IsConcatSupported,
delegateData.m_Backends,
isSupported,
setBackend,
inputConstTensorInfos,
outputTensorInfo,
concatDescriptor);
};
if (!delegateData.m_Network)
{
validateFunc(outputTensorInfo, isSupported);
return isSupported ? kTfLiteOk : kTfLiteError;
}
// Setup layer and connect.
armnn::IConnectableLayer* concatenationLayer = delegateData.m_Network->AddConcatLayer(concatDescriptor);
concatenationLayer->SetBackendId(setBackend);
ARMNN_ASSERT(concatenationLayer != nullptr);
// Connect the Constant Inputs
auto inputsTensorsProcess = ProcessInputs(concatenationLayer,
delegateData,
tfLiteContext,
tfLiteNode);
if (inputsTensorsProcess == kTfLiteError)
{
return inputsTensorsProcess;
}
armnn::IOutputSlot& outputSlot = concatenationLayer->GetOutputSlot(0);
outputSlot.SetTensorInfo(outputTensorInfo);
if(Connect(concatenationLayer, tfLiteContext, tfLiteNode, delegateData) != kTfLiteOk)
{
return kTfLiteError;
}
if (activationType == kTfLiteActNone)
{
// No Activation
return kTfLiteOk;
}
// Check and Create activation
return FusedActivation(tfLiteContext, tfLiteNode, activationType, concatenationLayer, 0, delegateData);
}
TfLiteStatus VisitMeanOperator(DelegateData& delegateData,
TfLiteOpaqueContext* tfLiteContext,
TfLiteOpaqueNode* tfLiteNode,
int nodeIndex,
int32_t tfLiteMeanOperatorCode)
{
TF_LITE_ENSURE_STATUS(ValidateNumInputs(tfLiteContext, tfLiteNode, 2, nodeIndex));
TF_LITE_ENSURE_STATUS(ValidateNumOutputs(tfLiteContext, tfLiteNode, 1, nodeIndex));
// Gather input indices and use to get input tensor.
int numInputs = 0;
const int* inputTensors;
if (TfLiteOpaqueNodeInputs(tfLiteNode, &inputTensors, &numInputs) != kTfLiteOk)
{
TF_LITE_OPAQUE_MAYBE_KERNEL_LOG(
tfLiteContext,
"TfLiteArmnnOpaqueDelegate: Unable to gather input tensor indices from node #%d: ",
nodeIndex);
return kTfLiteError;
}
const TfLiteOpaqueTensor* tfLiteInputTensor = TfLiteOpaqueContextGetOpaqueTensor(tfLiteContext, inputTensors[0]);
if (!IsValid(tfLiteContext, tfLiteInputTensor, tfLiteMeanOperatorCode, nodeIndex))
{
return kTfLiteError;
}
// Use input indices to get axis tensor.
const TfLiteOpaqueTensor* tfLiteAxisTensor = TfLiteOpaqueContextGetOpaqueTensor(tfLiteContext, inputTensors[1]);
if (!IsValid(tfLiteContext, tfLiteAxisTensor, tfLiteMeanOperatorCode, nodeIndex))
{
return kTfLiteError;
}
// Gather output indices and use to get output tensors.
int numOutputs = 0;
const int* outputTensors;
if (TfLiteOpaqueNodeOutputs(tfLiteNode, &outputTensors, &numOutputs) != kTfLiteOk)
{
TF_LITE_OPAQUE_MAYBE_KERNEL_LOG(
tfLiteContext,
"TfLiteArmnnOpaqueDelegate: Unable to gather output tensor indices from node #%d: ",
nodeIndex);
return kTfLiteError;
}
const TfLiteOpaqueTensor* tfLiteOutputTensor = TfLiteOpaqueContextGetOpaqueTensor(tfLiteContext, outputTensors[0]);
if (!IsValid(tfLiteContext, tfLiteOutputTensor, tfLiteMeanOperatorCode, nodeIndex))
{
return kTfLiteError;
}
const armnn::TensorInfo& inputTensorInfo = GetTensorInfoForTfLiteOpaqueTensor(tfLiteInputTensor);
const armnn::TensorInfo& axisTensorInfo = GetTensorInfoForTfLiteOpaqueTensor(tfLiteAxisTensor);
const armnn::TensorInfo& outputTensorInfo = GetTensorInfoForTfLiteOpaqueTensor(tfLiteOutputTensor, true);
auto* axisTensorData = static_cast<int32_t*>(TfLiteOpaqueTensorData(tfLiteAxisTensor));
std::vector<int32_t> axis;
// Add axis data to vector to be converter to unsigned int and assigned to descriptor axis.
for (unsigned int i = 0; i < axisTensorInfo.GetNumElements(); ++i)
{
axis.emplace_back(axisTensorData[i]);
}
// Convert the axis to unsigned int and remove duplicates.
unsigned int rank = inputTensorInfo.GetNumDimensions();
std::set<unsigned int> uniqueAxis;
std::transform(axis.begin(),
axis.end(),
std::inserter(uniqueAxis, uniqueAxis.begin()),
[rank](int i)->unsigned int{ return (i + rank) % rank; });
// Setup MeanDescriptor and assign axis and keepDims
armnn::MeanDescriptor desc;
desc.m_Axis.assign(uniqueAxis.begin(), uniqueAxis.end());
desc.m_KeepDims = inputTensorInfo.GetNumDimensions() == outputTensorInfo.GetNumDimensions() ? true : false;
// Check if supported
bool isSupported = false;
armnn::BackendId setBackend;
auto validateFunc = [&](const armnn::TensorInfo& outputTensorInfo, bool& isSupported)
{
FORWARD_LAYER_OPAQUE_SUPPORT_FUNC("MEAN",
tfLiteContext,
IsMeanSupported,
delegateData.m_Backends,
isSupported,
setBackend,
inputTensorInfo,
outputTensorInfo,
desc);
};
if (!delegateData.m_Network)
{
validateFunc(outputTensorInfo, isSupported);
return isSupported ? kTfLiteOk : kTfLiteError;
}
// Setup layer and connect.
armnn::IConnectableLayer* meanLayer = delegateData.m_Network->AddMeanLayer(desc);
meanLayer->SetBackendId(setBackend);
ARMNN_ASSERT(meanLayer != nullptr);
armnn::IOutputSlot& outputSlot = meanLayer->GetOutputSlot(0);
outputSlot.SetTensorInfo(outputTensorInfo);
// try to connect the Constant Inputs if there are any
if(ProcessInputs(meanLayer,delegateData, tfLiteContext, tfLiteNode) != kTfLiteOk )
{
return kTfLiteError;
}
return Connect(meanLayer, tfLiteContext, tfLiteNode, delegateData);
}
TfLiteStatus VisitControlOperator(DelegateData& delegateData,
TfLiteOpaqueContext* tfLiteContext,
TfLiteOpaqueNode* tfLiteNode,
int nodeIndex,
int32_t operatorCode)
{
switch(operatorCode)
{
case kTfLiteBuiltinConcatenation:
return VisitConcatenationOperator(delegateData, tfLiteContext, tfLiteNode, nodeIndex, operatorCode);
case kTfLiteBuiltinMean:
return VisitMeanOperator(delegateData, tfLiteContext, tfLiteNode, nodeIndex, operatorCode);
default:
return kTfLiteError;
}
}
} // namespace armnnDelegate