blob: f04245bcb61f40fef82453cfe0a36eb0255dffab [file] [log] [blame]
//
// Copyright © 2022 Arm Ltd and Contributors. All rights reserved.
// SPDX-License-Identifier: MIT
//
#pragma once
#include <armnn/utility/IgnoreUnused.hpp>
#include <tensorflow/lite/builtin_ops.h>
#include <tensorflow/lite/c/builtin_op_data.h>
#include <tensorflow/lite/c/common.h>
#include <tensorflow/lite/kernels/internal/tensor_ctypes.h>
#include <tensorflow/lite/minimal_logging.h>
#include <algorithm>
#include <iterator>
#include <string>
#include <vector>
namespace armnnDelegate
{
void SetupConcatViewOrigin(const armnn::TensorInfo& inputTensorInfo,
armnn::OriginsDescriptor& concatDescriptor,
const unsigned int concatAxis,
unsigned int inputIndex,
unsigned int& mergeDimOrigin)
{
const uint32_t inputRank = concatDescriptor.GetNumDimensions();
// double check dimensions of the tensors
if (inputTensorInfo.GetNumDimensions() != inputRank)
{
throw armnn::ParseException("The number of dimensions for input tensors "
"of the concatenation operator should be: " + std::to_string(inputRank));
}
for (unsigned int j = 0; j < concatAxis; ++j)
{
concatDescriptor.SetViewOriginCoord(inputIndex, j, 0);
}
concatDescriptor.SetViewOriginCoord(inputIndex, concatAxis, mergeDimOrigin);
mergeDimOrigin += inputTensorInfo.GetShape()[concatAxis];
for (unsigned int j = concatAxis + 1; j < inputRank; ++j)
{
concatDescriptor.SetViewOriginCoord(inputIndex, j, 0);
}
}
TfLiteStatus VisitConcatenationOperator(DelegateData& delegateData,
TfLiteContext* tfLiteContext,
TfLiteNode* tfLiteNode,
int nodeIndex,
int32_t tfLiteConcatOperatorCode)
{
unsigned int numInputs = tfLiteNode->inputs->size;
if (numInputs < 2)
{
TF_LITE_MAYBE_KERNEL_LOG(
tfLiteContext, "TfLiteArmnnDelegate: Minimum number of inputs (%d != %d) in node #%d",
2, numInputs, nodeIndex);
return kTfLiteError;
}
TF_LITE_ENSURE_STATUS(ValidateNumOutputs(tfLiteContext, tfLiteNode, 1, nodeIndex));
const TfLiteTensor* tfLiteTensors = tfLiteContext->tensors;
std::vector<armnn::TensorInfo> inputTensorInfos;
for (unsigned int i = 0; i < numInputs; ++i)
{
const TfLiteTensor& tfLiteInputTensor = tfLiteTensors[tfLiteNode->inputs->data[i]];
if (!IsValid(tfLiteContext, tfLiteInputTensor, tfLiteConcatOperatorCode, nodeIndex))
{
return kTfLiteError;
}
armnn::TensorInfo inputTensorInfo = GetTensorInfoForTfLiteTensor(tfLiteInputTensor);
inputTensorInfos.emplace_back(inputTensorInfo);
}
// Convert input tensors to const armnn::TensorInfo* type for FORWARD_LAYER_SUPPORT_FUNC.
