blob: 439e401315cad6a51c03ff072c6182c18036ebf9 [file] [log] [blame]
Francis Murtaghc4fb0dd2023-03-16 17:01:56 +00001//
2// Copyright © 2023 Arm Ltd and Contributors. All rights reserved.
3// SPDX-License-Identifier: MIT
4//
Matthew Sloyan48ec8132023-04-27 17:04:47 +01005
6#pragma once
7
8#include <OpaqueDelegateUtils.hpp>
9
10namespace armnnOpaqueDelegate
11{
12
13TfLiteStatus VisitLstmOperator(DelegateData& delegateData,
14 TfLiteOpaqueContext* tfLiteContext,
15 TfLiteOpaqueNode* tfLiteNode,
16 int nodeIndex,
17 int32_t operatorCode)
18{
19 auto numInputs = TfLiteOpaqueNodeNumberOfInputs(tfLiteNode);
20 if (numInputs < 2)
21 {
22 TF_LITE_OPAQUE_MAYBE_KERNEL_LOG(
23 tfLiteContext,
24 "TfLiteArmnnOpaqueDelegate: Minimum number of inputs (%d != %d) in node #%d",
25 2, numInputs, nodeIndex);
26 return kTfLiteError;
27 }
28
29 // Gather input indices and use to get input tensor.
30 const int* inputTensors;
31 if (TfLiteOpaqueNodeInputs(tfLiteNode, &inputTensors, &numInputs) != kTfLiteOk)
32 {
33 TF_LITE_OPAQUE_MAYBE_KERNEL_LOG(
34 tfLiteContext,
35 "TfLiteArmnnOpaqueDelegate: Unable to gather input tensor indices from node #%d: ",
36 nodeIndex);
37 return kTfLiteError;
38 }
39
40 const TfLiteOpaqueTensor* tfLiteInputTensor = TfLiteOpaqueContextGetOpaqueTensor(tfLiteContext, inputTensors[0]);
41 if (!IsValid(tfLiteContext, tfLiteInputTensor, operatorCode, nodeIndex))
42 {
43 return kTfLiteError;
44 }
45
46 // Gather output indices and use to get output tensors.
47 int numOutputs = 0;
48 const int* outputTensors;
49 if (TfLiteOpaqueNodeOutputs(tfLiteNode, &outputTensors, &numOutputs) != kTfLiteOk)
50 {
51 TF_LITE_OPAQUE_MAYBE_KERNEL_LOG(
52 tfLiteContext,
53 "TfLiteArmnnOpaqueDelegate: Unable to gather output tensor indices from node #%d: ",
54 nodeIndex);
55 return kTfLiteError;
56 }
57
58 const TfLiteOpaqueTensor* tfLiteOutputTensor = TfLiteOpaqueContextGetOpaqueTensor(tfLiteContext, outputTensors[0]);
59 if (!IsValid(tfLiteContext, tfLiteOutputTensor, operatorCode, nodeIndex))
60 {
61 return kTfLiteError;
62 }
63
64 // Set the params structure for the AddLstmLayer call
65 armnn::LstmInputParams params;
66
67 if (IsOptionalOperandPresent(tfLiteNode, 1))
68 {
69 params.m_InputToInputWeights = GetConstTensorForTfLiteTensor(tfLiteContext, tfLiteNode, 1);
70 }
71
72 params.m_InputToForgetWeights = GetConstTensorForTfLiteTensor(tfLiteContext, tfLiteNode, 2);
73 params.m_InputToCellWeights = GetConstTensorForTfLiteTensor(tfLiteContext, tfLiteNode, 3);
74 params.m_InputToOutputWeights = GetConstTensorForTfLiteTensor(tfLiteContext, tfLiteNode, 4);
75
76 // Recurrent weight tensors of size {n_cell, n_output}
77 if (IsOptionalOperandPresent(tfLiteNode, 5))
78 {
79 params.m_RecurrentToInputWeights = GetConstTensorForTfLiteTensor(tfLiteContext, tfLiteNode, 5);
80 }
81
82 params.m_RecurrentToForgetWeights = GetConstTensorForTfLiteTensor(tfLiteContext, tfLiteNode, 6);
83 params.m_RecurrentToCellWeights = GetConstTensorForTfLiteTensor(tfLiteContext, tfLiteNode, 7);
84 params.m_RecurrentToOutputWeights = GetConstTensorForTfLiteTensor(tfLiteContext, tfLiteNode, 8);
85
86 // Peephole weights tensors of size {n_cell}, representing a diagonal matrix.
