blob: 4ff517509d61c98d871b19225deef85087666ec9 [file] [log] [blame]
//
// Copyright © 2021, 2023 Arm Ltd and Contributors. All rights reserved.
// SPDX-License-Identifier: MIT
//
#pragma once
#include "TestUtils.hpp"
#include <armnn_delegate.hpp>
#include <DelegateTestInterpreter.hpp>
#include <flatbuffers/flatbuffers.h>
#include <tensorflow/lite/kernels/register.h>
#include <tensorflow/lite/version.h>
#include <schema_generated.h>
#include <doctest/doctest.h>
namespace
{
template <typename T>
std::vector<char> CreateLstmTfLiteModel(tflite::TensorType tensorType,
int32_t batchSize,
int32_t inputSize,
int32_t outputSize,
int32_t numUnits,
bool hasInputToInputWeights,
const std::vector<T>& inputToInputWeights,
const std::vector<T>& inputToForgetWeights,
const std::vector<T>& inputToCellWeights,
const std::vector<T>& inputToOutputWeights,
bool hasRecurrentToInputWeights,
const std::vector<T>& recurrentToInputWeights,
const std::vector<T>& recurrentToForgetWeights,
const std::vector<T>& recurrentToCellWeights,
const std::vector<T>& recurrentToOutputWeights,
bool hasCellToInputWeights,
const std::vector<T>& cellToInputWeights,
bool hasCellToForgetWeights,
const std::vector<T>& cellToForgetWeights,
bool hasCellToOutputWeights,
const std::vector<T>& cellToOutputWeights,
bool hasInputGateBias,
const std::vector<T>& inputGateBias,
const std::vector<T>& forgetGateBias,
const std::vector<T>& cellBias,
const std::vector<T>& outputGateBias,
bool hasProjectionWeights,
const std::vector<T>& projectionWeights,
bool hasProjectionBias,
const std::vector<T>& projectionBias,
bool hasInputLayerNormWeights,
const std::vector<T>& inputLayerNormWeights,
bool hasForgetLayerNormWeights,
const std::vector<T>& forgetLayerNormWeights,
bool hasCellLayerNormWeights,
const std::vector<T>& cellLayerNormWeights,
bool hasOutputLayerNormWeights,
const std::vector<T>& outputLayerNormWeights,
tflite::ActivationFunctionType activationFunction,
float clippingThresCell,
float clippingThresProj,
float quantScale = 1.0f,
int quantOffset = 0,
float outputQuantScale = 2.0f,
int outputQuantOffset = 0)
{
std::vector <int32_t> tensorInfo0 {};
std::vector <int32_t> tensorInfo4 {numUnits};
std::vector <int32_t> tensorInfo8 {numUnits, static_cast<int32_t>(2)};
std::vector <int32_t> tensorInfo16 {numUnits, static_cast<int32_t>(4)};
std::vector<int32_t> inputShape {batchSize , inputSize};
std::vector<int32_t> outputShape {batchSize , outputSize};
std::vector<int32_t> outputStateInDimensions{batchSize, outputSize};
std::vector<int32_t> cellStateInDimensions{batchSize, numUnits};
std::vector<int> operatorInputs;
using namespace tflite;
flatbuffers::FlatBufferBuilder flatBufferBuilder;
std::vector<flatbuffers::Offset<tflite::Buffer>> buffers;
std::vector<flatbuffers::Offset<Tensor>> tensors;
auto quantizationParameters =
CreateQuantizationParameters(flatBufferBuilder,
0,
0,
flatBufferBuilder.CreateVector<float>({ quantScale }),
flatBufferBuilder.CreateVector<int64_t>({ quantOffset }));
auto outputQuantizationParameters =
CreateQuantizationParameters(flatBufferBuilder,
0,
0,
flatBufferBuilder.CreateVector<float>({ outputQuantScale }),
flatBufferBuilder.CreateVector<int64_t>({ outputQuantOffset }));
buffers.push_back(CreateBuffer(flatBufferBuilder));
tensors.push_back(CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(inputShape.data(),
inputShape.size()),
tensorType,
buffers.size() - 1,
flatBufferBuilder.CreateString("input_0"),
quantizationParameters));
