blob: 268f60301cffb94f380bd812d6d14183b10dfba6 [file] [log] [blame]
//
// Copyright © 2022 Arm Ltd and Contributors. All rights reserved.
// SPDX-License-Identifier: MIT
//
#pragma once
#include <armnn/ArmNN.hpp>
#include <armnn/Threadpool.hpp>
#include <armnn/Logging.hpp>
#include <armnn/utility/Timer.hpp>
#include <armnn/BackendRegistry.hpp>
#include <armnn/utility/Assert.hpp>
#include <armnn/utility/NumericCast.hpp>
#include <armnnUtils/TContainer.hpp>
#include "NetworkExecutionUtils/NetworkExecutionUtils.hpp"
#include <common/include/ProfilingGuid.hpp>
#if defined(ARMNN_SERIALIZER)
#include "armnnDeserializer/IDeserializer.hpp"
#endif
#if defined(ARMNN_TF_LITE_PARSER)
#include <armnnTfLiteParser/ITfLiteParser.hpp>
#endif
#if defined(ARMNN_ONNX_PARSER)
#include <armnnOnnxParser/IOnnxParser.hpp>
#endif
#include <armnnUtils/Filesystem.hpp>
#include <HeapProfiling.hpp>
#include <TensorIOUtils.hpp>
#include "armnn/utility/StringUtils.hpp"
#include <cxxopts/cxxopts.hpp>
#include "CxxoptsUtils.hpp"
#include <fmt/format.h>
#include <mapbox/variant.hpp>
#include <algorithm>
#include <iterator>
#include <fstream>
#include <map>
#include <string>
#include <vector>
#include <type_traits>
namespace InferenceModelInternal
{
using BindingPointInfo = armnn::BindingPointInfo;
using QuantizationParams = std::pair<float,int32_t>;
struct Params
{
std::string m_ModelPath;
std::vector<std::string> m_InputBindings;
std::vector<armnn::TensorShape> m_InputShapes;
std::vector<std::string> m_OutputBindings;
std::vector<armnn::BackendId> m_ComputeDevices;
std::string m_DynamicBackendsPath;
size_t m_SubgraphId;
bool m_AllowExpandedDims;
bool m_IsModelBinary;
bool m_VisualizePostOptimizationModel;
bool m_EnableFp16TurboMode;
bool m_EnableBf16TurboMode;
bool m_PrintIntermediateLayers;
bool m_ParseUnsupported;
bool m_InferOutputShape;
bool m_EnableFastMath;
bool m_SaveCachedNetwork;
bool m_OutputDetailsToStdOut;
bool m_OutputDetailsOnlyToStdOut;
std::string m_CachedNetworkFilePath;
unsigned int m_NumberOfThreads;
std::string m_MLGOTuningFilePath;
bool m_AsyncEnabled;
size_t m_ThreadPoolSize;
bool m_ImportInputsIfAligned;
Params()
: m_ComputeDevices{}
, m_SubgraphId(0)
, m_AllowExpandedDims(false)
, m_IsModelBinary(true)
, m_VisualizePostOptimizationModel(false)
, m_EnableFp16TurboMode(false)
, m_EnableBf16TurboMode(false)
, m_PrintIntermediateLayers(false)
, m_ParseUnsupported(false)
, m_InferOutputShape(false)
, m_EnableFastMath(false)
, m_SaveCachedNetwork(false)
, m_OutputDetailsToStdOut(false)
, m_OutputDetailsOnlyToStdOut(false)
, m_CachedNetworkFilePath("")
, m_NumberOfThreads(0)
, m_MLGOTuningFilePath("")
, m_AsyncEnabled(false)
, m_ThreadPoolSize(0)
, m_ImportInputsIfAligned(false)
{}
};
} // namespace InferenceModelInternal
template <typename IParser>
struct CreateNetworkImpl
{
public:
using Params = InferenceModelInternal::Params;
static armnn::INetworkPtr Create(const Params& params,
std::vector<armnn::BindingPointInfo>& inputBindings,
std::vector<armnn::BindingPointInfo>& outputBindings)
{
const std::string& modelPath = params.m_ModelPath;
// Create a network from a file on disk
auto parser(IParser::Create());
std::map<std::string, armnn::TensorShape> inputShapes;
if (!params.m_InputShapes.empty())
{
const size_t numInputShapes = params.m_InputShapes.size();
const size_t numInputBindings = params.m_InputBindings.size();
if (numInputShapes < numInputBindings)
{
throw armnn::Exception(fmt::format(
"Not every input has its tensor shape specified: expected={0}, got={1}",
numInputBindings, numInputShapes));
}
for (size_t i = 0; i < numInputShapes; i++)
{
inputShapes[params.m_InputBindings[i]] = params.m_InputShapes[i];
}
}
std::vector<std::string> requestedOutputs = params.m_OutputBindings;
armnn::INetworkPtr network{nullptr, [](armnn::INetwork *){}};
{
ARMNN_SCOPED_HEAP_PROFILING("Parsing");
// Handle text and binary input differently by calling the corresponding parser function
network = (params.m_IsModelBinary ?
