blob: bbdcd1f855d88ca48761864cba8b753250f9263a [file] [log] [blame]
Cathal Corbettfd5bec42022-03-03 15:13:23 +00001//
Narumol Prangnawarat71311e42023-05-29 15:54:57 +01002// Copyright © 2022-2023 Arm Ltd and Contributors. All rights reserved.
Cathal Corbettfd5bec42022-03-03 15:13:23 +00003// SPDX-License-Identifier: MIT
4//
5
6#include "NeonUnidirectionalSequenceLstmFloatWorkload.hpp"
7#include "NeonWorkloadUtils.hpp"
8
9#include <aclCommon/ArmComputeUtils.hpp>
10#include <aclCommon/ArmComputeTensorUtils.hpp>
11
12#include <armnn/utility/NumericCast.hpp>
13#include <armnnUtils/Permute.hpp>
14#include <neon/test/NeonWorkloadFactoryHelper.hpp>
15#include <backendsCommon/WorkloadUtils.hpp>
16
17#include "neon/NeonTensorHandle.hpp"
18
19namespace
20{
21unsigned int CalcAclAxis(unsigned int numDimensions, unsigned int axis)
22{
23 return (numDimensions - axis) - 1;
24}
25} //namespace
26
27namespace armnn
28{
29using namespace armcomputetensorutils;
30
31NeonUnidirectionalSequenceLstmFloatWorkload::NeonUnidirectionalSequenceLstmFloatWorkload
32 (const UnidirectionalSequenceLstmQueueDescriptor& descriptor, const WorkloadInfo& info)
33 : FloatWorkload<UnidirectionalSequenceLstmQueueDescriptor>(descriptor, info)
34{
35 // Report Profiling Details
36 ARMNN_REPORT_PROFILING_WORKLOAD_DESC("NeonUnidirectionalSequenceLstmFloatWorkload_Construct",
37 descriptor.m_Parameters,
38 info,
39 GetGuid());
40
41 const arm_compute::ITensor& input = static_cast<IAclTensorHandle*>(m_Data.m_Inputs[0])->GetTensor();
Mike Kelly12994962022-04-21 11:57:09 +010042 arm_compute::ITensor& output = static_cast<IAclTensorHandle*>(m_Data.m_Outputs[2])->GetTensor();
Cathal Corbettfd5bec42022-03-03 15:13:23 +000043
44 TensorInfo inputInfo = info.m_InputTensorInfos[0];
45 TensorInfo outputInfo = info.m_OutputTensorInfos[0];
46
47 arm_compute::DataType armComputeDataType = static_cast<IAclTensorHandle*>(m_Data.m_Inputs[0])->GetDataType();
48 armnn::DataType armnnDataType = GetArmNNDataType(armComputeDataType);
49
50 TensorShape inputLayerShape = static_cast<IAclTensorHandle*>(m_Data.m_Inputs[0])->GetShape();
51 TensorShape cellStateLayerShape = static_cast<IAclTensorHandle*>(m_Data.m_Inputs[2])->GetShape();
Mike Kelly12994962022-04-21 11:57:09 +010052 TensorShape outputLayerShape = static_cast<IAclTensorHandle*>(m_Data.m_Outputs[2])->GetShape();
Cathal Corbettfd5bec42022-03-03 15:13:23 +000053
54 unsigned int maxTime = m_Data.m_Parameters.m_TimeMajor ? inputLayerShape[0] : inputLayerShape[1];
55 unsigned int batchSize = m_Data.m_Parameters.m_TimeMajor ? inputLayerShape[1] : inputLayerShape[0];
56 unsigned int inputSize = inputLayerShape[2];
57 unsigned int outputSize = outputLayerShape[2];
58 unsigned int numUnits = cellStateLayerShape[1];
59
60 const TensorShape timeMajorShapeInput({maxTime, batchSize, inputSize});
61 const TensorShape timeMajorShapeOutput({maxTime, batchSize, outputSize});
62
63 //
64 // Permute: performed if Unidirectional Sequence Layer inputs/outputs are in batch major format.
65 //
66 if (!m_Data.m_Parameters.m_TimeMajor)
67 {
68 std::unique_ptr<arm_compute::NEPermute> layer(new arm_compute::NEPermute());
69
70 TensorInfo permuteOutInfo = inputInfo;
71 permuteOutInfo.SetShape(timeMajorShapeInput);
72 BuildArmComputeTensor(m_PermuteFirstOut, permuteOutInfo);
73 armcomputetensorutils::InitialiseArmComputeTensorEmpty(m_PermuteFirstOut);
74
75 // Permute to time major format.
76 layer->configure(&input, &m_PermuteFirstOut, arm_compute::PermutationVector(0U,2U,1U));
77 m_Permute1.reset(layer.release());
78 }
79
80 //
81 // Split and Concat Tensors
82 //
83 for (unsigned int i = 0; i < maxTime; ++i)
84 {
85 arm_compute::Tensor splitter_out;
86 arm_compute::Tensor concat_in;
87
88 auto splitterTensorInfo = inputInfo;
89 auto concatTensorInfo = outputInfo;
90 splitterTensorInfo.SetShape({batchSize, inputSize});
91 concatTensorInfo.SetShape({batchSize, outputSize});
92 BuildArmComputeTensor(splitter_out, splitterTensorInfo);
93 BuildArmComputeTensor(concat_in, concatTensorInfo);
94
95 armcomputetensorutils::InitialiseArmComputeTensorEmpty(splitter_out);
96 armcomputetensorutils::InitialiseArmComputeTensorEmpty(concat_in);
97
98 // append to std::vector<arm_compute::Tensor>
99 m_SplitterOutputsTensors.push_back(std::move(splitter_out));
100 m_ConcatInputsTensors.push_back(std::move(concat_in));
101 }
102
103 for (unsigned int i = 0; i < maxTime; ++i)
104 {
105 // append to std::vector<arm_compute::ITensor*>
106 m_SplitterOutputs.push_back(&m_SplitterOutputsTensors[i]);
107 m_ConcatInputs.push_back(&m_ConcatInputsTensors[i]);
108 }
109
110 //
111 // Split
112 //
113 unsigned int numberDimensions = 3;
114 unsigned int dimension = 0; // splitting on 0-dimension (i.e. maxTime dimension)
115
116 if (maxTime != 1) // ACL split does not work with only one element to split.