std::vector<const armnn::TensorInfo*> inputConstTensorInfos;
std::transform(inputTensorInfos.begin(),
inputTensorInfos.end(),
std::back_inserter(inputConstTensorInfos),
[](armnn::TensorInfo& t)->const armnn::TensorInfo*{ return &t; });
const TfLiteTensor& tfLiteOutputTensor = tfLiteTensors[tfLiteNode->outputs->data[0]];
if (!IsValid(tfLiteContext, tfLiteOutputTensor, tfLiteConcatOperatorCode, nodeIndex))
{
return kTfLiteError;
}
// Setup OriginsDescriptor, axis and view origin
unsigned int numConcatView = static_cast<unsigned int>(numInputs);
uint32_t inputRank = tfLiteTensors[tfLiteNode->inputs->data[0]].dims->size;
auto* concatenationParameters = reinterpret_cast<TfLiteConcatenationParams*>(tfLiteNode->builtin_data);
const unsigned int concatDimInput = static_cast<unsigned int>(
(static_cast<int>(inputRank) + concatenationParameters->axis) % static_cast<int>(inputRank));
armnn::OriginsDescriptor concatDescriptor(static_cast<uint32_t>(numConcatView), inputRank);
concatDescriptor.SetConcatAxis(concatDimInput);
unsigned int mergeDimOrigin = 0;
for (unsigned int viewIndex = 0; viewIndex < numConcatView; ++viewIndex)
{
armnn::TensorInfo inputTensorInfo = GetTensorInfoForTfLiteTensor(
tfLiteTensors[tfLiteNode->inputs->data[viewIndex]]);
// Sets up concatDescriptor view origin
SetupConcatViewOrigin(inputTensorInfo, concatDescriptor, concatDimInput, viewIndex, mergeDimOrigin);
}
const armnn::TensorInfo& outputTensorInfo = GetTensorInfoForTfLiteTensor(tfLiteOutputTensor, true);
// Check if supported
bool isSupported = false;
auto validateFunc = [&](const armnn::TensorInfo& outputTensorInfo, bool& isSupported)
{
FORWARD_LAYER_SUPPORT_FUNC("CONCATENATION",
tfLiteContext,
IsConcatSupported,
delegateData.m_Backends,
isSupported,
inputConstTensorInfos,
outputTensorInfo,
concatDescriptor);
};
if (!delegateData.m_Network)
{
validateFunc(outputTensorInfo, isSupported);
return isSupported ? kTfLiteOk : kTfLiteError;
}
// Setup layer and connect.
armnn::IConnectableLayer* concatenationLayer = delegateData.m_Network->AddConcatLayer(concatDescriptor);
ARMNN_ASSERT(concatenationLayer != nullptr);
// Connect the Constant Inputs
auto inputsTensorsProcess = ProcessInputs(concatenationLayer,
delegateData,
tfLiteContext,
tfLiteNode);
if (inputsTensorsProcess == kTfLiteError)
{
return inputsTensorsProcess;
}
armnn::IOutputSlot& outputSlot = concatenationLayer->GetOutputSlot(0);
outputSlot.SetTensorInfo(outputTensorInfo);
Connect(concatenationLayer, tfLiteNode, delegateData);
if (!concatenationParameters)
{
// No Activation
return kTfLiteOk;
}
// Check activation
TfLiteFusedActivation activationType = concatenationParameters->activation;
return FusedActivation(tfLiteContext, tfLiteNode, activationType, concatenationLayer, 0, delegateData);
}
TfLiteStatus VisitMeanOperator(DelegateData& delegateData,
TfLiteContext* tfLiteContext,
TfLiteNode* tfLiteNode,
int nodeIndex,
int32_t tfLiteMeanOperatorCode)
{
TF_LITE_ENSURE_STATUS(ValidateNumInputs(tfLiteContext, tfLiteNode, 2, nodeIndex));
TF_LITE_ENSURE_STATUS(ValidateNumOutputs(tfLiteContext, tfLiteNode, 1, nodeIndex));
const TfLiteTensor* tfLiteTensors = tfLiteContext->tensors;
const TfLiteTensor& tfLiteInputTensor = tfLiteTensors[tfLiteNode->inputs->data[0]];
if(!IsValid(&tfLiteInputTensor))
{
TF_LITE_MAYBE_KERNEL_LOG(
tfLiteContext,
"TfLiteArmnnDelegate: Invalid input tensor in operator #%d node #%d: ",
tfLiteMeanOperatorCode, nodeIndex);
return kTfLiteError;
}
if (IsDynamicTensor(tfLiteInputTensor))
{
TF_LITE_MAYBE_KERNEL_LOG(
tfLiteContext,
