blob: 2bab669fb7f6748a50ec4550ef59f67f109f68c3 [file] [log] [blame]
alexanderf42f5682021-07-16 11:30:56 +01001# Copyright © 2021 Arm Ltd and Contributors. All rights reserved.
2# SPDX-License-Identifier: MIT
3
4"""Class used to extract the Mel-frequency cepstral coefficients from a given audio frame."""
5
6import numpy as np
7import collections
8
9MFCCParams = collections.namedtuple('MFCCParams', ['sampling_freq', 'num_fbank_bins', 'mel_lo_freq', 'mel_hi_freq',
10 'num_mfcc_feats', 'frame_len', 'use_htk_method', 'n_fft'])
11
12
13class MFCC:
14
15 def __init__(self, mfcc_params):
16 self.mfcc_params = mfcc_params
17 self.FREQ_STEP = 200.0 / 3
18 self.MIN_LOG_HZ = 1000.0
19 self.MIN_LOG_MEL = self.MIN_LOG_HZ / self.FREQ_STEP
20 self.LOG_STEP = 1.8562979903656 / 27.0
21 self._frame_len_padded = int(2 ** (np.ceil((np.log(self.mfcc_params.frame_len) / np.log(2.0)))))
22 self._filter_bank_initialised = False
23 self.__frame = np.zeros(self._frame_len_padded)
24 self.__buffer = np.zeros(self._frame_len_padded)
25 self._filter_bank_filter_first = np.zeros(self.mfcc_params.num_fbank_bins)
26 self._filter_bank_filter_last = np.zeros(self.mfcc_params.num_fbank_bins)
27 self.__mel_energies = np.zeros(self.mfcc_params.num_fbank_bins)
28 self._dct_matrix = self.create_dct_matrix(self.mfcc_params.num_fbank_bins, self.mfcc_params.num_mfcc_feats)
29 self.__mel_filter_bank = self.create_mel_filter_bank()
30 self._np_mel_bank = np.zeros([self.mfcc_params.num_fbank_bins, int(self.mfcc_params.n_fft / 2) + 1])
31
32 for i in range(self.mfcc_params.num_fbank_bins):
33 k = 0
34 for j in range(int(self._filter_bank_filter_first[i]), int(self._filter_bank_filter_last[i]) + 1):
35 self._np_mel_bank[i, j] = self.__mel_filter_bank[i][k]
36 k += 1
37
38 def mel_scale(self, freq, use_htk_method):
39 """
40 Gets the mel scale for a particular sample frequency.
41
42 Args:
43 freq: The sampling frequency.
44 use_htk_method: Boolean to set whether to use HTK method or not.
45
46 Returns:
47 the mel scale
48 """
49 if use_htk_method:
50 return 1127.0 * np.log(1.0 + freq / 700.0)
51 else:
52 mel = freq / self.FREQ_STEP
53
54 if freq >= self.MIN_LOG_HZ:
55 mel = self.MIN_LOG_MEL + np.log(freq / self.MIN_LOG_HZ) / self.LOG_STEP
56 return mel
57
58 def inv_mel_scale(self, mel_freq, use_htk_method):
59 """
60 Gets the sample frequency for a particular mel.
61
62 Args:
63 mel_freq: The mel frequency.
64 use_htk_method: Boolean to set whether to use HTK method or not.
65
66 Returns:
67 the sample frequency
68 """
69 if use_htk_method:
70 return 700.0 * (np.exp(mel_freq / 1127.0) - 1.0)
71 else:
72 freq = self.FREQ_STEP * mel_freq
73
74 if mel_freq >= self.MIN_LOG_MEL:
75 freq = self.MIN_LOG_HZ * np.exp(self.LOG_STEP * (mel_freq - self.MIN_LOG_MEL))
76 return freq
77
78 def spectrum_calc(self, audio_data):
79 return np.abs(np.fft.rfft(np.hanning(self.mfcc_params.frame_len + 1)[0:self.mfcc_params.frame_len] * audio_data,
80 self.mfcc_params.n_fft))
81
82 def log_mel(self, mel_energy):
83 mel_energy += 1e-10 # Avoid division by zero
84 return np.log(mel_energy)
85
86 def mfcc_compute(self, audio_data):
87 """
88 Extracts the MFCC for a single frame.
89
90 Args:
91 audio_data: The audio data to process.
92
93 Returns:
94 the MFCC features
95 """
96 if len(audio_data) != self.mfcc_params.frame_len:
97 raise ValueError(
98 f"audio_data buffer size {len(audio_data)} does not match frame length {self.mfcc_params.frame_len}")
99
100 audio_data = np.array(audio_data)
101 spec = self.spectrum_calc(audio_data)
102 mel_energy = np.dot(self._np_mel_bank.astype(np.float32),
103 np.transpose(spec).astype(np.float32))
104 log_mel_energy = self.log_mel(mel_energy)
105 mfcc_feats = np.dot(self._dct_matrix, log_mel_energy)
106 return mfcc_feats
107
108 def create_dct_matrix(self, num_fbank_bins, num_mfcc_feats):
109 """
