blob: 3046e7e93af83e97e6a7a99ccdfba790dd9dbb6f [file] [log] [blame]
//
// Copyright © 2020 STMicroelectronics and Contributors. All rights reserved.
// SPDX-License-Identifier: MIT
//
#include <algorithm>
#include <getopt.h>
#include <numeric>
#include <signal.h>
#include <string>
#include <sys/time.h>
#include <vector>
#include <armnn/BackendId.hpp>
#include <armnn/BackendRegistry.hpp>
#include <armnn/IRuntime.hpp>
#include <armnn/utility/NumericCast.hpp>
#include <armnnTfLiteParser/ITfLiteParser.hpp>
// Application parameters
std::vector<armnn::BackendId> default_preferred_backends_order = {armnn::Compute::CpuAcc, armnn::Compute::CpuRef};
std::vector<armnn::BackendId> preferred_backends_order;
std::string model_file_str;
std::string preferred_backend_str;
int nb_loops = 1;
double get_us(struct timeval t)
{
return (armnn::numeric_cast<double>(t.tv_sec) *
armnn::numeric_cast<double>(1000000) +
armnn::numeric_cast<double>(t.tv_usec));
}
double get_ms(struct timeval t)
{
return (armnn::numeric_cast<double>(t.tv_sec) *
armnn::numeric_cast<double>(1000) +
armnn::numeric_cast<double>(t.tv_usec) / 1000);
}
static void print_help(char** argv)
{
std::cout <<
"Usage: " << argv[0] << " -m <model .tflite>\n"
"\n"
"-m --model_file <.tflite file path>: .tflite model to be executed\n"
"-b --backend <device>: preferred backend device to run layers on by default. Possible choices: "
<< armnn::BackendRegistryInstance().GetBackendIdsAsString() << "\n"
" (by default CpuAcc, CpuRef)\n"
"-l --loops <int>: provide the number of times the inference will be executed\n"
" (by default nb_loops=1)\n"
"--help: show this help\n";
exit(1);
}
void process_args(int argc, char** argv)
{
const char* const short_opts = "m:b:l:h";
const option long_opts[] = {
{"model_file", required_argument, nullptr, 'm'},
{"backend", required_argument, nullptr, 'b'},
{"loops", required_argument, nullptr, 'l'},
{"help", no_argument, nullptr, 'h'},
{nullptr, no_argument, nullptr, 0}
};
while (true)
{
const auto opt = getopt_long(argc, argv, short_opts, long_opts, nullptr);
if (-1 == opt)
{
break;
}
switch (opt)
{
case 'm':
model_file_str = std::string(optarg);
std::cout << "model file set to: " << model_file_str << std::endl;
break;
case 'b':
preferred_backend_str = std::string(optarg);
// Overwrite the backend
preferred_backends_order.push_back(preferred_backend_str);
std::cout << "backend device set to:" << preferred_backend_str << std::endl;;
break;
case 'l':
nb_loops = std::stoi(optarg);
std::cout << "benchmark will execute " << nb_loops << " inference(s)" << std::endl;
break;
case 'h': // -h or --help
case '?': // Unrecognized option
default:
print_help(argv);
break;
}
}
if (model_file_str.empty())
{
print_help(argv);
}
}
int main(int argc, char* argv[])
{
std::vector<double> inferenceTimes;
// Get options
process_args(argc, argv);
// Create the runtime
armnn::IRuntime::CreationOptions options;
armnn::IRuntimePtr runtime(armnn::IRuntime::Create(options));
// Create Parser
armnnTfLiteParser::ITfLiteParserPtr armnnparser(armnnTfLiteParser::ITfLiteParser::Create());
// Create a network
armnn::INetworkPtr network = armnnparser->CreateNetworkFromBinaryFile(model_file_str.c_str());
if (!network)
{
throw armnn::Exception("Failed to create an ArmNN network");
}
// Optimize the network
if (preferred_backends_order.size() == 0)
{
preferred_backends_order = default_preferred_backends_order;
}
armnn::IOptimizedNetworkPtr optimizedNet = armnn::Optimize(*network,
preferred_backends_order,
runtime->GetDeviceSpec());
armnn::NetworkId networkId;