117 {
118 ViewsDescriptor splitterDesc(maxTime, numberDimensions);
119 unsigned int splitterDimSizes[3] = {1, batchSize, inputSize};
120 for (unsigned int outputIdx = 0u; outputIdx < maxTime; ++outputIdx)
121 {
122 splitterDesc.SetViewOriginCoord(outputIdx, dimension, splitterDimSizes[dimension] * outputIdx);
123 for (unsigned int dimIdx = 0u; dimIdx < numberDimensions; ++dimIdx)
124 {
125 splitterDesc.SetViewSize(outputIdx, dimIdx, splitterDimSizes[dimIdx]);
126 }
127 }
128
129 std::set<unsigned int> splitAxis = ComputeSplitAxis(splitterDesc, timeMajorShapeInput);
130
131 std::unique_ptr<arm_compute::NESplit> split_layer(new arm_compute::NESplit());
132 unsigned int aclAxisSplit = CalcAclAxis(splitterDesc.GetNumDimensions(),
133 *splitAxis.begin());
134 if (!m_Data.m_Parameters.m_TimeMajor)
135 {
136 split_layer->configure(&m_PermuteFirstOut, m_SplitterOutputs, aclAxisSplit);
137 } else
138 {
139 split_layer->configure(&input, m_SplitterOutputs, aclAxisSplit);
140 }
141
142 split_layer->prepare();
143 m_Splitter.reset(split_layer.release());
144 }
145
146 //
147 // Lstm
148 //
149 arm_compute::LSTMParams<arm_compute::ITensor> lstm_param;
150
151 m_InputToForgetWeightsTensor = std::make_unique<arm_compute::Tensor>();
152 BuildArmComputeTensor(*m_InputToForgetWeightsTensor, m_Data.m_InputToForgetWeights->GetTensorInfo());
153
154 m_InputToCellWeightsTensor = std::make_unique<arm_compute::Tensor>();
155 BuildArmComputeTensor(*m_InputToCellWeightsTensor, m_Data.m_InputToCellWeights->GetTensorInfo());
156
157 m_InputToOutputWeightsTensor = std::make_unique<arm_compute::Tensor>();
158 BuildArmComputeTensor(*m_InputToOutputWeightsTensor, m_Data.m_InputToOutputWeights->GetTensorInfo());
159
160 m_RecurrentToForgetWeightsTensor = std::make_unique<arm_compute::Tensor>();
161 BuildArmComputeTensor(*m_RecurrentToForgetWeightsTensor, m_Data.m_RecurrentToForgetWeights->GetTensorInfo());
162
163 m_RecurrentToCellWeightsTensor = std::make_unique<arm_compute::Tensor>();
164 BuildArmComputeTensor(*m_RecurrentToCellWeightsTensor, m_Data.m_RecurrentToCellWeights->GetTensorInfo());
165
166 m_RecurrentToOutputWeightsTensor = std::make_unique<arm_compute::Tensor>();
167 BuildArmComputeTensor(*m_RecurrentToOutputWeightsTensor, m_Data.m_RecurrentToOutputWeights->GetTensorInfo());
168
169 m_ForgetGateBiasTensor = std::make_unique<arm_compute::Tensor>();
170 BuildArmComputeTensor(*m_ForgetGateBiasTensor, m_Data.m_ForgetGateBias->GetTensorInfo());
171
172 m_CellBiasTensor = std::make_unique<arm_compute::Tensor>();
173 BuildArmComputeTensor(*m_CellBiasTensor, m_Data.m_CellBias->GetTensorInfo());
174
175 m_OutputGateBiasTensor = std::make_unique<arm_compute::Tensor>();
176 BuildArmComputeTensor(*m_OutputGateBiasTensor, m_Data.m_OutputGateBias->GetTensorInfo());
177
178 // for future reference: check the AndroidNN API for the logic here
179 if (!m_Data.m_Parameters.m_CifgEnabled)
180 {
181 m_InputToInputWeightsTensor = std::make_unique<arm_compute::Tensor>();
182 BuildArmComputeTensor(*m_InputToInputWeightsTensor, m_Data.m_InputToInputWeights->GetTensorInfo());
183
184 m_RecurrentToInputWeightsTensor = std::make_unique<arm_compute::Tensor>();
185 BuildArmComputeTensor(*m_RecurrentToInputWeightsTensor, m_Data.m_RecurrentToInputWeights->GetTensorInfo());
186
187 m_CellToInputWeightsTensor = std::make_unique<arm_compute::Tensor>();
188 if (m_Data.m_CellToInputWeights != nullptr)
189 {
190 BuildArmComputeTensor(*m_CellToInputWeightsTensor, m_Data.m_CellToInputWeights->GetTensorInfo());
191 }
192
193 m_InputGateBiasTensor = std::make_unique<arm_compute::Tensor>();
194 BuildArmComputeTensor(*m_InputGateBiasTensor, m_Data.m_InputGateBias->GetTensorInfo());
195
196 lstm_param.set_cifg_params(m_InputToInputWeightsTensor.get(),
197 m_RecurrentToInputWeightsTensor.get(),
198 m_Data.m_CellToInputWeights ? m_CellToInputWeightsTensor.get() : nullptr,
199 m_InputGateBiasTensor.get());
200 }
201
202 if (m_Data.m_Parameters.m_ProjectionEnabled)
203 {
204 m_ProjectionWeightsTensor = std::make_unique<arm_compute::Tensor>();
205 BuildArmComputeTensor(*m_ProjectionWeightsTensor, m_Data.m_ProjectionWeights->GetTensorInfo());
206
207 m_ProjectionBiasTensor = std::make_unique<arm_compute::Tensor>();
208 if (m_Data.m_ProjectionBias != nullptr)
209 {
210 BuildArmComputeTensor(*m_ProjectionBiasTensor, m_Data.m_ProjectionBias->GetTensorInfo());
211 }
212
213 lstm_param.set_projection_params(m_ProjectionWeightsTensor.get(),
214 m_Data.m_ProjectionBias ? m_ProjectionBiasTensor.get() : nullptr);
215 }
216
217 if (m_Data.m_Parameters.m_PeepholeEnabled)
218 {
219 m_CellToForgetWeightsTensor = std::make_unique<arm_compute::Tensor>();
220 BuildArmComputeTensor(*m_CellToForgetWeightsTensor, m_Data.m_CellToForgetWeights->GetTensorInfo());
221
222 m_CellToOutputWeightsTensor = std::make_unique<arm_compute::Tensor>();
223 BuildArmComputeTensor(*m_CellToOutputWeightsTensor, m_Data.m_CellToOutputWeights->GetTensorInfo());
224
225 lstm_param.set_peephole_params(m_CellToForgetWeightsTensor.get(), m_CellToOutputWeightsTensor.get());