operatorInputs.push_back(buffers.size() - 1);
if (hasInputToInputWeights)
{
buffers.push_back(
CreateBuffer(flatBufferBuilder,
flatBufferBuilder.CreateVector(reinterpret_cast<const uint8_t *>(inputToInputWeights.data()),
sizeof(T) * inputToInputWeights.size())));
tensors.push_back(CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(tensorInfo8.data(),
tensorInfo8.size()),
tensorType,
buffers.size() - 1,
flatBufferBuilder.CreateString("inputToInputWeights"),
outputQuantizationParameters));
operatorInputs.push_back(buffers.size() - 1);
}
else
{
operatorInputs.push_back(kTfLiteOptionalTensor);
}
buffers.push_back(
CreateBuffer(flatBufferBuilder,
flatBufferBuilder.CreateVector(reinterpret_cast<const uint8_t *>(inputToForgetWeights.data()),
sizeof(T) * inputToForgetWeights.size())));
tensors.push_back(CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(tensorInfo8.data(),
tensorInfo8.size()),
tensorType,
buffers.size() - 1,
flatBufferBuilder.CreateString("inputToForgetWeights"),
outputQuantizationParameters));
operatorInputs.push_back(buffers.size() - 1);
buffers.push_back(
CreateBuffer(flatBufferBuilder,
flatBufferBuilder.CreateVector(reinterpret_cast<const uint8_t *>(inputToCellWeights.data()),
sizeof(T) * inputToCellWeights.size())));
tensors.push_back(CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(tensorInfo8.data(),
tensorInfo8.size()),
tensorType,
buffers.size() - 1,
flatBufferBuilder.CreateString("inputToCellWeights"),
outputQuantizationParameters));
operatorInputs.push_back(buffers.size() - 1);
buffers.push_back(
CreateBuffer(flatBufferBuilder,
flatBufferBuilder.CreateVector(reinterpret_cast<const uint8_t *>(inputToOutputWeights.data()),
sizeof(T) * inputToOutputWeights.size())));
tensors.push_back(CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(tensorInfo8.data(),
tensorInfo8.size()),
tensorType,
buffers.size() - 1,
flatBufferBuilder.CreateString("inputToOutputWeights"),
outputQuantizationParameters));
operatorInputs.push_back(buffers.size() - 1);
if (hasRecurrentToInputWeights)
{
buffers.push_back(CreateBuffer(
flatBufferBuilder,
flatBufferBuilder.CreateVector(reinterpret_cast<const uint8_t*>(recurrentToInputWeights.data()),
sizeof(T) * recurrentToInputWeights.size())));
tensors.push_back(CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(tensorInfo16.data(),
tensorInfo16.size()),
tensorType,
buffers.size() - 1,
flatBufferBuilder.CreateString("recurrentToInputWeights"),
outputQuantizationParameters));
operatorInputs.push_back(buffers.size() - 1);
}
else
{
operatorInputs.push_back(kTfLiteOptionalTensor);
}
buffers.push_back(
CreateBuffer(flatBufferBuilder,
flatBufferBuilder.CreateVector(reinterpret_cast<const uint8_t *>(recurrentToForgetWeights.data()),
sizeof(T) * recurrentToForgetWeights.size())));
tensors.push_back(CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(tensorInfo16.data(),
tensorInfo16.size()),
tensorType,
buffers.size() - 1,
flatBufferBuilder.CreateString("recurrentToForgetWeights"),
outputQuantizationParameters));
operatorInputs.push_back(buffers.size() - 1);
buffers.push_back(
CreateBuffer(flatBufferBuilder,
flatBufferBuilder.CreateVector(reinterpret_cast<const uint8_t *>(recurrentToCellWeights.data()),
sizeof(T) * recurrentToCellWeights.size())));
tensors.push_back(CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(tensorInfo16.data(),
tensorInfo16.size()),
tensorType,
buffers.size() - 1,
flatBufferBuilder.CreateString("recurrentToCellWeights"),
outputQuantizationParameters));