"TfLiteArmnnDelegate: Dynamic input tensors are not supported in operator #%d node #%d: ",
tfLiteMeanOperatorCode, nodeIndex);
return kTfLiteError;
}
const TfLiteTensor& tfLiteAxisTensor = tfLiteTensors[tfLiteNode->inputs->data[1]];
if(!IsValid(&tfLiteAxisTensor))
{
TF_LITE_MAYBE_KERNEL_LOG(
tfLiteContext,
"TfLiteArmnnDelegate: Invalid axis tensor in operator #%d node #%d: ",
tfLiteMeanOperatorCode, nodeIndex);
return kTfLiteError;
}
if (IsDynamicTensor(tfLiteAxisTensor))
{
TF_LITE_MAYBE_KERNEL_LOG(
tfLiteContext,
"TfLiteArmnnDelegate: Dynamic axis tensors are not supported in operator #%d node #%d: ",
tfLiteMeanOperatorCode, nodeIndex);
return kTfLiteError;
}
const TfLiteTensor& tfLiteOutputTensor = tfLiteTensors[tfLiteNode->outputs->data[0]];
if(!IsValid(&tfLiteOutputTensor))
{
TF_LITE_MAYBE_KERNEL_LOG(
tfLiteContext,
"TfLiteArmnnDelegate: Invalid output tensor in operator #%d node #%d: ",
tfLiteAxisTensor, nodeIndex);
return kTfLiteError;
}
if (IsDynamicTensor(tfLiteOutputTensor))
{
TF_LITE_MAYBE_KERNEL_LOG(
tfLiteContext,
"TfLiteArmnnDelegate: Dynamic output tensors are not supported in operator #%d node #%d: ",
tfLiteMeanOperatorCode, nodeIndex);
return kTfLiteError;
}
const armnn::TensorInfo& inputTensorInfo = GetTensorInfoForTfLiteTensor(tfLiteInputTensor);
const armnn::TensorInfo& axisTensorInfo = GetTensorInfoForTfLiteTensor(tfLiteAxisTensor);
const armnn::TensorInfo& outputTensorInfo = GetTensorInfoForTfLiteTensor(tfLiteOutputTensor, true);
auto* axisTensorData = tflite::GetTensorData<int32_t>(&tfLiteAxisTensor);
std::vector<int32_t> axis;
// Add axis data to vector to be converter to unsigned int and assigned to descriptor axis.
for (unsigned int i = 0; i < axisTensorInfo.GetNumElements(); ++i)
{
axis.emplace_back(axisTensorData[i]);
}
// Convert the axis to unsigned int and remove duplicates.
unsigned int rank = inputTensorInfo.GetNumDimensions();
std::set<unsigned int> uniqueAxis;
std::transform(axis.begin(),
axis.end(),
std::inserter(uniqueAxis, uniqueAxis.begin()),
[rank](int i)->unsigned int{ return (i + rank) % rank; });
// Setup MeanDescriptor and assign axis and keepDims
armnn::MeanDescriptor desc;
desc.m_Axis.assign(uniqueAxis.begin(), uniqueAxis.end());
desc.m_KeepDims = inputTensorInfo.GetNumDimensions() == outputTensorInfo.GetNumDimensions() ? true : false;
// Check if supported
bool isSupported = false;
auto validateFunc = [&](const armnn::TensorInfo& outputTensorInfo, bool& isSupported)
{
FORWARD_LAYER_SUPPORT_FUNC("MEAN",
tfLiteContext,
IsMeanSupported,
delegateData.m_Backends,
isSupported,
inputTensorInfo,
outputTensorInfo,
desc);
};
if (!delegateData.m_Network)
{
validateFunc(outputTensorInfo, isSupported);
return isSupported ? kTfLiteOk : kTfLiteError;
}
// Setup layer and connect.
armnn::IConnectableLayer* meanLayer = delegateData.m_Network->AddMeanLayer(desc);
ARMNN_ASSERT(meanLayer != nullptr);
armnn::IOutputSlot& outputSlot = meanLayer->GetOutputSlot(0);
outputSlot.SetTensorInfo(outputTensorInfo);
return Connect(meanLayer, tfLiteNode, delegateData);
}
TfLiteStatus VisitControlOperator(DelegateData& delegateData,
TfLiteContext* tfLiteContext,
TfLiteNode* tfLiteNode,
int nodeIndex,
int32_t operatorCode)
{
armnn::IgnoreUnused(delegateData,
tfLiteContext,
tfLiteNode,
nodeIndex,
operatorCode);
switch(operatorCode)
{
case kTfLiteBuiltinConcatenation:
return VisitConcatenationOperator(delegateData, tfLiteContext, tfLiteNode, nodeIndex, operatorCode);
case kTfLiteBuiltinMean:
return VisitMeanOperator(delegateData, tfLiteContext, tfLiteNode, nodeIndex, operatorCode);
default:
return kTfLiteError;
}
}
} // namespace armnnDelegate