87 if (IsOptionalOperandPresent(tfLiteNode, 9))
88 {
89 params.m_CellToInputWeights = GetConstTensorForTfLiteTensor(tfLiteContext, tfLiteNode, 9);
90 }
91
92 if (IsOptionalOperandPresent(tfLiteNode, 10))
93 {
94 params.m_CellToForgetWeights = GetConstTensorForTfLiteTensor(tfLiteContext, tfLiteNode, 10);
95 }
96
97 if (IsOptionalOperandPresent(tfLiteNode, 11))
98 {
99 params.m_CellToOutputWeights = GetConstTensorForTfLiteTensor(tfLiteContext, tfLiteNode, 11);
100 }
101
102 // Gates bias tensors of size {n_cell}
103 if (IsOptionalOperandPresent(tfLiteNode, 12))
104 {
105 params.m_InputGateBias = GetConstTensorForTfLiteTensor(tfLiteContext, tfLiteNode, 12);
106 }
107
108 params.m_ForgetGateBias = GetConstTensorForTfLiteTensor(tfLiteContext, tfLiteNode, 13);
109 params.m_CellBias = GetConstTensorForTfLiteTensor(tfLiteContext, tfLiteNode, 14);
110 params.m_OutputGateBias = GetConstTensorForTfLiteTensor(tfLiteContext, tfLiteNode, 15);
111
112 // Projection weight tensor of size {n_output, n_cell}
113 if (IsOptionalOperandPresent(tfLiteNode, 16))
114 {
115 params.m_ProjectionWeights = GetConstTensorForTfLiteTensor(tfLiteContext, tfLiteNode, 16);
116 }
117 // Projection bias tensor of size {n_output}
118 if (IsOptionalOperandPresent(tfLiteNode, 17))
119 {
120 params.m_ProjectionBias = GetConstTensorForTfLiteTensor(tfLiteContext, tfLiteNode, 17);
121 }
122
123 // These state tensors are defined as variable tensors, and will be modified by this op.
124 const TfLiteOpaqueTensor* tfLiteOutputStateIn = TfLiteOpaqueContextGetOpaqueTensor(tfLiteContext, inputTensors[18]);
125 if (!IsValid(tfLiteContext, tfLiteOutputStateIn, operatorCode, nodeIndex))
126 {
127 return kTfLiteError;
128 }
129 const TfLiteOpaqueTensor* cellStateIn = TfLiteOpaqueContextGetOpaqueTensor(tfLiteContext, inputTensors[19]);
130 if (!IsValid(tfLiteContext, cellStateIn, operatorCode, nodeIndex))
131 {
132 return kTfLiteError;
133 }
134 armnn::TensorInfo outputStateInInfo = GetTensorInfoForTfLiteOpaqueTensor(tfLiteOutputStateIn);
135 armnn::TensorInfo cellStateInInfo = GetTensorInfoForTfLiteOpaqueTensor(cellStateIn);
136
137 // Layer norm coefficient tensors of size {n_cell}, representing a diagonal matrix.