operatorInputs.push_back(buffers.size() - 1);
buffers.push_back(
CreateBuffer(flatBufferBuilder,
flatBufferBuilder.CreateVector(reinterpret_cast<const uint8_t *>(recurrentToOutputWeights.data()),
sizeof(T) * recurrentToOutputWeights.size())));
tensors.push_back(CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(tensorInfo16.data(),
tensorInfo16.size()),
tensorType,
buffers.size() - 1 ,
flatBufferBuilder.CreateString("recurrentToOutputWeights"),
outputQuantizationParameters));
operatorInputs.push_back(buffers.size() - 1);
if (hasCellToInputWeights)
{
buffers.push_back(
CreateBuffer(flatBufferBuilder,
flatBufferBuilder.CreateVector(reinterpret_cast<const uint8_t*>(cellToInputWeights.data()),
sizeof(T) * cellToInputWeights.size())));
tensors.push_back(CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(tensorInfo4.data(),
tensorInfo4.size()),
tensorType,
buffers.size() - 1,
flatBufferBuilder.CreateString("cellToInputWeights"),
outputQuantizationParameters));
operatorInputs.push_back(buffers.size() - 1);
}
else
{
operatorInputs.push_back(kTfLiteOptionalTensor);
}
if (hasCellToForgetWeights)
{
buffers.push_back(
CreateBuffer(flatBufferBuilder,
flatBufferBuilder.CreateVector(reinterpret_cast<const uint8_t*>(cellToForgetWeights.data()),
sizeof(T) * cellToForgetWeights.size())));
tensors.push_back(CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(tensorInfo4.data(),
tensorInfo4.size()),
tensorType,
buffers.size() - 1,
flatBufferBuilder.CreateString("cellToForgetWeights"),
outputQuantizationParameters));
operatorInputs.push_back(buffers.size() - 1);
}
else
{
operatorInputs.push_back(kTfLiteOptionalTensor);
}
if (hasCellToOutputWeights)
{
buffers.push_back(
CreateBuffer(flatBufferBuilder,
flatBufferBuilder.CreateVector(reinterpret_cast<const uint8_t*>(cellToOutputWeights.data()),
sizeof(T) * cellToOutputWeights.size())));
tensors.push_back(CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(tensorInfo4.data(),
tensorInfo4.size()),
tensorType,
buffers.size() - 1,
flatBufferBuilder.CreateString("cellToOutputWeights"),
outputQuantizationParameters));
operatorInputs.push_back(buffers.size() - 1);
}
else
{
operatorInputs.push_back(kTfLiteOptionalTensor);
}
if (hasInputGateBias)
{
buffers.push_back(
CreateBuffer(flatBufferBuilder,
flatBufferBuilder.CreateVector(reinterpret_cast<const uint8_t*>(inputGateBias.data()),
sizeof(T) * inputGateBias.size())));
tensors.push_back(CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(tensorInfo4.data(),
tensorInfo4.size()),
tensorType,
buffers.size() - 1,
flatBufferBuilder.CreateString("inputGateBias"),
outputQuantizationParameters));
operatorInputs.push_back(buffers.size() - 1);
}
else
{
operatorInputs.push_back(kTfLiteOptionalTensor);
}
buffers.push_back(
CreateBuffer(flatBufferBuilder,
flatBufferBuilder.CreateVector(reinterpret_cast<const uint8_t *>(forgetGateBias.data()),
sizeof(T) * forgetGateBias.size())));
tensors.push_back(CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(tensorInfo4.data(),
tensorInfo4.size()),
tensorType,
buffers.size() - 1,
flatBufferBuilder.CreateString("forgetGateBias"),
outputQuantizationParameters));
operatorInputs.push_back(buffers.size() - 1);
buffers.push_back(
CreateBuffer(flatBufferBuilder,
flatBufferBuilder.CreateVector(reinterpret_cast<const uint8_t *>(cellBias.data()),
sizeof(T) * cellBias.size())));
tensors.push_back(CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(tensorInfo4.data(),
tensorInfo4.size()),
tensorType,
buffers.size() - 1,