226 }
227
228 if (m_Data.m_Parameters.m_LayerNormEnabled)
229 {
230 m_InputLayerNormWeightsTensor = std::make_unique<arm_compute::Tensor>();
231 if (!m_Data.m_Parameters.m_CifgEnabled)
232 {
233 BuildArmComputeTensor(*m_InputLayerNormWeightsTensor, m_Data.m_InputLayerNormWeights->GetTensorInfo());
234 }
235
236 m_ForgetLayerNormWeightsTensor = std::make_unique<arm_compute::Tensor>();
237 BuildArmComputeTensor(*m_ForgetLayerNormWeightsTensor, m_Data.m_ForgetLayerNormWeights->GetTensorInfo());
238
239 m_CellLayerNormWeightsTensor = std::make_unique<arm_compute::Tensor>();
240 BuildArmComputeTensor(*m_CellLayerNormWeightsTensor, m_Data.m_CellLayerNormWeights->GetTensorInfo());
241
242 m_OutputLayerNormWeightsTensor = std::make_unique<arm_compute::Tensor>();
243 BuildArmComputeTensor(*m_OutputLayerNormWeightsTensor, m_Data.m_OutputLayerNormWeights->GetTensorInfo());
244
245 auto inputNormWeightTensor = m_Data.m_Parameters.m_CifgEnabled ? nullptr : m_InputLayerNormWeightsTensor.get();
246 lstm_param.set_layer_normalization_params(inputNormWeightTensor,
247 m_ForgetLayerNormWeightsTensor.get(),
248 m_CellLayerNormWeightsTensor.get(),
249 m_OutputLayerNormWeightsTensor.get());
250 }
251
252 arm_compute::ITensor& output_state_in = static_cast<IAclTensorHandle*>(m_Data.m_Inputs[1])->GetTensor();
253 arm_compute::ITensor& cell_state_in = static_cast<IAclTensorHandle*>(m_Data.m_Inputs[2])->GetTensor();
254
255 arm_compute::ITensor& output_state_out = static_cast<IAclTensorHandle*>(m_Data.m_Inputs[1])->GetTensor();
256 arm_compute::ITensor& cell_state_out = static_cast<IAclTensorHandle*>(m_Data.m_Inputs[2])->GetTensor();
257
258 m_ScratchBuffer = std::make_unique<arm_compute::Tensor>();
259 if (m_Data.m_Parameters.m_CifgEnabled)
260 {
261 // scratch_buffer [num_units * 3, batch_size] with CIFG
262 BuildArmComputeTensor(*m_ScratchBuffer, TensorInfo({batchSize, numUnits * 3}, armnnDataType));
263 }
264 else
265 {
266 // scratch_buffer [num_units * 4, batch_size] without CIFG
267 BuildArmComputeTensor(*m_ScratchBuffer, TensorInfo({batchSize, numUnits * 4}, armnnDataType));
268 }
269
270 // Need to be set at negative threshold to be compatible for ACL
271 float cell_threshold = m_Data.m_Parameters.m_ClippingThresCell;
272 float projection_threshold = m_Data.m_Parameters.m_ClippingThresProj;
273
274 // For preparing the object for the class ActivationLayerInfo, consider 5 situations
275 arm_compute::ActivationLayerInfo activationLayerInfo =
276 ConvertLstmActivationFuncToAclLayerInfo(m_Data.m_Parameters.m_ActivationFunc);
277
278 for (unsigned int i = 0; i != maxTime; ++i)
279 {
280 // Set LSTM input and output ITensors depending on:
281 // input format (timeMajor) & number of LSTM batches (maxTime).
282 arm_compute::ITensor* outputLSTM;
283 arm_compute::ITensor* inputLSTM;
284
285 // If there is only one LSTM time major batch, we will not concat OR permute.
286 // Set input of LSTM to be first input ITensor.
287 // Set output of LSTM to be final output ITensor.
288 // LSTM input/output cannot be > 2 dimensions so need to resize its TensorInfo.
289 if (maxTime == 1 && m_Data.m_Parameters.m_TimeMajor)
290 {
Mike Kelly12994962022-04-21 11:57:09 +0100291 TensorShape inputShape = GetTensorShape(input.info()->tensor_shape(), 1U);
Cathal Corbettfd5bec42022-03-03 15:13:23 +0000292 TensorShape outputShape = GetTensorShape((&output)->info()->tensor_shape(), 1U);
293
294 TensorShape inputShapeShrink({inputShape[1], inputShape[2]});
295 TensorShape outputShapeShrink({outputShape[1], outputShape[2]});
296
297 auto acl_input_shape_shrink = BuildArmComputeTensorShape(inputShapeShrink);
298 auto acl_output_shape_shrink = BuildArmComputeTensorShape(outputShapeShrink);
299
Mike Kelly12994962022-04-21 11:57:09 +0100300 input.info()->set_tensor_shape(acl_input_shape_shrink);
Cathal Corbettfd5bec42022-03-03 15:13:23 +0000301 inputLSTM = const_cast<arm_compute::ITensor*>(&input);
302
Mike Kelly12994962022-04-21 11:57:09 +0100303 output.info()->set_tensor_shape(acl_output_shape_shrink);
Cathal Corbettfd5bec42022-03-03 15:13:23 +0000304 outputLSTM = &output;
305 }
306 // If there is only one LSTM batch major batch, we will not concat, only permute.
307 // Set input of LSTM to be output of initial permute.
308 // Set output of LSTM to be first element of m_ConcatInputs & use that value later in permute.
309 // LSTM output cannot be > 2 dimensions so need to resize its TensorInfo.
310 else if (maxTime == 1 && !m_Data.m_Parameters.m_TimeMajor)
311 {
312 TensorShape inputShape = GetTensorShape(m_PermuteFirstOut.info()->tensor_shape(), 1U);
313 TensorShape inputShapeShrink({inputShape[1], inputShape[2]});
314 auto acl_input_shape_shrink = BuildArmComputeTensorShape(inputShapeShrink);
315 m_PermuteFirstOut.info()->set_tensor_shape(acl_input_shape_shrink);
316 inputLSTM = &m_PermuteFirstOut;
317
318 outputLSTM = const_cast<arm_compute::ITensor*>(m_ConcatInputs[i]);
319 }
320 // Batch major AND/OR 2+ LSTM batches so will use concat AND/OR permute later on.
