blob: 0d7459bb458ee3d425300fb4345dcd70d2bd2352 [file] [log] [blame]
telsoa01c577f2c2018-08-31 09:22:23 +01001// half - IEEE 754-based half-precision floating point library.
2//
3// Copyright (c) 2012-2017 Christian Rau <rauy@users.sourceforge.net>
4//
5// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
6// files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy,
7// modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
8// Software is furnished to do so, subject to the following conditions:
9//
10// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
11//
12// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
13// WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
14// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
15// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
16
17// Version 1.12.0
18
19/// \file
20/// Main header file for half precision functionality.
21
22#ifndef HALF_HALF_HPP
23#define HALF_HALF_HPP
24
25/// Combined gcc version number.
26#define HALF_GNUC_VERSION (__GNUC__*100+__GNUC_MINOR__)
27
28//check C++11 language features
29#if defined(__clang__) //clang
30 #if __has_feature(cxx_static_assert) && !defined(HALF_ENABLE_CPP11_STATIC_ASSERT)
31 #define HALF_ENABLE_CPP11_STATIC_ASSERT 1
32 #endif
33 #if __has_feature(cxx_constexpr) && !defined(HALF_ENABLE_CPP11_CONSTEXPR)
34 #define HALF_ENABLE_CPP11_CONSTEXPR 1
35 #endif
36 #if __has_feature(cxx_noexcept) && !defined(HALF_ENABLE_CPP11_NOEXCEPT)
37 #define HALF_ENABLE_CPP11_NOEXCEPT 1
38 #endif
39 #if __has_feature(cxx_user_literals) && !defined(HALF_ENABLE_CPP11_USER_LITERALS)
40 #define HALF_ENABLE_CPP11_USER_LITERALS 1
41 #endif
42 #if (defined(__GXX_EXPERIMENTAL_CXX0X__) || __cplusplus >= 201103L) && !defined(HALF_ENABLE_CPP11_LONG_LONG)
43 #define HALF_ENABLE_CPP11_LONG_LONG 1
44 #endif
45/*#elif defined(__INTEL_COMPILER) //Intel C++
46 #if __INTEL_COMPILER >= 1100 && !defined(HALF_ENABLE_CPP11_STATIC_ASSERT) ????????
47 #define HALF_ENABLE_CPP11_STATIC_ASSERT 1
48 #endif
49 #if __INTEL_COMPILER >= 1300 && !defined(HALF_ENABLE_CPP11_CONSTEXPR) ????????
50 #define HALF_ENABLE_CPP11_CONSTEXPR 1
51 #endif
52 #if __INTEL_COMPILER >= 1300 && !defined(HALF_ENABLE_CPP11_NOEXCEPT) ????????
53 #define HALF_ENABLE_CPP11_NOEXCEPT 1
54 #endif
55 #if __INTEL_COMPILER >= 1100 && !defined(HALF_ENABLE_CPP11_LONG_LONG) ????????
56 #define HALF_ENABLE_CPP11_LONG_LONG 1
57 #endif*/
58#elif defined(__GNUC__) //gcc
59 #if defined(__GXX_EXPERIMENTAL_CXX0X__) || __cplusplus >= 201103L
60 #if HALF_GNUC_VERSION >= 403 && !defined(HALF_ENABLE_CPP11_STATIC_ASSERT)
61 #define HALF_ENABLE_CPP11_STATIC_ASSERT 1
62 #endif
63 #if HALF_GNUC_VERSION >= 406 && !defined(HALF_ENABLE_CPP11_CONSTEXPR)
64 #define HALF_ENABLE_CPP11_CONSTEXPR 1
65 #endif
66 #if HALF_GNUC_VERSION >= 406 && !defined(HALF_ENABLE_CPP11_NOEXCEPT)
67 #define HALF_ENABLE_CPP11_NOEXCEPT 1
68 #endif
69 #if HALF_GNUC_VERSION >= 407 && !defined(HALF_ENABLE_CPP11_USER_LITERALS)
70 #define HALF_ENABLE_CPP11_USER_LITERALS 1
71 #endif
72 #if !defined(HALF_ENABLE_CPP11_LONG_LONG)
73 #define HALF_ENABLE_CPP11_LONG_LONG 1
74 #endif
75 #endif
76#elif defined(_MSC_VER) //Visual C++
77 #if _MSC_VER >= 1900 && !defined(HALF_ENABLE_CPP11_CONSTEXPR)
78 #define HALF_ENABLE_CPP11_CONSTEXPR 1
79 #endif
80 #if _MSC_VER >= 1900 && !defined(HALF_ENABLE_CPP11_NOEXCEPT)