flatBufferBuilder.CreateString("cellBias"),
outputQuantizationParameters));
operatorInputs.push_back(buffers.size() - 1);
buffers.push_back(
CreateBuffer(flatBufferBuilder,
flatBufferBuilder.CreateVector(reinterpret_cast<const uint8_t *>(outputGateBias.data()),
sizeof(T) * outputGateBias.size())));
tensors.push_back(CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(tensorInfo4.data(),
tensorInfo4.size()),
tensorType,
buffers.size() - 1,
flatBufferBuilder.CreateString("outputGateBias"),
outputQuantizationParameters));
operatorInputs.push_back(buffers.size() - 1);
if (hasProjectionWeights)
{
buffers.push_back(
CreateBuffer(flatBufferBuilder,
flatBufferBuilder.CreateVector(reinterpret_cast<const uint8_t *>(projectionWeights.data()),
sizeof(T) * projectionWeights.size())));
tensors.push_back(CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(tensorInfo4.data(),
tensorInfo4.size()),
tensorType,
buffers.size() - 1,
flatBufferBuilder.CreateString("outputGateBias"),
outputQuantizationParameters));
operatorInputs.push_back(buffers.size() - 1);
}
else
{
operatorInputs.push_back(kTfLiteOptionalTensor);
}
if (hasProjectionBias)
{
buffers.push_back(
CreateBuffer(flatBufferBuilder,
flatBufferBuilder.CreateVector(reinterpret_cast<const uint8_t *>(projectionBias.data()),
sizeof(T) * projectionBias.size())));
tensors.push_back(CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(tensorInfo4.data(),
tensorInfo4.size()),
tensorType,
buffers.size() - 1,
flatBufferBuilder.CreateString("projectionBias"),
outputQuantizationParameters));
operatorInputs.push_back(buffers.size() - 1);
}
else
{
operatorInputs.push_back(kTfLiteOptionalTensor);
}
buffers.push_back(CreateBuffer(flatBufferBuilder));
tensors.push_back(CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(outputStateInDimensions.data(),
outputStateInDimensions.size()),
tensorType,
buffers.size() - 1,
flatBufferBuilder.CreateString("outputStateInInfo"),
outputQuantizationParameters,
true));
operatorInputs.push_back(buffers.size() - 1);
buffers.push_back(CreateBuffer(flatBufferBuilder));
tensors.push_back(CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(cellStateInDimensions.data(),
cellStateInDimensions.size()),
tensorType,
buffers.size() - 1,
flatBufferBuilder.CreateString("cellStateInInfo"),
outputQuantizationParameters,
true));
operatorInputs.push_back(buffers.size() - 1);
if (hasInputLayerNormWeights)
{
buffers.push_back(
CreateBuffer(flatBufferBuilder,
flatBufferBuilder.CreateVector(
reinterpret_cast<const uint8_t *>(inputLayerNormWeights.data()),
sizeof(T) * inputLayerNormWeights.size())));
tensors.push_back(CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(tensorInfo4.data(),
tensorInfo4.size()),
tensorType,
buffers.size() - 1,
flatBufferBuilder.CreateString("inputLayerNormWeights"),
outputQuantizationParameters));
operatorInputs.push_back(buffers.size() - 1);
}
else
{
operatorInputs.push_back(kTfLiteOptionalTensor);
}
if (hasForgetLayerNormWeights)
{
buffers.push_back(
CreateBuffer(flatBufferBuilder,
flatBufferBuilder.CreateVector(
reinterpret_cast<const uint8_t *>(forgetLayerNormWeights.data()),
sizeof(T) * forgetLayerNormWeights.size())));
tensors.push_back(CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(tensorInfo4.data(),
tensorInfo4.size()),
tensorType,
buffers.size() - 1,
flatBufferBuilder.CreateString("forgetLayerNormWeights"),
outputQuantizationParameters));
operatorInputs.push_back(buffers.size() - 1);
}
else
{
operatorInputs.push_back(kTfLiteOptionalTensor);