321 else
322 {
323 inputLSTM = m_SplitterOutputs[i];
324 outputLSTM = const_cast<arm_compute::ITensor*>(m_ConcatInputs[i]);
325 }
326
327 std::unique_ptr<arm_compute::NELSTMLayer> lstm_layer(new arm_compute::NELSTMLayer());
328 lstm_layer->configure(inputLSTM,
329 m_InputToForgetWeightsTensor.get(),
330 m_InputToCellWeightsTensor.get(),
331 m_InputToOutputWeightsTensor.get(),
332 m_RecurrentToForgetWeightsTensor.get(),
333 m_RecurrentToCellWeightsTensor.get(),
334 m_RecurrentToOutputWeightsTensor.get(),
335 m_ForgetGateBiasTensor.get(),
336 m_CellBiasTensor.get(),
337 m_OutputGateBiasTensor.get(),
338 &output_state_in,
339 &cell_state_in,
340 m_ScratchBuffer.get(),
341 &output_state_out,
342 &cell_state_out,
343 outputLSTM,
344 lstm_param,
345 activationLayerInfo,
346 cell_threshold,
347 projection_threshold);
348
349 m_Layers.emplace_back(std::move(lstm_layer));
350 }
351
352 armcomputetensorutils::InitialiseArmComputeTensorEmpty(*m_ScratchBuffer);
353
354 InitializeArmComputeTensorData(*m_InputToForgetWeightsTensor, m_Data.m_InputToForgetWeights);
355 InitializeArmComputeTensorData(*m_InputToCellWeightsTensor, m_Data.m_InputToCellWeights);
356 InitializeArmComputeTensorData(*m_InputToOutputWeightsTensor, m_Data.m_InputToOutputWeights);
357 InitializeArmComputeTensorData(*m_RecurrentToForgetWeightsTensor, m_Data.m_RecurrentToForgetWeights);
358 InitializeArmComputeTensorData(*m_RecurrentToCellWeightsTensor, m_Data.m_RecurrentToCellWeights);
359 InitializeArmComputeTensorData(*m_RecurrentToOutputWeightsTensor, m_Data.m_RecurrentToOutputWeights);
360 InitializeArmComputeTensorData(*m_ForgetGateBiasTensor, m_Data.m_ForgetGateBias);
361 InitializeArmComputeTensorData(*m_CellBiasTensor, m_Data.m_CellBias);
362 InitializeArmComputeTensorData(*m_OutputGateBiasTensor, m_Data.m_OutputGateBias);
363
364 if (!m_Data.m_Parameters.m_CifgEnabled)
365 {
366 InitializeArmComputeTensorData(*m_InputToInputWeightsTensor, m_Data.m_InputToInputWeights);
367 InitializeArmComputeTensorData(*m_RecurrentToInputWeightsTensor, m_Data.m_RecurrentToInputWeights);
368 if (m_Data.m_CellToInputWeights != nullptr)
369 {
370 InitializeArmComputeTensorData(*m_CellToInputWeightsTensor, m_Data.m_CellToInputWeights);
371 }
372 InitializeArmComputeTensorData(*m_InputGateBiasTensor, m_Data.m_InputGateBias);
373 }
374
375 if (m_Data.m_Parameters.m_ProjectionEnabled)
376 {
377 InitializeArmComputeTensorData(*m_ProjectionWeightsTensor, m_Data.m_ProjectionWeights);
378 if (m_Data.m_ProjectionBias != nullptr)
379 {
380 InitializeArmComputeTensorData(*m_ProjectionBiasTensor, m_Data.m_ProjectionBias);
381 }
382 }
383
384 if (m_Data.m_Parameters.m_PeepholeEnabled)
385 {
386 InitializeArmComputeTensorData(*m_CellToForgetWeightsTensor, m_Data.m_CellToForgetWeights);
387 InitializeArmComputeTensorData(*m_CellToOutputWeightsTensor, m_Data.m_CellToOutputWeights);
388 }
389
390 if (m_Data.m_Parameters.m_LayerNormEnabled)
391 {
392 if (!m_Data.m_Parameters.m_CifgEnabled)
393 {
394 InitializeArmComputeTensorData(*m_InputLayerNormWeightsTensor, m_Data.m_InputLayerNormWeights);
395 }
396 InitializeArmComputeTensorData(*m_ForgetLayerNormWeightsTensor, m_Data.m_ForgetLayerNormWeights);
397 InitializeArmComputeTensorData(*m_CellLayerNormWeightsTensor, m_Data.m_CellLayerNormWeights);
398 InitializeArmComputeTensorData(*m_OutputLayerNormWeightsTensor, m_Data.m_OutputLayerNormWeights);
399 }
400
401 // Force Compute Library to perform the necessary copying and reshaping.
402 // After which delete all the input tensors that will no longer be needed.
403 for (uint32_t i = 0; i < m_Layers.size(); ++i)
404 {
405 m_Layers[i]->prepare();
406 }
407
408 //
409 // Concat
410 //
411
412 // Expand dimensions of LSTM outputs adding one empty dimension to fit concatenate inputs.
413 TensorShape shape = GetTensorShape(m_ConcatInputs[0]->info()->tensor_shape(), 1U);
414 TensorShape shapeExpandTimeMajor({1, shape[0], shape[1]});
415 TensorShape shapeExpandBatchMajor({shape[0], 1, shape[1]});
416
417 if (maxTime != 1) // ACL concat does not work with only one element to concatenate.
418 {
419 for (unsigned int i = 0; i < maxTime; ++i)
420 {
421 m_ConcatInputs[i]->info()->set_tensor_shape(BuildArmComputeTensorShape(shapeExpandTimeMajor));
422 }
423
424 ConcatDescriptor concatDescriptor(maxTime, numberDimensions); // maxTime = num inputs (aka. number of views).
425 for (unsigned int inputIdx = 0u; inputIdx < maxTime; ++inputIdx)
426 {
427 concatDescriptor.SetViewOriginCoord(inputIdx, dimension, inputIdx);
428 concatDescriptor.SetConcatAxis(dimension);
429 }
430
431 m_Concat.reset(new arm_compute::NEConcatenateLayer());
432 unsigned int aclAxisConcat = CalcAclAxis(concatDescriptor.GetNumDimensions(), concatDescriptor.GetConcatAxis());
433 if (!m_Data.m_Parameters.m_TimeMajor)
434 {
Mike Kelly12994962022-04-21 11:57:09 +0100435 TensorInfo concatOutputTensorInfo = outputInfo;
436 concatOutputTensorInfo.SetShape(timeMajorShapeOutput);
437 BuildArmComputeTensor(concat_out, concatOutputTensorInfo);
Cathal Corbettfd5bec42022-03-03 15:13:23 +0000438 armcomputetensorutils::InitialiseArmComputeTensorEmpty(concat_out);
439
440 m_Concat->configure(m_ConcatInputs, &concat_out, aclAxisConcat);
441 }
442 else
443 {
444 m_Concat->configure(m_ConcatInputs, &output, aclAxisConcat);
445 }
446
447 m_Concat->prepare();
448 }
449 // If only one LSTM batch, we do not concat and/or permute.