110 Creates the Discrete Cosine Transform matrix to be used in the compute function.
111
112 Args:
113 num_fbank_bins: The number of filter bank bins
114 num_mfcc_feats: the number of MFCC features
115
116 Returns:
117 the DCT matrix
118 """
119
120 dct_m = np.zeros(num_fbank_bins * num_mfcc_feats)
121 for k in range(num_mfcc_feats):
122 for n in range(num_fbank_bins):
123 dct_m[(k * num_fbank_bins) + n] = (np.sqrt(2 / num_fbank_bins)) * np.cos(
124 (np.pi / num_fbank_bins) * (n + 0.5) * k)
125 dct_m = np.reshape(dct_m, [self.mfcc_params.num_mfcc_feats, self.mfcc_params.num_fbank_bins])
126 return dct_m
127
128 def mel_norm(self, weight, right_mel, left_mel):
129 """
130 Placeholder function over-ridden in child class
131 """
132 return weight
133
134 def create_mel_filter_bank(self):
135 """
136 Creates the Mel filter bank.
137
138 Returns:
139 the mel filter bank
140 """
141 # FFT calculations are greatly accelerated for frame lengths which are powers of 2
142 # Frames are padded and FFT bin width/length calculated accordingly
143 num_fft_bins = int(self._frame_len_padded / 2)
144 fft_bin_width = self.mfcc_params.sampling_freq / self._frame_len_padded
145
146 mel_low_freq = self.mel_scale(self.mfcc_params.mel_lo_freq, self.mfcc_params.use_htk_method)
147 mel_high_freq = self.mel_scale(self.mfcc_params.mel_hi_freq, self.mfcc_params.use_htk_method)
148 mel_freq_delta = (mel_high_freq - mel_low_freq) / (self.mfcc_params.num_fbank_bins + 1)
149
150 this_bin = np.zeros(num_fft_bins)
151 mel_fbank = [0] * self.mfcc_params.num_fbank_bins
152 for bin_num in range(self.mfcc_params.num_fbank_bins):
153 left_mel = mel_low_freq + bin_num * mel_freq_delta
154 center_mel = mel_low_freq + (bin_num + 1) * mel_freq_delta
155 right_mel = mel_low_freq + (bin_num + 2) * mel_freq_delta
156 first_index = last_index = -1
157
158 for i in range(num_fft_bins):
159 freq = (fft_bin_width * i)
160 mel = self.mel_scale(freq, self.mfcc_params.use_htk_method)
161 this_bin[i] = 0.0
162
163 if (mel > left_mel) and (mel < right_mel):
164 if mel <= center_mel:
165 weight = (mel - left_mel) / (center_mel - left_mel)
166 else:
167 weight = (right_mel - mel) / (right_mel - center_mel)
168
169 this_bin[i] = self.mel_norm(weight, right_mel, left_mel)
170
171 if first_index == -1:
172 first_index = i
173 last_index = i
174
175 self._filter_bank_filter_first[bin_num] = first_index
176 self._filter_bank_filter_last[bin_num] = last_index
177 mel_fbank[bin_num] = np.zeros(last_index - first_index + 1)
178 j = 0
179
180 for i in range(first_index, last_index + 1):
181 mel_fbank[bin_num][j] = this_bin[i]
182 j += 1
183
184 return mel_fbank
185
186
187class AudioPreprocessor:
188
189 def __init__(self, mfcc, model_input_size, stride):
190 self.model_input_size = model_input_size
191 self.stride = stride
192 self._mfcc_calc = mfcc
193
194 def _normalize(self, values):
195 """
196 Normalize values to mean 0 and std 1
197 """
198 ret_val = (values - np.mean(values)) / np.std(values)
199 return ret_val
200
201 def _get_features(self, features, mfcc_instance, audio_data):
202 idx = 0
203 while len(features) < self.model_input_size * mfcc_instance.mfcc_params.num_mfcc_feats:
204 current_frame_feats = mfcc_instance.mfcc_compute(audio_data[idx:idx + int(mfcc_instance.mfcc_params.frame_len)])
205 features.extend(current_frame_feats)
206 idx += self.stride
207
208 def mfcc_delta_calc(self, features):
209 """
210 Placeholder function over-ridden in child class
211 """
212 return features
213
214 def extract_features(self, audio_data):
215 """
216 Extracts the MFCC features. Also calculates each features first and second order derivatives
217 if the mfcc_delta_calc() function has been implemented by a child class.
218 The matrix returned should be sized appropriately for input to the model, based
219 on the model info specified in the MFCC instance.
220
221 Args:
222 audio_data: the audio data to be used for this calculation
223 Returns:
224 the derived MFCC feature vector, sized appropriately for inference
225 """
226
227 num_samples_per_inference = ((self.model_input_size - 1)
228 * self.stride) + self._mfcc_calc.mfcc_params.frame_len
229
230 if len(audio_data) < num_samples_per_inference:
231 raise ValueError("audio_data size for feature extraction is smaller than "
232 "the expected number of samples needed for inference")
233
234 features = []
235 self._get_features(features, self._mfcc_calc, np.asarray(audio_data))
236 features = np.reshape(np.array(features), (self.model_input_size, self._mfcc_calc.mfcc_params.num_mfcc_feats))
237 features = self.mfcc_delta_calc(features)
238 return np.float32(features)