blob: d750fcccc78ad93224e4d8fe7141db61669b4d7f [file] [log] [blame]
//
// Copyright © 2022 Arm Ltd and Contributors. All rights reserved.
// SPDX-License-Identifier: MIT
//
#include "TfliteExecutor.hpp"
TfLiteExecutor::TfLiteExecutor(const ExecuteNetworkParams& params) : m_Params(params)
{
m_Model = tflite::FlatBufferModel::BuildFromFile(m_Params.m_ModelPath.c_str());
m_TfLiteInterpreter = std::make_unique<Interpreter>();
tflite::ops::builtin::BuiltinOpResolver resolver;
tflite::InterpreterBuilder builder(*m_Model, resolver);
builder(&m_TfLiteInterpreter);
m_TfLiteInterpreter->AllocateTensors();
int status = kTfLiteError;
if (m_Params.m_TfLiteExecutor == ExecuteNetworkParams::TfLiteExecutor::ArmNNTfLiteDelegate)
{
// Create the Armnn Delegate
// Populate a DelegateOptions from the ExecuteNetworkParams.
armnnDelegate::DelegateOptions delegateOptions = m_Params.ToDelegateOptions();
delegateOptions.SetExternalProfilingParams(delegateOptions.GetExternalProfilingParams());
std::unique_ptr<TfLiteDelegate, decltype(&armnnDelegate::TfLiteArmnnDelegateDelete)>
theArmnnDelegate(armnnDelegate::TfLiteArmnnDelegateCreate(delegateOptions),
armnnDelegate::TfLiteArmnnDelegateDelete);
// Register armnn_delegate to TfLiteInterpreter
status = m_TfLiteInterpreter->ModifyGraphWithDelegate(std::move(theArmnnDelegate));
if (status != kTfLiteOk)
{
LogAndThrow("Could not register ArmNN TfLite Delegate to TfLiteInterpreter");
}
}
else
{
std::cout << "Running on TfLite without ArmNN delegate\n";
}
const size_t numInputs = m_Params.m_InputNames.size();
for(unsigned int inputIndex = 0; inputIndex < numInputs; ++inputIndex)
{
armnn::Optional<std::string> dataFile = m_Params.m_GenerateTensorData
? armnn::EmptyOptional()
: armnn::MakeOptional<std::string>(m_Params.m_InputTensorDataFilePaths[inputIndex]);
int input = m_TfLiteInterpreter->inputs()[inputIndex];
TfLiteIntArray* inputDims = m_TfLiteInterpreter->tensor(input)->dims;
unsigned int inputSize = 1;
for (unsigned int dim = 0; dim < static_cast<unsigned int>(inputDims->size); ++dim)
{
inputSize *= inputDims->data[dim];
}
const auto& inputName = m_TfLiteInterpreter->tensor(input)->name;
const auto& dataType = m_TfLiteInterpreter->tensor(input)->type;
switch (dataType)
{
case kTfLiteFloat32:
{
auto inputData = m_TfLiteInterpreter->typed_tensor<float>(input);
PopulateTensorWithData<float>(inputData, inputSize, dataFile, inputName);
break;
}
case kTfLiteInt32:
{
auto inputData = m_TfLiteInterpreter->typed_tensor<int32_t>(input);
PopulateTensorWithData<int32_t>(inputData, inputSize, dataFile, inputName);
break;
}
case kTfLiteUInt8:
{
auto inputData = m_TfLiteInterpreter->typed_tensor<uint8_t>(input);
PopulateTensorWithData<uint8_t>(inputData, inputSize, dataFile, inputName);
break;
}
case kTfLiteInt16:
{
auto inputData = m_TfLiteInterpreter->typed_tensor<int16_t>(input);
PopulateTensorWithData<int16_t>(inputData, inputSize, dataFile, inputName);
break;
}
case kTfLiteInt8:
{
auto inputData = m_TfLiteInterpreter->typed_tensor<int8_t>(input);
PopulateTensorWithData<int8_t>(inputData, inputSize, dataFile, inputName);
break;
}
default:
{
LogAndThrow("Unsupported input tensor data type");
}
}
}
}
std::vector<const void *> TfLiteExecutor::Execute()
{
int status = 0;
std::vector<const void*> results;
for (size_t x = 0; x < m_Params.m_Iterations; x++)
{
// Start timer to record inference time in milliseconds.
const auto start_time = armnn::GetTimeNow();
// Run the inference
status = m_TfLiteInterpreter->Invoke();
const auto duration = armnn::GetTimeDuration(start_time);
if (m_Params.m_DontPrintOutputs || m_Params.m_ReuseBuffers)
{
break;
}
// Print out the output
for (unsigned int outputIndex = 0; outputIndex < m_TfLiteInterpreter->outputs().size(); ++outputIndex)
{
auto tfLiteDelegateOutputId = m_TfLiteInterpreter->outputs()[outputIndex];
TfLiteIntArray* outputDims = m_TfLiteInterpreter->tensor(tfLiteDelegateOutputId)->dims;
// If we've been asked to write to a file then set a file output stream. Otherwise use stdout.