450 // Must ensure final output info is expanded to correct batch major dimensions.
451 else
452 {
453 if (!m_Data.m_Parameters.m_TimeMajor)
454 {
Mike Kelly12994962022-04-21 11:57:09 +0100455 output.info()->set_tensor_shape(BuildArmComputeTensorShape(shapeExpandBatchMajor));
Cathal Corbettfd5bec42022-03-03 15:13:23 +0000456 }
457 else
458 {
Mike Kelly12994962022-04-21 11:57:09 +0100459 output.info()->set_tensor_shape(BuildArmComputeTensorShape(shapeExpandTimeMajor));
Cathal Corbettfd5bec42022-03-03 15:13:23 +0000460 }
461 }
462
463 //
464 // Permute: only done if input/output are in batch major format.
465 //
466 if (!m_Data.m_Parameters.m_TimeMajor)
467 {
468 // Output now time major. Permute output back to batch major.
469 std::unique_ptr<arm_compute::NEPermute> layer(new arm_compute::NEPermute());
470 if (maxTime != 1)
471 {
472 layer->configure(&concat_out, &output, arm_compute::PermutationVector(0U, 2U, 1U));
473 }
474 else
475 {
476 layer->configure(m_ConcatInputs[0], &output, arm_compute::PermutationVector(0U, 2U, 1U));
477 }
478 m_Permute2.reset(layer.release());
479 }
480
481 FreeUnusedTensors();
482}
483
484void NeonUnidirectionalSequenceLstmFloatWorkload::Execute() const
485{
Mike Kelly7cbe7812023-07-25 17:37:33 +0100486 ARMNN_SCOPED_PROFILING_EVENT_NEON_NAME_GUID("NeonUnidirectionalSequenceLstmFloatWorkload_Execute");
Cathal Corbettfd5bec42022-03-03 15:13:23 +0000487 if (m_Permute1)
488 {
489 m_Permute1->run();
490 }
491 if (m_Splitter)
492 {
493 m_Splitter->run();
494 }
495 for (uint32_t i = 0; i < m_Layers.size(); ++i)
496 {
497 m_Layers[i]->run();
498 }
499 if (m_Concat)
500 {
501 m_Concat->run();
502 }
503 if (m_Permute2)
504 {
505 m_Permute2->run();
506 }
507}
508
509arm_compute::Status
510NeonUnidirectionalSequenceLstmFloatWorkloadValidate(const TensorInfo& input,
511 const TensorInfo& outputStateIn,
512 const TensorInfo& cellStateIn,
Mike Kelly12994962022-04-21 11:57:09 +0100513 const TensorInfo& outputStateOut,
514 const TensorInfo& cellStateOut,
Cathal Corbettfd5bec42022-03-03 15:13:23 +0000515 const TensorInfo& output,
Cathal Corbettfd5bec42022-03-03 15:13:23 +0000516 const UnidirectionalSequenceLstmDescriptor& descriptor,
517 const LstmInputParamsInfo& paramsInfo)
518{
Cathal Corbettfd5bec42022-03-03 15:13:23 +0000519 TensorShape inputLayerShape = input.GetShape();
Narumol Prangnawarat270641b2023-05-22 10:57:47 +0100520 TensorShape outputLayerShape = output.GetShape();
Cathal Corbettfd5bec42022-03-03 15:13:23 +0000521
Narumol Prangnawarat71311e42023-05-29 15:54:57 +0100522 if (inputLayerShape.GetNumDimensions() != 3)
523 {
524 return arm_compute::Status(arm_compute::ErrorCode::RUNTIME_ERROR,
525 "Unidirectional Sequence LSTM layer validate status failed.");
526 }
527
Cathal Corbettfd5bec42022-03-03 15:13:23 +0000528 unsigned int maxTime = descriptor.m_TimeMajor ? inputLayerShape[0] : inputLayerShape[1];
529 unsigned int batchSize = descriptor.m_TimeMajor ? inputLayerShape[1] : inputLayerShape[0];
530 unsigned int inputSize = inputLayerShape[2];
531 unsigned int outputSize = outputLayerShape[2];
532
533 const TensorShape timeMajorShapeInput({maxTime, batchSize, inputSize});
534 const TensorShape timeMajorShapeOutput({maxTime, batchSize, outputSize});
535
536 arm_compute::Status statusPermute1 = arm_compute::Status(arm_compute::ErrorCode::OK,
537 "Permute1 status");
538 arm_compute::Status statusSplit = arm_compute::Status(arm_compute::ErrorCode::OK,
539 "Split status");
540 arm_compute::Status statusLSTM = arm_compute::Status(arm_compute::ErrorCode::OK,
541 "LSTM status");
542 arm_compute::Status statusConcat = arm_compute::Status(arm_compute::ErrorCode::OK,
543 "Concat status");
544 arm_compute::Status statusPermute2 = arm_compute::Status(arm_compute::ErrorCode::OK,
545 "Permute2 status");
546
547 const arm_compute::TensorInfo aclInputInfo = armcomputetensorutils::BuildArmComputeTensorInfo(input);
548 const arm_compute::TensorInfo aclOutputInfo = armcomputetensorutils::BuildArmComputeTensorInfo(output);
549
550 //
551 // Permute validate
552 //
Narumol Prangnawarat71311e42023-05-29 15:54:57 +0100553 TensorInfo permuteOutInfo = armnnUtils::Permuted(input, { 1U, 0U, 2U });
Cathal Corbettfd5bec42022-03-03 15:13:23 +0000554 arm_compute::TensorInfo aclPermuteOutInfo = armcomputetensorutils::BuildArmComputeTensorInfo(permuteOutInfo);
555 if (!descriptor.m_TimeMajor)
556 {
557 statusPermute1 = arm_compute::NEPermute::validate(&aclInputInfo,
558 &aclPermuteOutInfo,
559 arm_compute::PermutationVector(0U, 2U, 1U));
560 }
561
562 //
563 // Split and Concat Tensors validate
564 //
565 std::vector<arm_compute::TensorInfo> splitterOutputsTensorInfos;
566 std::vector<arm_compute::TensorInfo> concatInputsTensorInfos;
567 std::vector<arm_compute::ITensorInfo*> splitterOutputsTensorInfosPtr;
568 std::vector<const arm_compute::ITensorInfo*> concatInputsTensorInfosPtr;