}
if (hasCellLayerNormWeights)
{
buffers.push_back(
CreateBuffer(flatBufferBuilder,
flatBufferBuilder.CreateVector(reinterpret_cast<const uint8_t *>(cellLayerNormWeights.data()),
sizeof(T) * cellLayerNormWeights.size())));
tensors.push_back(CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(tensorInfo4.data(),
tensorInfo4.size()),
tensorType,
buffers.size() - 1,
flatBufferBuilder.CreateString("cellLayerNormWeights"),
outputQuantizationParameters));
operatorInputs.push_back(buffers.size() - 1);
}
else
{
operatorInputs.push_back(kTfLiteOptionalTensor);
}
if (hasOutputLayerNormWeights)
{
buffers.push_back(
CreateBuffer(flatBufferBuilder,
flatBufferBuilder.CreateVector(
reinterpret_cast<const uint8_t *>(outputLayerNormWeights.data()),
sizeof(T) * outputLayerNormWeights.size())));
tensors.push_back(CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(tensorInfo4.data(),
tensorInfo4.size()),
tensorType,
buffers.size() - 1,
flatBufferBuilder.CreateString("outputLayerNormWeights"),
outputQuantizationParameters));
operatorInputs.push_back(buffers.size() - 1);
}
else
{
operatorInputs.push_back(kTfLiteOptionalTensor);
}
int outputBufferId = buffers.size();
buffers.push_back(CreateBuffer(flatBufferBuilder));
tensors.push_back(CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(outputShape.data(),
outputShape.size()),
tensorType,
outputBufferId,
flatBufferBuilder.CreateString("output"),
outputQuantizationParameters));
std::vector<int> operatorOutputs;
operatorOutputs.push_back(buffers.size() - 1);
// create operator
tflite::BuiltinOptions operatorBuiltinOptionsType = BuiltinOptions_LSTMOptions;
flatbuffers::Offset<void> operatorBuiltinOptions =
CreateLSTMOptions(flatBufferBuilder,
activationFunction,
clippingThresCell,
clippingThresProj).Union();
flatbuffers::Offset <Operator> lstmOperator =
CreateOperator(flatBufferBuilder,
0,
flatBufferBuilder.CreateVector<int32_t>(operatorInputs.data(), operatorInputs.size()),
flatBufferBuilder.CreateVector<int32_t>(operatorOutputs.data(), operatorOutputs.size()),
operatorBuiltinOptionsType, operatorBuiltinOptions);
flatbuffers::Offset <SubGraph> subgraph =
CreateSubGraph(flatBufferBuilder,
flatBufferBuilder.CreateVector(tensors.data(), tensors.size()),
flatBufferBuilder.CreateVector<int32_t>(operatorInputs.data(), operatorInputs.size()),
flatBufferBuilder.CreateVector<int32_t>(operatorOutputs.data(), operatorOutputs.size()),
flatBufferBuilder.CreateVector(&lstmOperator, 1));
flatbuffers::Offset <flatbuffers::String> modelDescription =
flatBufferBuilder.CreateString("ArmnnDelegate: LSTM Operator Model");
flatbuffers::Offset <OperatorCode> operatorCode = CreateOperatorCode(flatBufferBuilder,
tflite::BuiltinOperator_LSTM);
flatbuffers::Offset <Model> flatbufferModel =
CreateModel(flatBufferBuilder,
TFLITE_SCHEMA_VERSION,
flatBufferBuilder.CreateVector(&operatorCode, 1),
flatBufferBuilder.CreateVector(&subgraph, 1),
modelDescription,
flatBufferBuilder.CreateVector(buffers.data(), buffers.size()));
flatBufferBuilder.Finish(flatbufferModel, armnnDelegate::FILE_IDENTIFIER);
return std::vector<char>(flatBufferBuilder.GetBufferPointer(),
flatBufferBuilder.GetBufferPointer() + flatBufferBuilder.GetSize());
}
template <typename T>
void LstmTestImpl(std::vector<armnn::BackendId>& backends,
tflite::TensorType tensorType,
int32_t batchSize,
int32_t inputSize,
int32_t outputSize,
int32_t numUnits,
bool hasInputToInputWeights,
const std::vector<T>& inputToInputWeights,
