blob: a9db6b8fbf237dbce2c2ac1bee9983c3c215e8a5 [file] [log] [blame]
//
// Copyright © 2021, 2023 Arm Ltd and Contributors. All rights reserved.
// SPDX-License-Identifier: MIT
//
#pragma once
#include "TestUtils.hpp"
#include <armnn_delegate.hpp>
#include <DelegateTestInterpreter.hpp>
#include <flatbuffers/flatbuffers.h>
#include <tensorflow/lite/kernels/register.h>
#include <tensorflow/lite/version.h>
#include <schema_generated.h>
#include <doctest/doctest.h>
namespace
{
std::vector<char> CreateNormalizationTfLiteModel(tflite::BuiltinOperator normalizationOperatorCode,
tflite::TensorType tensorType,
const std::vector<int32_t>& inputTensorShape,
const std::vector<int32_t>& outputTensorShape,
int32_t radius,
float bias,
float alpha,
float beta,
float quantScale = 1.0f,
int quantOffset = 0)
{
using namespace tflite;
flatbuffers::FlatBufferBuilder flatBufferBuilder;
auto quantizationParameters =
CreateQuantizationParameters(flatBufferBuilder,
0,
0,
flatBufferBuilder.CreateVector<float>({ quantScale }),
flatBufferBuilder.CreateVector<int64_t>({ quantOffset }));
auto inputTensor = CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(inputTensorShape.data(),
inputTensorShape.size()),
tensorType,
1,
flatBufferBuilder.CreateString("input"),
quantizationParameters);
auto outputTensor = CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(outputTensorShape.data(),
outputTensorShape.size()),
tensorType,
2,
flatBufferBuilder.CreateString("output"),
quantizationParameters);
std::vector<flatbuffers::Offset<Tensor>> tensors = { inputTensor, outputTensor };
std::vector<flatbuffers::Offset<tflite::Buffer>> buffers;
buffers.push_back(CreateBuffer(flatBufferBuilder));
buffers.push_back(CreateBuffer(flatBufferBuilder));
buffers.push_back(CreateBuffer(flatBufferBuilder));
std::vector<int32_t> operatorInputs = { 0 };
std::vector<int> subgraphInputs = { 0 };
tflite::BuiltinOptions operatorBuiltinOptionsType = BuiltinOptions_L2NormOptions;
flatbuffers::Offset<void> operatorBuiltinOptions = CreateL2NormOptions(flatBufferBuilder,
tflite::ActivationFunctionType_NONE).Union();
if (normalizationOperatorCode == tflite::BuiltinOperator_LOCAL_RESPONSE_NORMALIZATION)
{
operatorBuiltinOptionsType = BuiltinOptions_LocalResponseNormalizationOptions;
operatorBuiltinOptions =
CreateLocalResponseNormalizationOptions(flatBufferBuilder, radius, bias, alpha, beta).Union();
}
// create operator
const std::vector<int32_t> operatorOutputs{ 1 };
flatbuffers::Offset <Operator> normalizationOperator =
CreateOperator(flatBufferBuilder,
0,
flatBufferBuilder.CreateVector<int32_t>(operatorInputs.data(), operatorInputs.size()),
flatBufferBuilder.CreateVector<int32_t>(operatorOutputs.data(), operatorOutputs.size()),
operatorBuiltinOptionsType,
operatorBuiltinOptions);
const std::vector<int> subgraphOutputs{ 1 };
flatbuffers::Offset <SubGraph> subgraph =
CreateSubGraph(flatBufferBuilder,
flatBufferBuilder.CreateVector(tensors.data(), tensors.size()),
flatBufferBuilder.CreateVector<int32_t>(subgraphInputs.data(), subgraphInputs.size()),
flatBufferBuilder.CreateVector<int32_t>(subgraphOutputs.data(), subgraphOutputs.size()),
flatBufferBuilder.CreateVector(&normalizationOperator, 1));
flatbuffers::Offset <flatbuffers::String> modelDescription =
flatBufferBuilder.CreateString("ArmnnDelegate: Normalization Operator Model");
flatbuffers::Offset <OperatorCode> operatorCode = CreateOperatorCode(flatBufferBuilder,
normalizationOperatorCode);
flatbuffers::Offset <Model> flatbufferModel =
CreateModel(flatBufferBuilder,
TFLITE_SCHEMA_VERSION,
flatBufferBuilder.CreateVector(&operatorCode, 1),
flatBufferBuilder.CreateVector(&subgraph, 1),
modelDescription,
flatBufferBuilder.CreateVector(buffers.data(), buffers.size()));
flatBufferBuilder.Finish(flatbufferModel, armnnDelegate::FILE_IDENTIFIER);
return std::vector<char>(flatBufferBuilder.GetBufferPointer(),
flatBufferBuilder.GetBufferPointer() + flatBufferBuilder.GetSize());
}
template <typename T>
void NormalizationTest(tflite::BuiltinOperator normalizationOperatorCode,
tflite::TensorType tensorType,
const std::vector<armnn::BackendId>& backends,
const std::vector<int32_t>& inputShape,
std::vector<int32_t>& outputShape,
std::vector<T>& inputValues,
std::vector<T>& expectedOutputValues,
int32_t radius = 0,
float bias = 0.f,
float alpha = 0.f,
float beta = 0.f,
float quantScale = 1.0f,
int quantOffset = 0)
{
using namespace delegateTestInterpreter;
std::vector<char> modelBuffer = CreateNormalizationTfLiteModel(normalizationOperatorCode,
tensorType,
inputShape,
outputShape,
radius,
bias,
alpha,
beta,
quantScale,
quantOffset);
// Setup interpreter with just TFLite Runtime.