569 splitterOutputsTensorInfos.reserve(maxTime);
570 concatInputsTensorInfos.reserve(maxTime);
571 for (unsigned int i = 0; i < maxTime; ++i)
572 {
573 arm_compute::TensorInfo splitter_out;
574 arm_compute::TensorInfo concat_in;
575
576 auto splitterTensorInfo = TensorInfo(input);
577 auto concatTensorInfo = TensorInfo(output);
578 splitterTensorInfo.SetShape({batchSize, inputSize});
579 concatTensorInfo.SetShape({batchSize, outputSize});
580
581 arm_compute::TensorInfo aclSplitterTensorInfo
582 = armcomputetensorutils::BuildArmComputeTensorInfo(splitterTensorInfo);
583 arm_compute::TensorInfo aclConcatTensorInfo
584 = armcomputetensorutils::BuildArmComputeTensorInfo(concatTensorInfo);
585
586 splitterOutputsTensorInfos.emplace_back(aclSplitterTensorInfo);
587 concatInputsTensorInfos.emplace_back(aclConcatTensorInfo);
588 splitterOutputsTensorInfosPtr.emplace_back(&splitterOutputsTensorInfos[i]);
589 concatInputsTensorInfosPtr.emplace_back(&concatInputsTensorInfos[i]);
590 }
591
592 //
593 // Split validate
594 //
595 unsigned int numberDimensions = 3;
596 unsigned int dimension = 0; // splitting on 0-dimension (i.e. maxTime dimension)
597 unsigned int aclAxisSplit = CalcAclAxis(numberDimensions, dimension);
598
599 if (maxTime != 1) // ACL split does not work with only one element to split.
600 {
601 if (!descriptor.m_TimeMajor)
602 {
603 statusSplit = arm_compute::NESplit::validate(&aclPermuteOutInfo,
604 splitterOutputsTensorInfosPtr,
605 aclAxisSplit);
Narumol Prangnawarat5f941242023-08-11 16:09:26 +0100606 }
607 else
Cathal Corbettfd5bec42022-03-03 15:13:23 +0000608 {
609 statusSplit = arm_compute::NESplit::validate(&aclInputInfo, splitterOutputsTensorInfosPtr, aclAxisSplit);
610 }
611 }
612
613 //
614 // LSTM validate
615 //
616
617 arm_compute::LSTMParams<arm_compute::ITensorInfo> lstm_params_info;
618
Narumol Prangnawarat71311e42023-05-29 15:54:57 +0100619 unsigned int numUnits = cellStateIn.GetShape()[1];
620 unsigned int scratchBufferFactor = 4;
621
622 if (descriptor.m_CifgEnabled)
623 {
624 // scratchBuffer = { batchSize, numUnits * 3 } with CIFG
625 scratchBufferFactor = 3;
626 }
627
628 const TensorInfo& scratchBuffer = TensorInfo({ batchSize, numUnits * scratchBufferFactor }, input.GetDataType());
Cathal Corbettfd5bec42022-03-03 15:13:23 +0000629
630 // The inputs and outputs
631 const arm_compute::TensorInfo aclOutputStateInInfo = BuildArmComputeTensorInfo(outputStateIn);
632 const arm_compute::TensorInfo aclCellStateInInfo = BuildArmComputeTensorInfo(cellStateIn);
633 const arm_compute::TensorInfo aclScratchBufferInfo = BuildArmComputeTensorInfo(scratchBuffer);
634 const arm_compute::TensorInfo aclOutputStateOutInfo = BuildArmComputeTensorInfo(outputStateOut);
635 const arm_compute::TensorInfo aclCellStateOutInfo = BuildArmComputeTensorInfo(cellStateOut);
636
637 // Basic parameters
638 const arm_compute::TensorInfo aclInputToForgetWeightsInfo
639 = BuildArmComputeTensorInfo(paramsInfo.GetInputToForgetWeights());
640 const arm_compute::TensorInfo aclInputToCellWeightsInfo
641 = BuildArmComputeTensorInfo(paramsInfo.GetInputToCellWeights());
642 const arm_compute::TensorInfo aclInputToOutputWeightsInfo
643 = BuildArmComputeTensorInfo(paramsInfo.GetInputToOutputWeights());
644 const arm_compute::TensorInfo aclRecurrentToForgetWeightsInfo
645 = BuildArmComputeTensorInfo(paramsInfo.GetRecurrentToForgetWeights());
646 const arm_compute::TensorInfo aclRecurrentToCellWeightsInfo
647 = BuildArmComputeTensorInfo(paramsInfo.GetRecurrentToCellWeights());
648 const arm_compute::TensorInfo aclRecurrentToOutputWeightsInfo
649 = BuildArmComputeTensorInfo(paramsInfo.GetRecurrentToOutputWeights());
650 const arm_compute::TensorInfo aclForgetGateBiasInfo
651 = BuildArmComputeTensorInfo(paramsInfo.GetForgetGateBias());
652 const arm_compute::TensorInfo aclCellBiasInfo
653 = BuildArmComputeTensorInfo(paramsInfo.GetCellBias());
654 const arm_compute::TensorInfo aclOutputGateBiasInfo
655 = BuildArmComputeTensorInfo(paramsInfo.GetOutputGateBias());
656
657 arm_compute::TensorInfo aclInputToInputWeightsInfo;
658 arm_compute::TensorInfo aclRecurrentToInputWeightsInfo;
659 arm_compute::TensorInfo aclCellToInputWeightsInfo;
660 arm_compute::TensorInfo aclInputGateBiasInfo;
661 arm_compute::TensorInfo aclProjectionWeightsInfo;
662 arm_compute::TensorInfo aclProjectionBiasInfo;
663 arm_compute::TensorInfo aclCellToForgetWeightsInfo;
664 arm_compute::TensorInfo aclCellToOutputWeightsInfo;
665
666 arm_compute::TensorInfo aclInputLayerNormWeightsInfo;
667 arm_compute::TensorInfo aclForgetLayerNormWeightsInfo;
668 arm_compute::TensorInfo aclCellLayerNormWeightsInfo;
669 arm_compute::TensorInfo aclOutputLayerNormWeightsInfo;
670
671
672 if (!descriptor.m_CifgEnabled)
673 {
674 if (descriptor.m_PeepholeEnabled)
675 {
676 aclCellToInputWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetCellToInputWeights());
677 }