// Load the network in to the runtime
runtime->LoadNetwork(networkId, std::move(optimizedNet));
// Check the number of subgraph
if (armnnparser->GetSubgraphCount() != 1)
{
std::cout << "Model with more than 1 subgraph is not supported by this benchmark application.\n";
exit(0);
}
size_t subgraphId = 0;
// Set up the input network
std::cout << "\nModel information:" << std::endl;
std::vector<armnnTfLiteParser::BindingPointInfo> inputBindings;
std::vector<armnn::TensorInfo> inputTensorInfos;
std::vector<std::string> inputTensorNames = armnnparser->GetSubgraphInputTensorNames(subgraphId);
for (unsigned int i = 0; i < inputTensorNames.size() ; i++)
{
std::cout << "inputTensorNames[" << i << "] = " << inputTensorNames[i] << std::endl;
armnnTfLiteParser::BindingPointInfo inputBinding = armnnparser->GetNetworkInputBindingInfo(
subgraphId,
inputTensorNames[i]);
armnn::TensorInfo inputTensorInfo = runtime->GetInputTensorInfo(networkId, inputBinding.first);
inputBindings.push_back(inputBinding);
inputTensorInfos.push_back(inputTensorInfo);
}
// Set up the output network
std::vector<armnnTfLiteParser::BindingPointInfo> outputBindings;
std::vector<armnn::TensorInfo> outputTensorInfos;
std::vector<std::string> outputTensorNames = armnnparser->GetSubgraphOutputTensorNames(subgraphId);
for (unsigned int i = 0; i < outputTensorNames.size() ; i++)
{
std::cout << "outputTensorNames[" << i << "] = " << outputTensorNames[i] << std::endl;
armnnTfLiteParser::BindingPointInfo outputBinding = armnnparser->GetNetworkOutputBindingInfo(
subgraphId,
outputTensorNames[i]);
armnn::TensorInfo outputTensorInfo = runtime->GetOutputTensorInfo(networkId, outputBinding.first);
outputBindings.push_back(outputBinding);
outputTensorInfos.push_back(outputTensorInfo);
}
// Allocate input tensors
unsigned int nb_inputs = armnn::numeric_cast<unsigned int>(inputTensorInfos.size());
armnn::InputTensors inputTensors;
std::vector<std::vector<float>> in;
for (unsigned int i = 0 ; i < nb_inputs ; i++)
{
std::vector<float> in_data(inputTensorInfos.at(i).GetNumElements());
in.push_back(in_data);
inputTensors.push_back({ inputBindings[i].first, armnn::ConstTensor(inputBindings[i].second, in[i].data()) });
}
// Allocate output tensors
unsigned int nb_ouputs = armnn::numeric_cast<unsigned int>(outputTensorInfos.size());
armnn::OutputTensors outputTensors;
std::vector<std::vector<float>> out;
for (unsigned int i = 0; i < nb_ouputs ; i++)
{
std::vector<float> out_data(outputTensorInfos.at(i).GetNumElements());
out.push_back(out_data);
outputTensors.push_back({ outputBindings[i].first, armnn::Tensor(outputBindings[i].second, out[i].data()) });
}
// Run the inferences
std::cout << "\ninferences are running: " << std::flush;
for (int i = 0 ; i < nb_loops ; i++)
{
struct timeval start_time, stop_time;
gettimeofday(&start_time, nullptr);
runtime->EnqueueWorkload(networkId, inputTensors, outputTensors);
gettimeofday(&stop_time, nullptr);
inferenceTimes.push_back((get_us(stop_time) - get_us(start_time)));
std::cout << "# " << std::flush;
}
auto maxInfTime = *std::max_element(inferenceTimes.begin(), inferenceTimes.end());
auto minInfTime = *std::min_element(inferenceTimes.begin(), inferenceTimes.end());
auto avgInfTime = accumulate(inferenceTimes.begin(), inferenceTimes.end(), 0.0) /
armnn::numeric_cast<double>(inferenceTimes.size());
std::cout << "\n\ninference time: ";
std::cout << "min=" << minInfTime << "us ";
std::cout << "max=" << maxInfTime << "us ";
std::cout << "avg=" << avgInfTime << "us" << std::endl;
return 0;
}