parser->CreateNetworkFromBinaryFile(modelPath.c_str(), inputShapes, requestedOutputs) :
parser->CreateNetworkFromTextFile(modelPath.c_str(), inputShapes, requestedOutputs));
}
for (const std::string& inputLayerName : params.m_InputBindings)
{
inputBindings.push_back(parser->GetNetworkInputBindingInfo(inputLayerName));
}
for (const std::string& outputLayerName : params.m_OutputBindings)
{
outputBindings.push_back(parser->GetNetworkOutputBindingInfo(outputLayerName));
}
return network;
}
};
#if defined(ARMNN_SERIALIZER)
template <>
struct CreateNetworkImpl<armnnDeserializer::IDeserializer>
{
public:
using IParser = armnnDeserializer::IDeserializer;
using Params = InferenceModelInternal::Params;
static armnn::INetworkPtr Create(const Params& params,
std::vector<armnn::BindingPointInfo>& inputBindings,
std::vector<armnn::BindingPointInfo>& outputBindings)
{
auto parser(IParser::Create());
ARMNN_ASSERT(parser);
armnn::INetworkPtr network{nullptr, [](armnn::INetwork *){}};
{
ARMNN_SCOPED_HEAP_PROFILING("Parsing");
std::error_code errorCode;
fs::path pathToFile(params.m_ModelPath);
if (!fs::exists(pathToFile, errorCode))
{
throw armnn::FileNotFoundException(fmt::format("Cannot find the file ({0}) errorCode: {1} {2}",
params.m_ModelPath,
errorCode.message(),
CHECK_LOCATION().AsString()));
}
std::ifstream file(params.m_ModelPath, std::ios::binary);
network = parser->CreateNetworkFromBinary(file);
}
unsigned int subgraphId = armnn::numeric_cast<unsigned int>(params.m_SubgraphId);
for (const std::string& inputLayerName : params.m_InputBindings)
{
armnnDeserializer::BindingPointInfo inputBinding =
parser->GetNetworkInputBindingInfo(subgraphId, inputLayerName);
inputBindings.push_back(std::make_pair(inputBinding.m_BindingId, inputBinding.m_TensorInfo));
}
for (const std::string& outputLayerName : params.m_OutputBindings)
{
armnnDeserializer::BindingPointInfo outputBinding =
parser->GetNetworkOutputBindingInfo(subgraphId, outputLayerName);
outputBindings.push_back(std::make_pair(outputBinding.m_BindingId, outputBinding.m_TensorInfo));
}
return network;
}
};
#endif
#if defined(ARMNN_TF_LITE_PARSER)
template <>
struct CreateNetworkImpl<armnnTfLiteParser::ITfLiteParser>
{
public:
using IParser = armnnTfLiteParser::ITfLiteParser;
using Params = InferenceModelInternal::Params;
static armnn::INetworkPtr Create(const Params& params,
std::vector<armnn::BindingPointInfo>& inputBindings,
std::vector<armnn::BindingPointInfo>& outputBindings)
{
const std::string& modelPath = params.m_ModelPath;
// Create a network from a file on disk
IParser::TfLiteParserOptions options;
options.m_AllowExpandedDims = params.m_AllowExpandedDims;
options.m_StandInLayerForUnsupported = params.m_ParseUnsupported;
options.m_InferAndValidate = params.m_InferOutputShape;
auto parser(IParser::Create(options));
armnn::INetworkPtr network{nullptr, [](armnn::INetwork *){}};
{
ARMNN_SCOPED_HEAP_PROFILING("Parsing");
network = parser->CreateNetworkFromBinaryFile(modelPath.c_str());
}
for (const std::string& inputLayerName : params.m_InputBindings)
{
armnn::BindingPointInfo inputBinding =
parser->GetNetworkInputBindingInfo(params.m_SubgraphId, inputLayerName);
inputBindings.push_back(inputBinding);
}
for (const std::string& outputLayerName : params.m_OutputBindings)