FILE* outputTensorFile = stdout;
if (!m_Params.m_OutputTensorFiles.empty())
{
outputTensorFile = fopen(m_Params.m_OutputTensorFiles[outputIndex].c_str(), "w");
if (outputTensorFile == NULL)
{
LogAndThrow("Specified output tensor file, \"" + m_Params.m_OutputTensorFiles[outputIndex] +
"\", cannot be created. Defaulting to stdout. Error was: " + std::strerror(errno));
}
else
{
ARMNN_LOG(info) << "Writing output " << outputIndex << "' of iteration: " << x+1 << " to file: '"
<< m_Params.m_OutputTensorFiles[outputIndex] << "'";
}
}
long outputSize = 1;
for (unsigned int dim = 0; dim < static_cast<unsigned int>(outputDims->size); ++dim)
{
outputSize *= outputDims->data[dim];
}
std::cout << m_TfLiteInterpreter->tensor(tfLiteDelegateOutputId)->name << ": ";
results.push_back(m_TfLiteInterpreter->tensor(tfLiteDelegateOutputId)->allocation);
switch (m_TfLiteInterpreter->tensor(tfLiteDelegateOutputId)->type)
{
case kTfLiteFloat32:
{
auto tfLiteDelegateOutputData = m_TfLiteInterpreter->typed_tensor<float>(tfLiteDelegateOutputId);
for (int i = 0; i < outputSize; ++i)
{
fprintf(outputTensorFile, "%f ", tfLiteDelegateOutputData[i]);
}
break;
}
case kTfLiteInt32:
{
auto tfLiteDelegateOutputData = m_TfLiteInterpreter->typed_tensor<int32_t>(tfLiteDelegateOutputId);
for (int i = 0; i < outputSize; ++i)
{
fprintf(outputTensorFile, "%d ", tfLiteDelegateOutputData[i]);
}
break;
}
case kTfLiteUInt8:
{
auto tfLiteDelegateOutputData = m_TfLiteInterpreter->typed_tensor<uint8_t>(tfLiteDelegateOutputId);
for (int i = 0; i < outputSize; ++i)
{
fprintf(outputTensorFile, "%u ", tfLiteDelegateOutputData[i]);
}
break;
}
case kTfLiteInt8:
{
auto tfLiteDelegateOutputData = m_TfLiteInterpreter->typed_tensor<int8_t>(tfLiteDelegateOutputId);
for (int i = 0; i < outputSize; ++i)
{
fprintf(outputTensorFile, "%d ", tfLiteDelegateOutputData[i]);
}
break;
}
default:
{
LogAndThrow("Unsupported output type");
}
}
std::cout << std::endl;
}
CheckInferenceTimeThreshold(duration, m_Params.m_ThresholdTime);
}
std::cout << status;
return results;
}
void TfLiteExecutor::CompareAndPrintResult(std::vector<const void*> otherOutput)
{
for (unsigned int outputIndex = 0; outputIndex < m_TfLiteInterpreter->outputs().size(); ++outputIndex)
{
auto tfLiteDelegateOutputId = m_TfLiteInterpreter->outputs()[outputIndex];
float result = 0;
switch (m_TfLiteInterpreter->tensor(tfLiteDelegateOutputId)->type)
{
case kTfLiteFloat32:
{
result = ComputeRMSE<float>(m_TfLiteInterpreter->tensor(tfLiteDelegateOutputId)->allocation,
otherOutput[outputIndex],
m_TfLiteInterpreter->tensor(tfLiteDelegateOutputId)->bytes);
break;
}
case kTfLiteInt32:
{
result = ComputeRMSE<int32_t>(m_TfLiteInterpreter->tensor(tfLiteDelegateOutputId)->allocation,
otherOutput[outputIndex],
m_TfLiteInterpreter->tensor(tfLiteDelegateOutputId)->bytes);
break;
}
case kTfLiteUInt8:
{
result = ComputeRMSE<uint8_t>(m_TfLiteInterpreter->tensor(tfLiteDelegateOutputId)->allocation,
otherOutput[outputIndex],
m_TfLiteInterpreter->tensor(tfLiteDelegateOutputId)->bytes);
break;
}
case kTfLiteInt8:
{
result = ComputeRMSE<int8_t>(m_TfLiteInterpreter->tensor(tfLiteDelegateOutputId)->allocation,
otherOutput[outputIndex],
m_TfLiteInterpreter->tensor(tfLiteDelegateOutputId)->bytes);
break;
}
default:
{
}
}
std::cout << "RMSE of "
<< m_TfLiteInterpreter->tensor(tfLiteDelegateOutputId)->name
<< ": " << result << std::endl;
}
};