blob: daedede18d0038cfa172fc65ab6ec0d0eee32903 [file] [log] [blame]
//
// Copyright © 2022 Arm Ltd and Contributors. All rights reserved.
// SPDX-License-Identifier: MIT
//
#pragma once
#include <tensorflow/lite/builtin_ops.h>
#include <tensorflow/lite/c/builtin_op_data.h>
#include <tensorflow/lite/c/common.h>
#include <tensorflow/lite/minimal_logging.h>
namespace armnnDelegate
{
TfLiteStatus VisitPadOperator(DelegateData& delegateData,
TfLiteContext* tfLiteContext,
TfLiteNode* tfLiteNode,
int nodeIndex,
int32_t tfLitePadOperatorCode)
{
TF_LITE_ENSURE_STATUS(ValidateNumOutputs(tfLiteContext, tfLiteNode, 1, nodeIndex));
switch(tfLitePadOperatorCode)
{
case kTfLiteBuiltinMirrorPad:
case kTfLiteBuiltinPad:
TF_LITE_ENSURE_STATUS(ValidateNumInputs(tfLiteContext, tfLiteNode, 2, nodeIndex));
break;
case kTfLiteBuiltinPadv2:
TF_LITE_ENSURE_STATUS(ValidateNumInputs(tfLiteContext, tfLiteNode, 3, nodeIndex));
break;
default:
return kTfLiteError;
}
const TfLiteTensor* tfLiteTensors = tfLiteContext->tensors;
const TfLiteTensor& tfLiteInputTensor = tfLiteTensors[tfLiteNode->inputs->data[0]];
const TfLiteTensor& tfLitepaddingTensor = tfLiteTensors[tfLiteNode->inputs->data[1]];
if (IsDynamicTensor(tfLiteInputTensor))
{
TF_LITE_MAYBE_KERNEL_LOG(
tfLiteContext,
"TfLiteArmnnDelegate: Dynamic input tensors are not supported in operator #%d node #%d: ",
tfLitePadOperatorCode, nodeIndex);
return kTfLiteError;
}
const TfLiteTensor& tfLiteOutputTensor = tfLiteTensors[tfLiteNode->outputs->data[0]];
if (IsDynamicTensor(tfLiteOutputTensor))
{
TF_LITE_MAYBE_KERNEL_LOG(
tfLiteContext,
"TfLiteArmnnDelegate: Dynamic output tensors are not supported in operator #%d node #%d: ",
tfLitePadOperatorCode, nodeIndex);
return kTfLiteError;
}
const armnn::TensorInfo& inputTensorInfo = GetTensorInfoForTfLiteTensor(tfLiteInputTensor);
const armnn::TensorInfo& paddingTensorInfo = GetTensorInfoForTfLiteTensor(tfLitepaddingTensor);
const armnn::TensorInfo& outputTensorInfo = GetTensorInfoForTfLiteTensor(tfLiteOutputTensor, true);
// Get the padding data from the input tensor
auto* paddingData = tflite::GetTensorData<int32_t>(&tfLitepaddingTensor);
size_t step = 2;
armnn::PadDescriptor descriptor;
for (unsigned int i = 0; i < paddingTensorInfo.GetNumElements() / step; ++i)
{
descriptor.m_PadList.emplace_back(paddingData[i * step], paddingData[i * step + 1]);
}
if (tfLitePadOperatorCode == kTfLiteBuiltinPad && inputTensorInfo.IsQuantized())
{
descriptor.m_PadValue = inputTensorInfo.GetQuantizationOffset();
}
else if (tfLitePadOperatorCode == kTfLiteBuiltinPadv2)
{
const TfLiteTensor& tfLitepaddingValue = tfLiteTensors[tfLiteNode->inputs->data[2]];
armnn::TensorInfo paddingValueTensorInfo = GetTensorInfoForTfLiteTensor(tfLitepaddingValue);
if (paddingValueTensorInfo.GetNumElements() != 1)
{
TF_LITE_MAYBE_KERNEL_LOG(
tfLiteContext,
"TfLiteArmnnDelegate: Multiple padding value are not supported in operator #%d node #%d: ",
tfLitePadOperatorCode, nodeIndex);
return kTfLiteError;
}
// Get the padding value from the input tensor
switch (tfLitepaddingValue.type)
{
case kTfLiteFloat32:
descriptor.m_PadValue = tflite::GetTensorData<float>(&tfLitepaddingValue)[0];
break;
case kTfLiteUInt8:
descriptor.m_PadValue = tflite::GetTensorData<uint8>(&tfLitepaddingValue)[0];
break;
case kTfLiteInt8:
descriptor.m_PadValue = tflite::GetTensorData<int8>(&tfLitepaddingValue)[0];
break;
default:
TF_LITE_MAYBE_KERNEL_LOG(
tfLiteContext,
"TfLiteArmnnDelegate: Padding value datatype is not supported in operator #%d node #%d: ",
tfLitePadOperatorCode, nodeIndex);
return kTfLiteError;
}
}
else if (tfLitePadOperatorCode == kTfLiteBuiltinMirrorPad)
{
TfLiteMirrorPaddingParams* options = reinterpret_cast<TfLiteMirrorPaddingParams*>(tfLiteNode->builtin_data);
if (options->mode == TfLiteMirrorPaddingMode::kTfLiteMirrorPaddingReflect)
{
descriptor.m_PaddingMode = armnn::PaddingMode::Reflect;
}
else if (options->mode == TfLiteMirrorPaddingMode::kTfLiteMirrorPaddingSymmetric)
{
descriptor.m_PaddingMode = armnn::PaddingMode::Symmetric;
}
else
{
TF_LITE_MAYBE_KERNEL_LOG(
tfLiteContext,
"TfLiteArmnnDelegate: PaddingMode must be either REFLECT or SYMMETRIC in operator #%d node #%d: ",
tfLitePadOperatorCode, nodeIndex);
}
// If padding mode is Reflect then both paddings must be no greater than inputShape(i) - 1.
// If padding mode is Symmetric then both paddings must be no greater than inputShape(i).
auto inputShape = inputTensorInfo.GetShape();
auto padList = descriptor.m_PadList;
const unsigned int isReflect =
static_cast<unsigned int>(descriptor.m_PaddingMode == armnn::PaddingMode::Reflect);
for(unsigned int i = 0; i < padList.size(); ++i)
{
if(padList.at(i).first > (inputShape[i] - isReflect) ||
padList.at(i).second > (inputShape[i] - isReflect))
{
TF_LITE_MAYBE_KERNEL_LOG(
tfLiteContext,
"TfLiteArmnnDelegate: Padding values must be less (Reflect) or "
"equal (Symmetric) to the dimension size in operator #%d node #%d: ",
tfLitePadOperatorCode, nodeIndex);
}
}
}
if (!delegateData.m_Network)
{
bool isSupported = false;
FORWARD_LAYER_SUPPORT_FUNC("PAD",
tfLiteContext,
IsPadSupported,
delegateData.m_Backends,
isSupported,
inputTensorInfo,
outputTensorInfo,
descriptor);
return isSupported ? kTfLiteOk : kTfLiteError;
}
armnn::IConnectableLayer* padLayer = delegateData.m_Network->AddPadLayer(descriptor);
ARMNN_ASSERT(padLayer != nullptr);
armnn::IOutputSlot& outputSlot = padLayer->GetOutputSlot(0);
outputSlot.SetTensorInfo(outputTensorInfo);
return Connect(padLayer, tfLiteNode, delegateData);
}
} // namespace armnnDelegate