{
armnn::BindingPointInfo outputBinding =
parser->GetNetworkOutputBindingInfo(params.m_SubgraphId, outputLayerName);
outputBindings.push_back(outputBinding);
}
return network;
}
};
#endif
#if defined(ARMNN_ONNX_PARSER)
template <>
struct CreateNetworkImpl<armnnOnnxParser::IOnnxParser>
{
public:
using IParser = armnnOnnxParser::IOnnxParser;
using Params = InferenceModelInternal::Params;
using BindingPointInfo = InferenceModelInternal::BindingPointInfo;
static armnn::INetworkPtr Create(const Params& params,
std::vector<BindingPointInfo>& inputBindings,
std::vector<BindingPointInfo>& outputBindings)
{
const std::string& modelPath = params.m_ModelPath;
// Create a network from a file on disk
auto parser(IParser::Create());
armnn::INetworkPtr network{nullptr, [](armnn::INetwork *){}};
std::map<std::string, armnn::TensorShape> inputShapes;
if (!params.m_InputShapes.empty())
{
const size_t numInputShapes = params.m_InputShapes.size();
const size_t numInputBindings = params.m_InputBindings.size();
if (numInputShapes < numInputBindings)
{
throw armnn::Exception(fmt::format(
"Not every input has its tensor shape specified: expected={0}, got={1}",
numInputBindings, numInputShapes));
}
for (size_t i = 0; i < numInputShapes; i++)
{
inputShapes[params.m_InputBindings[i]] = params.m_InputShapes[i];
}
{
ARMNN_SCOPED_HEAP_PROFILING("Parsing");
network = (params.m_IsModelBinary ?
parser->CreateNetworkFromBinaryFile(modelPath.c_str(), inputShapes) :
parser->CreateNetworkFromTextFile(modelPath.c_str(), inputShapes));
}
}
else
{
ARMNN_SCOPED_HEAP_PROFILING("Parsing");
network = (params.m_IsModelBinary ?
parser->CreateNetworkFromBinaryFile(modelPath.c_str()) :
parser->CreateNetworkFromTextFile(modelPath.c_str()));
}
for (const std::string& inputLayerName : params.m_InputBindings)
{
BindingPointInfo inputBinding = parser->GetNetworkInputBindingInfo(inputLayerName);
inputBindings.push_back(inputBinding);
}
for (const std::string& outputLayerName : params.m_OutputBindings)
{
BindingPointInfo outputBinding = parser->GetNetworkOutputBindingInfo(outputLayerName);
outputBindings.push_back(outputBinding);
}
return network;
}
};
#endif
template <typename IParser, typename TDataType>
class InferenceModel
{
public:
using DataType = TDataType;
using Params = InferenceModelInternal::Params;
using QuantizationParams = InferenceModelInternal::QuantizationParams;
struct CommandLineOptions
{
std::string m_ModelDir;
std::vector<std::string> m_ComputeDevices;
std::string m_DynamicBackendsPath;
bool m_VisualizePostOptimizationModel;
bool m_EnableFp16TurboMode;
bool m_EnableBf16TurboMode;
std::string m_Labels;
std::vector<armnn::BackendId> GetComputeDevicesAsBackendIds()
{
std::vector<armnn::BackendId> backendIds;
std::copy(m_ComputeDevices.begin(), m_ComputeDevices.end(), std::back_inserter(backendIds));
return backendIds;
}
};
static void AddCommandLineOptions(cxxopts::Options& options,
CommandLineOptions& cLineOptions, std::vector<std::string>& required)
{
const std::vector<std::string> defaultComputes = { "CpuAcc", "CpuRef" };
const std::string backendsMessage = "Which device to run layers on by default. Possible choices: "
+ armnn::BackendRegistryInstance().GetBackendIdsAsString();
options
.allow_unrecognised_options()