678 aclInputToInputWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetInputToInputWeights());
679 aclRecurrentToInputWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetRecurrentToInputWeights());
680 aclInputGateBiasInfo = BuildArmComputeTensorInfo(paramsInfo.GetInputGateBias());
681
682 lstm_params_info.set_cifg_params(&aclInputToInputWeightsInfo,
683 &aclRecurrentToInputWeightsInfo,
684 descriptor.m_PeepholeEnabled ? &aclCellToInputWeightsInfo : nullptr,
685 &aclInputGateBiasInfo);
686 }
687
688 if (descriptor.m_ProjectionEnabled)
689 {
690 if (paramsInfo.m_ProjectionBias != nullptr)
691 {
692 aclProjectionBiasInfo = BuildArmComputeTensorInfo(paramsInfo.GetProjectionBias());
693 }
694 aclProjectionWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetProjectionWeights());
695
696 lstm_params_info.set_projection_params(&aclProjectionWeightsInfo,
697 paramsInfo.m_ProjectionBias ? &aclProjectionBiasInfo : nullptr);
698 }
699
700 if (descriptor.m_PeepholeEnabled)
701 {
702 aclCellToForgetWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetCellToForgetWeights());
703 aclCellToOutputWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetCellToOutputWeights());
704
705 lstm_params_info.set_peephole_params(&aclCellToForgetWeightsInfo, &aclCellToOutputWeightsInfo);
706 }
707
708 if (descriptor.m_LayerNormEnabled)
709 {
710 if (!descriptor.m_CifgEnabled)
711 {
712 aclInputLayerNormWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetInputLayerNormWeights());
713 }
714 aclForgetLayerNormWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetForgetLayerNormWeights());
715 aclCellLayerNormWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetCellLayerNormWeights());
716 aclOutputLayerNormWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetOutputLayerNormWeights());
717
718 lstm_params_info.set_layer_normalization_params(descriptor.m_CifgEnabled ? nullptr :
Mike Kelly12994962022-04-21 11:57:09 +0100719 &aclInputLayerNormWeightsInfo,
Cathal Corbettfd5bec42022-03-03 15:13:23 +0000720 &aclForgetLayerNormWeightsInfo,
721 &aclCellLayerNormWeightsInfo,
722 &aclOutputLayerNormWeightsInfo);
723 }
724
725 // Need to be set at negative threshold to be compatible for ACL
726 float cell_threshold = descriptor.m_ClippingThresCell;
727 float projection_threshold = descriptor.m_ClippingThresProj;
728
729 arm_compute::ActivationLayerInfo activationLayerInfo =
730 ConvertLstmActivationFuncToAclLayerInfo(descriptor.m_ActivationFunc);
731
732 for (unsigned int i = 0; i != maxTime; ++i)
733 {
734
735 // Set LSTM input and output ITensors depending on:
736 // input format (timeMajor) & number of LSTM batches (maxTime).
737 arm_compute::ITensorInfo* outputLSTM;
738 arm_compute::ITensorInfo* inputLSTM;
739
740 // If there is only one LSTM time major batch, we will not concat OR permute.
741 // Set input of LSTM to be first input ITensor.
742 // Set output of LSTM to be final output ITensor.
743 // LSTM input/output cannot be > 2 dimensions so need to resize its TensorInfo.
Narumol Prangnawarat5f941242023-08-11 16:09:26 +0100744 if (maxTime == 1 && descriptor.m_TimeMajor)
Cathal Corbettfd5bec42022-03-03 15:13:23 +0000745 {
746 TensorShape inputShape = GetTensorShape(aclInputInfo.tensor_shape(), 1U);
747 TensorShape outputShape = GetTensorShape(aclOutputInfo.tensor_shape(), 1U);
748
749 TensorShape inputShapeShrink({inputShape[1], inputShape[2]});
750 TensorShape outputShapeShrink({outputShape[1], outputShape[2]});
751
752 auto acl_input_shape_shrink = BuildArmComputeTensorShape(inputShapeShrink);
753 auto acl_output_shape_shrink = BuildArmComputeTensorShape(outputShapeShrink);
754
755 const_cast<arm_compute::TensorInfo*>(&aclInputInfo)->set_tensor_shape(acl_input_shape_shrink);
756 inputLSTM = const_cast<arm_compute::TensorInfo*>(&aclInputInfo);
757
758 const_cast<arm_compute::TensorInfo*>(&aclOutputInfo)->set_tensor_shape(acl_output_shape_shrink);
759 outputLSTM = const_cast<arm_compute::TensorInfo*>(&aclOutputInfo);
760 }
761 // If there is only one LSTM batch major batch, we will not concat, only permute.
762 // Set input of LSTM to be output of initial permute.
763 // Set output of LSTM to be first element of m_ConcatInputs & use that value later in permute.
764 // LSTM output cannot be > 2 dimensions so need to resize its TensorInfo.
765 else if (maxTime == 1 && !descriptor.m_TimeMajor)
766 {
767 TensorShape inputShape = GetTensorShape(aclPermuteOutInfo.tensor_shape(), 1U);
768 TensorShape inputShapeShrink({inputShape[1], inputShape[2]});
769 auto acl_input_shape_shrink = BuildArmComputeTensorShape(inputShapeShrink);
770 aclPermuteOutInfo.set_tensor_shape(acl_input_shape_shrink);
771 inputLSTM = &aclPermuteOutInfo;
772
773 outputLSTM = const_cast<arm_compute::ITensorInfo*>(concatInputsTensorInfosPtr[i]);
774 }
775 // Batch major AND/OR 2+ LSTM batches so will use concat AND/OR permute later on.