138 if (IsOptionalOperandPresent(tfLiteNode, 20))
139 {
140 params.m_InputLayerNormWeights = GetConstTensorForTfLiteTensor(tfLiteContext, tfLiteNode, 20);
141 }
142
143 if (IsOptionalOperandPresent(tfLiteNode, 21))
144 {
145 params.m_ForgetLayerNormWeights = GetConstTensorForTfLiteTensor(tfLiteContext, tfLiteNode, 21);
146 }
147
148 if (IsOptionalOperandPresent(tfLiteNode, 22))
149 {
150 params.m_CellLayerNormWeights = GetConstTensorForTfLiteTensor(tfLiteContext, tfLiteNode, 22);
151 }
152
153 if (IsOptionalOperandPresent(tfLiteNode, 23))
154 {
155 params.m_OutputLayerNormWeights = GetConstTensorForTfLiteTensor(tfLiteContext, tfLiteNode, 23);
156 }
157
158 const auto nodeParams = reinterpret_cast<TfLiteLSTMParams*>(TfLiteOpaqueNodeGetBuiltinData(tfLiteNode));
159
160 // set the layer descriptor
161 armnn::LstmDescriptor desc;
162 desc.m_ActivationFunc = NonNegative(nodeParams->activation, nodeIndex);
163 desc.m_ClippingThresCell = nodeParams->cell_clip;
164 desc.m_ClippingThresProj = nodeParams->proj_clip;
165 desc.m_CifgEnabled = (params.m_InputToInputWeights == nullptr
166 || params.m_RecurrentToInputWeights == nullptr
167 || params.m_InputGateBias == nullptr);
168 desc.m_PeepholeEnabled = (params.m_CellToForgetWeights != nullptr || params.m_CellToOutputWeights != nullptr);
169 desc.m_ProjectionEnabled = (params.m_ProjectionWeights != nullptr);
170 desc.m_LayerNormEnabled = (params.m_InputLayerNormWeights != nullptr
171 || params.m_ForgetLayerNormWeights != nullptr
172 || params.m_CellLayerNormWeights != nullptr
173 || params.m_OutputLayerNormWeights != nullptr);
174
175 const armnn::TensorInfo& inputTensorInfo = GetTensorInfoForTfLiteOpaqueTensor(tfLiteInputTensor);
176 const armnn::TensorInfo& outputTensorInfo = GetTensorInfoForTfLiteOpaqueTensor(tfLiteOutputTensor, true);
177
178 unsigned int batchSize = inputTensorInfo.GetShape()[0];
179 unsigned int outputSize = outputTensorInfo.GetShape()[1];
180 unsigned int numUnits = cellStateInInfo.GetShape()[1];
181
182 armnn::DataType dataType = inputTensorInfo.GetDataType();
183 float qScale = inputTensorInfo.GetQuantizationScale();
184 float qOffset = inputTensorInfo.GetQuantizationOffset();
185
186 armnn::TensorInfo scratchBufferTensorInfo({batchSize, numUnits * 3}, dataType, qScale, qOffset);
187 if (!desc.m_CifgEnabled)
188 {
189 scratchBufferTensorInfo = armnn::TensorInfo({batchSize, numUnits * 4}, dataType, qScale, qOffset);
190 }
191 armnn::TensorInfo cellStateOutTensorInfo({batchSize, numUnits}, dataType, qScale, qOffset);
192 armnn::TensorInfo outputStateOutTensorInfo({batchSize, outputSize}, dataType, qScale, qOffset);
193
194 armnn::LstmInputParamsInfo paramsInfo;
195 paramsInfo.m_InputToForgetWeights = &(params.m_InputToForgetWeights->GetInfo());
196 paramsInfo.m_InputToCellWeights = &(params.m_InputToCellWeights->GetInfo());
197 paramsInfo.m_InputToOutputWeights = &(params.m_InputToOutputWeights->GetInfo());
198 paramsInfo.m_RecurrentToForgetWeights = &(params.m_RecurrentToForgetWeights->GetInfo());
199 paramsInfo.m_RecurrentToCellWeights = &(params.m_RecurrentToCellWeights->GetInfo());
200 paramsInfo.m_RecurrentToOutputWeights = &(params.m_RecurrentToOutputWeights->GetInfo());
201 paramsInfo.m_ForgetGateBias = &(params.m_ForgetGateBias->GetInfo());
202 paramsInfo.m_CellBias = &(params.m_CellBias->GetInfo());