.add_options()
("m,model-dir", "Path to directory containing model files (.prototxt/.tflite)",
cxxopts::value<std::string>(cLineOptions.m_ModelDir))
("c,compute", backendsMessage.c_str(),
cxxopts::value<std::vector<std::string>>(cLineOptions.m_ComputeDevices)->default_value("CpuRef"))
("b,dynamic-backends-path",
"Path where to load any available dynamic backend from. "
"If left empty (the default), dynamic backends will not be used.",
cxxopts::value(cLineOptions.m_DynamicBackendsPath))
("l,labels",
"Text file containing one image filename - correct label pair per line, "
"used to test the accuracy of the network.", cxxopts::value<std::string>(cLineOptions.m_Labels))
("v,visualize-optimized-model",
"Produce a dot file useful for visualizing the graph post optimization."
"The file will have the same name as the model with the .dot extention.",
cxxopts::value<bool>(cLineOptions.m_VisualizePostOptimizationModel)->default_value("false"))
("fp16-turbo-mode",
"If this option is enabled FP32 layers, weights and biases will be converted "
"to FP16 where the backend supports it.",
cxxopts::value<bool>(cLineOptions.m_EnableFp16TurboMode)->default_value("false"))
("bf16-turbo-mode",
"If this option is enabled FP32 layers, weights and biases will be converted "
"to BF16 where the backend supports it.",
cxxopts::value<bool>(cLineOptions.m_EnableBf16TurboMode)->default_value("false"));
required.emplace_back("model-dir");
}
InferenceModel(const Params& params,
bool enableProfiling,
const std::string& dynamicBackendsPath,
const std::shared_ptr<armnn::IRuntime>& runtime = nullptr)
: m_EnableProfiling(enableProfiling),
m_ProfilingDetailsMethod(armnn::ProfilingDetailsMethod::Undefined),
m_DynamicBackendsPath(dynamicBackendsPath),
m_ImportInputsIfAligned(params.m_ImportInputsIfAligned)
{
if (runtime)
{
m_Runtime = runtime;
}
else
{
armnn::IRuntime::CreationOptions options;
options.m_EnableGpuProfiling = m_EnableProfiling;
options.m_DynamicBackendsPath = m_DynamicBackendsPath;
m_Runtime = armnn::IRuntime::Create(options);
}
// Configure the Profiler if the the profiling details are opted for
if (params.m_OutputDetailsOnlyToStdOut)
m_ProfilingDetailsMethod = armnn::ProfilingDetailsMethod::DetailsOnly;
else if (params.m_OutputDetailsToStdOut)
m_ProfilingDetailsMethod = armnn::ProfilingDetailsMethod::DetailsWithEvents;
std::string invalidBackends;
if (!CheckRequestedBackendsAreValid(params.m_ComputeDevices, armnn::Optional<std::string&>(invalidBackends)))
{
throw armnn::Exception("Some backend IDs are invalid: " + invalidBackends);
}
armnn::IOptimizedNetworkPtr optNet{nullptr, [](armnn::IOptimizedNetwork*){}};
{
const auto parsing_start_time = armnn::GetTimeNow();
armnn::INetworkPtr network = CreateNetworkImpl<IParser>::Create(params, m_InputBindings, m_OutputBindings);
ARMNN_LOG(info) << "Network parsing time: " << std::setprecision(2)
<< std::fixed << armnn::GetTimeDuration(parsing_start_time).count() << " ms.";
ARMNN_SCOPED_HEAP_PROFILING("Optimizing");
armnn::OptimizerOptions options;
options.m_ReduceFp32ToFp16 = params.m_EnableFp16TurboMode;
options.m_ReduceFp32ToBf16 = params.m_EnableBf16TurboMode;
options.m_Debug = params.m_PrintIntermediateLayers;
options.m_shapeInferenceMethod = params.m_InferOutputShape ?