776 else
777 {
778 inputLSTM = splitterOutputsTensorInfosPtr[i];
779 outputLSTM = const_cast<arm_compute::ITensorInfo*>(concatInputsTensorInfosPtr[i]);
780 }
781
782 statusLSTM = arm_compute::NELSTMLayer::validate(inputLSTM,
783 &aclInputToForgetWeightsInfo,
784 &aclInputToCellWeightsInfo,
785 &aclInputToOutputWeightsInfo,
786 &aclRecurrentToForgetWeightsInfo,
787 &aclRecurrentToCellWeightsInfo,
788 &aclRecurrentToOutputWeightsInfo,
789 &aclForgetGateBiasInfo,
790 &aclCellBiasInfo,
791 &aclOutputGateBiasInfo,
792 &aclOutputStateInInfo,
793 &aclCellStateInInfo,
794 &aclScratchBufferInfo,
795 &aclOutputStateOutInfo,
796 &aclCellStateOutInfo,
797 outputLSTM,
798 lstm_params_info,
799 activationLayerInfo,
800 cell_threshold,
801 projection_threshold);
802
803 if (statusLSTM.error_code() != arm_compute::ErrorCode::OK)
804 {
805 break;
806 }
807 }
808
809 //
810 // Concat validate
811 //
812
813 // Expand dimensions of LSTM outputs adding one empty dimension to fit concatenate inputs.
814 TensorShape shape = GetTensorShape(concatInputsTensorInfosPtr[0]->tensor_shape(), 1U);
815 TensorShape shapeExpandTimeMajor({1, shape[0], shape[1]});
816 TensorShape shapeExpandBatchMajor({shape[0], 1, shape[1]});
817
Mike Kelly12994962022-04-21 11:57:09 +0100818 TensorInfo concatOutputTensorInfo = TensorInfo(output);
819 concatOutputTensorInfo.SetShape(timeMajorShapeOutput);
820 arm_compute::TensorInfo aclConcatOutputTensorInfo= BuildArmComputeTensorInfo(concatOutputTensorInfo);
Cathal Corbettfd5bec42022-03-03 15:13:23 +0000821
822 if (maxTime != 1) // ACL concat does not work with only one element to concatenate.
823 {
824 for (unsigned int i = 0; i < maxTime; ++i)
825 {
826 auto acl_shape_expand = BuildArmComputeTensorShape(shapeExpandTimeMajor);
827 concatInputsTensorInfos[i].set_tensor_shape(acl_shape_expand);
828 }
829
830 unsigned int aclAxisConcat = CalcAclAxis(numberDimensions, dimension);
831 if (!descriptor.m_TimeMajor)
832 {
833 statusConcat = arm_compute::NEConcatenateLayer::validate(concatInputsTensorInfosPtr,
Mike Kelly12994962022-04-21 11:57:09 +0100834 &aclConcatOutputTensorInfo,
Cathal Corbettfd5bec42022-03-03 15:13:23 +0000835 aclAxisConcat);
836 }
837 else
838 {
839 statusConcat = arm_compute::NEConcatenateLayer::validate(concatInputsTensorInfosPtr,
840 &aclOutputInfo,
841 aclAxisConcat);
842 }
843 }
844 // If only one LSTM batch, we do not concat and/or permute.
845 // Must ensure final output info is expanded to correct batch major dimensions.
846 else
847 {
848 if (!descriptor.m_TimeMajor)
849 {
850 const_cast<arm_compute::TensorInfo*>(&aclInputInfo)->set_tensor_shape(
851 BuildArmComputeTensorShape(shapeExpandBatchMajor));
852 }
853 else
854 {
855 const_cast<arm_compute::TensorInfo*>(&aclInputInfo)->set_tensor_shape(
856 BuildArmComputeTensorShape(shapeExpandTimeMajor));
857 }
858 }
859
860 //
861 // Permute validate
862 //
863 if (!descriptor.m_TimeMajor)
864 {
865 // Output now time major. Permute output back to batch major.
866 if (maxTime != 1)
867 {
Mike Kelly12994962022-04-21 11:57:09 +0100868 statusPermute2 = arm_compute::NEPermute::validate(&aclConcatOutputTensorInfo,
Cathal Corbettfd5bec42022-03-03 15:13:23 +0000869 &aclOutputInfo,
870 arm_compute::PermutationVector(0U, 2U, 1U));
871 }
872 else
873 {
874 statusPermute2 = arm_compute::NEPermute::validate(concatInputsTensorInfosPtr[0],
875 &aclOutputInfo,
876 arm_compute::PermutationVector(0U, 2U, 1U));
877 }
878 }
879
880 auto okCode = arm_compute::ErrorCode::OK;
881 if (statusPermute1.error_code() == okCode &&
882 statusSplit.error_code() == okCode &&
883 statusLSTM .error_code() == okCode &&
884 statusConcat.error_code() == okCode &&
885 statusPermute2.error_code() == okCode)
886 {
887 return arm_compute::Status(arm_compute::ErrorCode::OK,
888 "All Unidirectional Sequence LSTM layer validate status OK.");
889 }
890 else
891 {
892 return arm_compute::Status(arm_compute::ErrorCode::RUNTIME_ERROR,
893 "Unidirectional Sequence LSTM layer validate status failed.");
894 }
895}
896
897void NeonUnidirectionalSequenceLstmFloatWorkload::FreeUnusedTensors()
898{
899 FreeTensorIfUnused(m_InputToInputWeightsTensor);
900 FreeTensorIfUnused(m_InputToForgetWeightsTensor);
901 FreeTensorIfUnused(m_InputToCellWeightsTensor);
902 FreeTensorIfUnused(m_InputToOutputWeightsTensor);
903 FreeTensorIfUnused(m_RecurrentToInputWeightsTensor);
904 FreeTensorIfUnused(m_RecurrentToForgetWeightsTensor);
905 FreeTensorIfUnused(m_RecurrentToCellWeightsTensor);
906 FreeTensorIfUnused(m_RecurrentToOutputWeightsTensor);
907 FreeTensorIfUnused(m_CellToInputWeightsTensor);
908 FreeTensorIfUnused(m_CellToForgetWeightsTensor);
909 FreeTensorIfUnused(m_CellToOutputWeightsTensor);
910 FreeTensorIfUnused(m_InputGateBiasTensor);
911 FreeTensorIfUnused(m_ForgetGateBiasTensor);
912 FreeTensorIfUnused(m_CellBiasTensor);
913 FreeTensorIfUnused(m_OutputGateBiasTensor);
914 FreeTensorIfUnused(m_ProjectionWeightsTensor);
915 FreeTensorIfUnused(m_ProjectionBiasTensor);
916 FreeTensorIfUnused(m_InputLayerNormWeightsTensor);
917 FreeTensorIfUnused(m_ForgetLayerNormWeightsTensor);
918 FreeTensorIfUnused(m_CellLayerNormWeightsTensor);
919 FreeTensorIfUnused(m_OutputLayerNormWeightsTensor);
920 FreeTensorIfUnused(m_ScratchBuffer);
921}
922
923} //namespace armnn