203 paramsInfo.m_OutputGateBias = &(params.m_OutputGateBias->GetInfo());
204
205 if (!desc.m_CifgEnabled)
206 {
207 paramsInfo.m_InputToInputWeights = &(params.m_InputToInputWeights->GetInfo());
208 paramsInfo.m_RecurrentToInputWeights = &(params.m_RecurrentToInputWeights->GetInfo());
209 if (params.m_CellToInputWeights != nullptr)
210 {
211 paramsInfo.m_CellToInputWeights = &(params.m_CellToInputWeights->GetInfo());
212 }
213 paramsInfo.m_InputGateBias = &(params.m_InputGateBias->GetInfo());
214 }
215
216 if (desc.m_ProjectionEnabled)
217 {
218 paramsInfo.m_ProjectionWeights = &(params.m_ProjectionWeights->GetInfo());
219 if (params.m_ProjectionBias != nullptr)
220 {
221 paramsInfo.m_ProjectionBias = &(params.m_ProjectionBias->GetInfo());
222 }
223 }
224
225 if (desc.m_PeepholeEnabled)
226 {
227 paramsInfo.m_CellToForgetWeights = &(params.m_CellToForgetWeights->GetInfo());
228 paramsInfo.m_CellToOutputWeights = &(params.m_CellToOutputWeights->GetInfo());
229 }
230
231 if (desc.m_LayerNormEnabled)
232 {
233 if(!desc.m_CifgEnabled)
234 {
235 paramsInfo.m_InputLayerNormWeights = &(params.m_InputLayerNormWeights->GetInfo());
236 }
237 paramsInfo.m_ForgetLayerNormWeights = &(params.m_ForgetLayerNormWeights->GetInfo());
238 paramsInfo.m_CellLayerNormWeights = &(params.m_CellLayerNormWeights->GetInfo());
239 paramsInfo.m_OutputLayerNormWeights = &(params.m_OutputLayerNormWeights->GetInfo());
240 }
241
242 bool isSupported = false;
243 armnn::BackendId setBackend;
244 auto validateFunc = [&](const armnn::TensorInfo& outputInfo, bool& isSupported)
245 {
246 FORWARD_LAYER_OPAQUE_SUPPORT_FUNC("LSTM",
247 tfLiteContext,
248 IsLstmSupported,
249 delegateData.m_Backends,
250 isSupported,
251 setBackend,
252 inputTensorInfo,
253 outputStateInInfo,
254 cellStateInInfo,
255 scratchBufferTensorInfo,
256 outputStateOutTensorInfo,
257 cellStateOutTensorInfo,
258 outputInfo,
259 desc,
260 paramsInfo);
261 };
262
263 if (!delegateData.m_Network)
264 {
265 validateFunc(outputTensorInfo, isSupported);
266 return isSupported ? kTfLiteOk : kTfLiteError;
267 }
268
Mike Kellya2806502023-08-03 10:42:11 +0100269 auto layerName = GetName(armnn::LayerType::Lstm, nodeIndex);
270 armnn::IConnectableLayer* layer = delegateData.m_Network->AddLstmLayer(desc, params, layerName.c_str());
Matthew Sloyan48ec8132023-04-27 17:04:47 +0100271 layer->SetBackendId(setBackend);
272 ARMNN_ASSERT(layer != nullptr);
273
274 layer->GetOutputSlot(0).SetTensorInfo(scratchBufferTensorInfo);
275 layer->GetOutputSlot(1).SetTensorInfo(outputStateOutTensorInfo);
276 layer->GetOutputSlot(2).SetTensorInfo(cellStateOutTensorInfo);
277 layer->GetOutputSlot(3).SetTensorInfo(outputTensorInfo);
278
279 // Connect the inputs
280 // input_layer
281 delegateData.m_OutputSlotForNode[inputTensors[0]]->Connect(layer->GetInputSlot(0));
282 // cellStateIn
283 delegateData.m_OutputSlotForNode[inputTensors[18]]->Connect(layer->GetInputSlot(1));
284 //outputStateIn
285 delegateData.m_OutputSlotForNode[inputTensors[19]]->Connect(layer->GetInputSlot(2));
286
287 // In the test_model there is only 1 Output
288 armnn::IOutputSlot& outputSlot = layer->GetOutputSlot(1);
289 delegateData.m_OutputSlotForNode[static_cast<unsigned long>(outputTensors[0])] = &outputSlot;
290
291 return kTfLiteOk;
292}
293
294} // namespace armnnOpaqueDelegate