armnn::ShapeInferenceMethod::InferAndValidate : armnn::ShapeInferenceMethod::ValidateOnly;
options.m_ProfilingEnabled = m_EnableProfiling;
armnn::BackendOptions gpuAcc("GpuAcc",
{
{ "FastMathEnabled", params.m_EnableFastMath },
{ "SaveCachedNetwork", params.m_SaveCachedNetwork },
{ "CachedNetworkFilePath", params.m_CachedNetworkFilePath },
{ "MLGOTuningFilePath", params.m_MLGOTuningFilePath }
});
armnn::BackendOptions cpuAcc("CpuAcc",
{
{ "FastMathEnabled", params.m_EnableFastMath },
{ "NumberOfThreads", params.m_NumberOfThreads }
});
options.m_ModelOptions.push_back(gpuAcc);
options.m_ModelOptions.push_back(cpuAcc);
const auto optimization_start_time = armnn::GetTimeNow();
optNet = armnn::Optimize(*network, params.m_ComputeDevices, m_Runtime->GetDeviceSpec(), options);
ARMNN_LOG(info) << "Optimization time: " << std::setprecision(2)
<< std::fixed << armnn::GetTimeDuration(optimization_start_time).count() << " ms.";
if (!optNet)
{
throw armnn::Exception("Optimize returned nullptr");
}
}
if (params.m_VisualizePostOptimizationModel)
{
fs::path filename = params.m_ModelPath;
filename.replace_extension("dot");
std::fstream file(filename.c_str(), std::ios_base::out);
optNet->SerializeToDot(file);
}
armnn::Status ret;
{
ARMNN_SCOPED_HEAP_PROFILING("LoadNetwork");
const auto loading_start_time = armnn::GetTimeNow();
armnn::INetworkProperties networkProperties(params.m_AsyncEnabled,
armnn::MemorySource::Undefined,
armnn::MemorySource::Undefined,
enableProfiling,
m_ProfilingDetailsMethod);
std::string errorMessage;
ret = m_Runtime->LoadNetwork(m_NetworkIdentifier, std::move(optNet), errorMessage, networkProperties);
ARMNN_LOG(info) << "Network loading time: " << std::setprecision(2)
<< std::fixed << armnn::GetTimeDuration(loading_start_time).count() << " ms.";
if (params.m_AsyncEnabled && params.m_ThreadPoolSize > 0)
{
std::vector<std::shared_ptr<armnn::IWorkingMemHandle>> memHandles;
for (size_t i = 0; i < params.m_ThreadPoolSize; ++i)
{
memHandles.emplace_back(m_Runtime->CreateWorkingMemHandle(m_NetworkIdentifier));
}
m_Threadpool = std::make_unique<armnn::Threadpool>(params.m_ThreadPoolSize,
m_Runtime.get(),
memHandles);
}
}
if (ret == armnn::Status::Failure)
{
throw armnn::Exception("IRuntime::LoadNetwork failed");
}
}
void CheckInputIndexIsValid(unsigned int inputIndex) const
{
if (m_InputBindings.size() < inputIndex + 1)
{
throw armnn::Exception(fmt::format("Input index out of range: {}", inputIndex));
}
}
void CheckOutputIndexIsValid(unsigned int outputIndex) const
{
if (m_OutputBindings.size() < outputIndex + 1)
{
throw armnn::Exception(fmt::format("Output index out of range: {}", outputIndex));
}
}
unsigned int GetInputSize(unsigned int inputIndex = 0u) const
{
CheckInputIndexIsValid(inputIndex);
return m_InputBindings[inputIndex].second.GetNumElements();
}
unsigned int GetOutputSize(unsigned int outputIndex = 0u) const
{
CheckOutputIndexIsValid(outputIndex);
return m_OutputBindings[outputIndex].second.GetNumElements();
}
std::chrono::duration<double, std::milli> Run(
const std::vector<armnnUtils::TContainer>& inputContainers,
std::vector<armnnUtils::TContainer>& outputContainers)
{
for (unsigned int i = 0; i < outputContainers.size(); ++i)
{
const unsigned int expectedOutputDataSize = GetOutputSize(i);
mapbox::util::apply_visitor([expectedOutputDataSize, i](auto&& value)