const std::vector<T>& inputToForgetWeights,
const std::vector<T>& inputToCellWeights,
const std::vector<T>& inputToOutputWeights,
bool hasRecurrentToInputWeights,
const std::vector<T>& recurrentToInputWeights,
const std::vector<T>& recurrentToForgetWeights,
const std::vector<T>& recurrentToCellWeights,
const std::vector<T>& recurrentToOutputWeights,
bool hasCellToInputWeights,
const std::vector<T>& cellToInputWeights,
bool hasCellToForgetWeights,
const std::vector<T>& cellToForgetWeights,
bool hasCellToOutputWeights,
const std::vector<T>& cellToOutputWeights,
bool hasInputGateBias,
const std::vector<T>& inputGateBias,
const std::vector<T>& forgetGateBias,
const std::vector<T>& cellBias,
const std::vector<T>& outputGateBias,
bool hasProjectionWeights,
const std::vector<T>& projectionWeights,
bool hasProjectionBias,
const std::vector<T>& projectionBias,
bool hasInputLayerNormWeights,
const std::vector<T>& inputLayerNormWeights,
bool hasForgetLayerNormWeights,
const std::vector<T>& forgetLayerNormWeights,
bool hasCellLayerNormWeights,
const std::vector<T>& cellLayerNormWeights,
bool hasOutputLayerNormWeights,
const std::vector<T>& outputLayerNormWeights,
std::vector<T>& inputValues,
std::vector<T>& expectedOutputValues,
tflite::ActivationFunctionType activationFunction,
float clippingThresCell,
float clippingThresProj)
{
using namespace delegateTestInterpreter;
std::vector<char> modelBuffer = CreateLstmTfLiteModel(tensorType,
batchSize,
inputSize,
outputSize,
numUnits,
hasInputToInputWeights,
inputToInputWeights,
inputToForgetWeights,
inputToCellWeights,
inputToOutputWeights,
hasRecurrentToInputWeights,
recurrentToInputWeights,
recurrentToForgetWeights,
recurrentToCellWeights,
recurrentToOutputWeights,
hasCellToInputWeights,
cellToInputWeights,
hasCellToForgetWeights,
cellToForgetWeights,
hasCellToOutputWeights,
cellToOutputWeights,
hasInputGateBias,
inputGateBias,
forgetGateBias,
cellBias,
outputGateBias,
hasProjectionWeights,
projectionWeights,
hasProjectionBias,
projectionBias,
hasInputLayerNormWeights,
inputLayerNormWeights,
hasForgetLayerNormWeights,
forgetLayerNormWeights,
hasCellLayerNormWeights,
cellLayerNormWeights,
hasOutputLayerNormWeights,
outputLayerNormWeights,
activationFunction,
clippingThresCell,
clippingThresProj);
std::vector<int32_t> expectedOutputShape {batchSize , outputSize};
// Setup interpreter with just TFLite Runtime.
auto tfLiteInterpreter = DelegateTestInterpreter(modelBuffer);
CHECK(tfLiteInterpreter.AllocateTensors() == kTfLiteOk);
CHECK(tfLiteInterpreter.FillInputTensor<T>(inputValues, 0) == kTfLiteOk);
CHECK(tfLiteInterpreter.Invoke() == kTfLiteOk);
std::vector<T> tfLiteOutputValues = tfLiteInterpreter.GetOutputResult<T>(0);
std::vector<int32_t> tfLiteOutputShape = tfLiteInterpreter.GetOutputShape(0);
// Setup interpreter with Arm NN Delegate applied.
auto armnnInterpreter = DelegateTestInterpreter(modelBuffer, backends);
CHECK(armnnInterpreter.AllocateTensors() == kTfLiteOk);
CHECK(armnnInterpreter.FillInputTensor<T>(inputValues, 0) == kTfLiteOk);
CHECK(armnnInterpreter.Invoke() == kTfLiteOk);
std::vector<T> armnnOutputValues = armnnInterpreter.GetOutputResult<T>(0);
std::vector<int32_t> armnnOutputShape = armnnInterpreter.GetOutputShape(0);
armnnDelegate::CompareOutputData<T>(tfLiteOutputValues, armnnOutputValues, expectedOutputValues);
armnnDelegate::CompareOutputShape(tfLiteOutputShape, armnnOutputShape, expectedOutputShape);
tfLiteInterpreter.Cleanup();
armnnInterpreter.Cleanup();
}
} // anonymous namespace