auto tfLiteInterpreter = DelegateTestInterpreter(modelBuffer);
CHECK(tfLiteInterpreter.AllocateTensors() == kTfLiteOk);
CHECK(tfLiteInterpreter.FillInputTensor<T>(inputValues, 0) == kTfLiteOk);
CHECK(tfLiteInterpreter.Invoke() == kTfLiteOk);
std::vector<T> tfLiteOutputValues = tfLiteInterpreter.GetOutputResult<T>(0);
std::vector<int32_t> tfLiteOutputShape = tfLiteInterpreter.GetOutputShape(0);
// Setup interpreter with Arm NN Delegate applied.
auto armnnInterpreter = DelegateTestInterpreter(modelBuffer, backends);
CHECK(armnnInterpreter.AllocateTensors() == kTfLiteOk);
CHECK(armnnInterpreter.FillInputTensor<T>(inputValues, 0) == kTfLiteOk);
CHECK(armnnInterpreter.Invoke() == kTfLiteOk);
std::vector<T> armnnOutputValues = armnnInterpreter.GetOutputResult<T>(0);
std::vector<int32_t> armnnOutputShape = armnnInterpreter.GetOutputShape(0);
armnnDelegate::CompareOutputData<T>(tfLiteOutputValues, armnnOutputValues, expectedOutputValues);
armnnDelegate::CompareOutputShape(tfLiteOutputShape, armnnOutputShape, outputShape);
tfLiteInterpreter.Cleanup();
armnnInterpreter.Cleanup();
}
void L2NormalizationTest(std::vector<armnn::BackendId>& backends)
{
// Set input data
std::vector<int32_t> inputShape { 1, 1, 1, 10 };
std::vector<int32_t> outputShape { 1, 1, 1, 10 };
std::vector<float> inputValues
{
1.0f,
2.0f,
3.0f,
4.0f,
5.0f,
6.0f,
7.0f,
8.0f,
9.0f,
10.0f
};
const float approxInvL2Norm = 0.050964719f;
std::vector<float> expectedOutputValues
{
1.0f * approxInvL2Norm,
2.0f * approxInvL2Norm,
3.0f * approxInvL2Norm,
4.0f * approxInvL2Norm,
5.0f * approxInvL2Norm,
6.0f * approxInvL2Norm,
7.0f * approxInvL2Norm,
8.0f * approxInvL2Norm,
9.0f * approxInvL2Norm,
10.0f * approxInvL2Norm
};
NormalizationTest<float>(tflite::BuiltinOperator_L2_NORMALIZATION,
::tflite::TensorType_FLOAT32,
backends,
inputShape,
outputShape,
inputValues,
expectedOutputValues);
}
void LocalResponseNormalizationTest(std::vector<armnn::BackendId>& backends,
int32_t radius,
float bias,
float alpha,
float beta)
{
// Set input data
std::vector<int32_t> inputShape { 2, 2, 2, 1 };
std::vector<int32_t> outputShape { 2, 2, 2, 1 };
std::vector<float> inputValues
{
1.0f, 2.0f,
3.0f, 4.0f,
5.0f, 6.0f,
7.0f, 8.0f
};
std::vector<float> expectedOutputValues
{
0.5f, 0.400000006f, 0.300000012f, 0.235294119f,
0.192307696f, 0.16216217f, 0.140000001f, 0.123076923f
};
NormalizationTest<float>(tflite::BuiltinOperator_LOCAL_RESPONSE_NORMALIZATION,
::tflite::TensorType_FLOAT32,
backends,
inputShape,
outputShape,
inputValues,
expectedOutputValues,
radius,
bias,
alpha,
beta);
}
} // anonymous namespace