{
const unsigned int actualOutputDataSize = armnn::numeric_cast<unsigned int>(value.size());
if (actualOutputDataSize < expectedOutputDataSize)
{
unsigned int outputIndex = i;
throw armnn::Exception(
fmt::format("Not enough data for output #{0}: expected "
"{1} elements, got {2}", outputIndex, expectedOutputDataSize, actualOutputDataSize));
}
},
outputContainers[i]);
}
std::shared_ptr<armnn::IProfiler> profiler = m_Runtime->GetProfiler(m_NetworkIdentifier);
// Start timer to record inference time in EnqueueWorkload (in milliseconds)
const auto start_time = armnn::GetTimeNow();
armnn::Status ret;
if (m_ImportInputsIfAligned)
{
std::vector<armnn::ImportedInputId> importedInputIds = m_Runtime->ImportInputs(
m_NetworkIdentifier, MakeInputTensors(inputContainers), armnn::MemorySource::Malloc);
std::vector<armnn::ImportedOutputId> importedOutputIds = m_Runtime->ImportOutputs(
m_NetworkIdentifier, MakeOutputTensors(outputContainers), armnn::MemorySource::Malloc);
ret = m_Runtime->EnqueueWorkload(m_NetworkIdentifier,
MakeInputTensors(inputContainers),
MakeOutputTensors(outputContainers),
importedInputIds,
importedOutputIds);
}
else
{
ret = m_Runtime->EnqueueWorkload(m_NetworkIdentifier,
MakeInputTensors(inputContainers),
MakeOutputTensors(outputContainers));
}
const auto duration = armnn::GetTimeDuration(start_time);
// if profiling is enabled print out the results
if (profiler && profiler->IsProfilingEnabled())
{
profiler->Print(std::cout);
}
if (ret == armnn::Status::Failure)
{
throw armnn::Exception("IRuntime::EnqueueWorkload failed");
}
else
{
return duration;
}
}
std::tuple<unsigned int, std::chrono::duration<double, std::milli>> RunAsync(
armnn::experimental::IWorkingMemHandle& workingMemHandleRef,
const std::vector<armnnUtils::TContainer>& inputContainers,
std::vector<armnnUtils::TContainer>& outputContainers,
unsigned int inferenceID)
{
for (unsigned int i = 0; i < outputContainers.size(); ++i)
{
const unsigned int expectedOutputDataSize = GetOutputSize(i);
mapbox::util::apply_visitor([expectedOutputDataSize, i](auto&& value)
{
const unsigned int actualOutputDataSize = armnn::numeric_cast<unsigned int>(value.size());
if (actualOutputDataSize < expectedOutputDataSize)
{
unsigned int outputIndex = i;
throw armnn::Exception(
fmt::format("Not enough data for output #{0}: expected "
"{1} elements, got {2}", outputIndex, expectedOutputDataSize, actualOutputDataSize));
}
},
outputContainers[i]);
}
std::shared_ptr<armnn::IProfiler> profiler = m_Runtime->GetProfiler(m_NetworkIdentifier);
// Start timer to record inference time in EnqueueWorkload (in milliseconds)
const auto start_time = armnn::GetTimeNow();
armnn::Status ret = m_Runtime->Execute(workingMemHandleRef,
MakeInputTensors(inputContainers),
MakeOutputTensors(outputContainers));
const auto duration = armnn::GetTimeDuration(start_time);
// if profiling is enabled print out the results
if (profiler && profiler->IsProfilingEnabled())
{
profiler->Print(std::cout);
}
if (ret == armnn::Status::Failure)
{
throw armnn::Exception(
fmt::format("IRuntime::Execute asynchronously failed for network #{0} on inference #{1}",
m_NetworkIdentifier, inferenceID));
}
else
{
return std::make_tuple(inferenceID, duration);
}
}
void RunAsync(const std::vector<armnnUtils::TContainer>& inputContainers,
std::vector<armnnUtils::TContainer>& outputContainers,
std::shared_ptr<armnn::IAsyncExecutionCallback> cb)
{
for (unsigned int i = 0; i < outputContainers.size(); ++i)
{
const unsigned int expectedOutputDataSize = GetOutputSize(i);
mapbox::util::apply_visitor([expectedOutputDataSize, i](auto&& value)
{
const unsigned int actualOutputDataSize = armnn::numeric_cast<unsigned int>(value.size());
if (actualOutputDataSize < expectedOutputDataSize)
{
unsigned int outputIndex = i;
throw armnn::Exception(
fmt::format("Not enough data for output #{0}: expected "
"{1} elements, got {2}", outputIndex, expectedOutputDataSize, actualOutputDataSize));
}
},
outputContainers[i]);
}
std::shared_ptr<armnn::IProfiler> profiler = m_Runtime->GetProfiler(m_NetworkIdentifier);
m_Threadpool->Schedule(m_NetworkIdentifier,
MakeInputTensors(inputContainers),
MakeOutputTensors(outputContainers),
armnn::QosExecPriority::Medium,
cb);
// if profiling is enabled print out the results
if (profiler && profiler->IsProfilingEnabled())
{
profiler->Print(std::cout);
}
}
const armnn::BindingPointInfo& GetInputBindingInfo(unsigned int inputIndex = 0u) const
{
CheckInputIndexIsValid(inputIndex);
return m_InputBindings[inputIndex];
}
const std::vector<armnn::BindingPointInfo>& GetInputBindingInfos() const
{
return m_InputBindings;
}
const armnn::BindingPointInfo& GetOutputBindingInfo(unsigned int outputIndex = 0u) const
{
CheckOutputIndexIsValid(outputIndex);
return m_OutputBindings[outputIndex];
}
const std::vector<armnn::BindingPointInfo>& GetOutputBindingInfos() const
{
return m_OutputBindings;
}
QuantizationParams GetQuantizationParams(unsigned int outputIndex = 0u) const
{
CheckOutputIndexIsValid(outputIndex);
return std::make_pair(m_OutputBindings[outputIndex].second.GetQuantizationScale(),
m_OutputBindings[outputIndex].second.GetQuantizationOffset());
}
QuantizationParams GetInputQuantizationParams(unsigned int inputIndex = 0u) const
{
CheckInputIndexIsValid(inputIndex);
return std::make_pair(m_InputBindings[inputIndex].second.GetQuantizationScale(),
m_InputBindings[inputIndex].second.GetQuantizationOffset());
}
std::vector<QuantizationParams> GetAllQuantizationParams() const
{
std::vector<QuantizationParams> quantizationParams;
for (unsigned int i = 0u; i < m_OutputBindings.size(); i++)
{
quantizationParams.push_back(GetQuantizationParams(i));
}
return quantizationParams;
}
std::unique_ptr<armnn::experimental::IWorkingMemHandle> CreateWorkingMemHandle()
{
return m_Runtime->CreateWorkingMemHandle(m_NetworkIdentifier);
}
private:
armnn::NetworkId m_NetworkIdentifier;
std::shared_ptr<armnn::IRuntime> m_Runtime;
std::unique_ptr<armnn::Threadpool> m_Threadpool;
std::vector<armnn::BindingPointInfo> m_InputBindings;
std::vector<armnn::BindingPointInfo> m_OutputBindings;
bool m_EnableProfiling;
armnn::ProfilingDetailsMethod m_ProfilingDetailsMethod;
std::string m_DynamicBackendsPath;
bool m_ImportInputsIfAligned;
template<typename TContainer>
armnn::InputTensors MakeInputTensors(const std::vector<TContainer>& inputDataContainers)
{
return armnnUtils::MakeInputTensors(m_InputBindings, inputDataContainers);
}
template<typename TContainer>
armnn::OutputTensors MakeOutputTensors(std::vector<TContainer>& outputDataContainers)
{
return armnnUtils::MakeOutputTensors(m_OutputBindings, outputDataContainers);
}
};