81 #define HALF_ENABLE_CPP11_NOEXCEPT 1
82 #endif
83 #if _MSC_VER >= 1900 && !defined(HALF_ENABLE_CPP11_USER_LITERALS)
84 #define HALF_ENABLE_CPP11_USER_LITERALS 1
85 #endif
86 #if _MSC_VER >= 1600 && !defined(HALF_ENABLE_CPP11_STATIC_ASSERT)
87 #define HALF_ENABLE_CPP11_STATIC_ASSERT 1
88 #endif
89 #if _MSC_VER >= 1310 && !defined(HALF_ENABLE_CPP11_LONG_LONG)
90 #define HALF_ENABLE_CPP11_LONG_LONG 1
91 #endif
92 #define HALF_POP_WARNINGS 1
93 #pragma warning(push)
94 #pragma warning(disable : 4099 4127 4146) //struct vs class, constant in if, negative unsigned
95#endif
96
97//check C++11 library features
98#include <utility>
99#if defined(_LIBCPP_VERSION) //libc++
100 #if defined(__GXX_EXPERIMENTAL_CXX0X__) || __cplusplus >= 201103
101 #ifndef HALF_ENABLE_CPP11_TYPE_TRAITS
102 #define HALF_ENABLE_CPP11_TYPE_TRAITS 1
103 #endif
104 #ifndef HALF_ENABLE_CPP11_CSTDINT
105 #define HALF_ENABLE_CPP11_CSTDINT 1
106 #endif
107 #ifndef HALF_ENABLE_CPP11_CMATH
108 #define HALF_ENABLE_CPP11_CMATH 1
109 #endif
110 #ifndef HALF_ENABLE_CPP11_HASH
111 #define HALF_ENABLE_CPP11_HASH 1
112 #endif
113 #endif
114#elif defined(__GLIBCXX__) //libstdc++
115 #if defined(__GXX_EXPERIMENTAL_CXX0X__) || __cplusplus >= 201103
116 #ifdef __clang__
117 #if __GLIBCXX__ >= 20080606 && !defined(HALF_ENABLE_CPP11_TYPE_TRAITS)
118 #define HALF_ENABLE_CPP11_TYPE_TRAITS 1
119 #endif
120 #if __GLIBCXX__ >= 20080606 && !defined(HALF_ENABLE_CPP11_CSTDINT)
121 #define HALF_ENABLE_CPP11_CSTDINT 1
122 #endif
123 #if __GLIBCXX__ >= 20080606 && !defined(HALF_ENABLE_CPP11_CMATH)
124 #define HALF_ENABLE_CPP11_CMATH 1
125 #endif
126 #if __GLIBCXX__ >= 20080606 && !defined(HALF_ENABLE_CPP11_HASH)
127 #define HALF_ENABLE_CPP11_HASH 1
128 #endif
129 #else
130 #if HALF_GNUC_VERSION >= 403 && !defined(HALF_ENABLE_CPP11_CSTDINT)
131 #define HALF_ENABLE_CPP11_CSTDINT 1
132 #endif
133 #if HALF_GNUC_VERSION >= 403 && !defined(HALF_ENABLE_CPP11_CMATH)
134 #define HALF_ENABLE_CPP11_CMATH 1
135 #endif
136 #if HALF_GNUC_VERSION >= 403 && !defined(HALF_ENABLE_CPP11_HASH)
137 #define HALF_ENABLE_CPP11_HASH 1
138 #endif
139 #endif
140 #endif
141#elif defined(_CPPLIB_VER) //Dinkumware/Visual C++
142 #if _CPPLIB_VER >= 520
143 #ifndef HALF_ENABLE_CPP11_TYPE_TRAITS
144 #define HALF_ENABLE_CPP11_TYPE_TRAITS 1
145 #endif
146 #ifndef HALF_ENABLE_CPP11_CSTDINT
147 #define HALF_ENABLE_CPP11_CSTDINT 1
148 #endif
149 #ifndef HALF_ENABLE_CPP11_HASH
150 #define HALF_ENABLE_CPP11_HASH 1
151 #endif
152 #endif
153 #if _CPPLIB_VER >= 610
154 #ifndef HALF_ENABLE_CPP11_CMATH
155 #define HALF_ENABLE_CPP11_CMATH 1
156 #endif
157 #endif
158#endif
159#undef HALF_GNUC_VERSION
160
161//support constexpr
162#if HALF_ENABLE_CPP11_CONSTEXPR
163 #define HALF_CONSTEXPR constexpr
164 #define HALF_CONSTEXPR_CONST constexpr
165#else
166 #define HALF_CONSTEXPR
167 #define HALF_CONSTEXPR_CONST const
168#endif
169
170//support noexcept
171#if HALF_ENABLE_CPP11_NOEXCEPT
172 #define HALF_NOEXCEPT noexcept
173 #define HALF_NOTHROW noexcept
174#else
175 #define HALF_NOEXCEPT
176 #define HALF_NOTHROW throw()
177#endif
178
179#include <algorithm>
180#include <iostream>
181#include <limits>
182#include <climits>
183#include <cmath>
184#include <cstring>
185#include <cstdlib>
186#if HALF_ENABLE_CPP11_TYPE_TRAITS
187 #include <type_traits>
188#endif
189#if HALF_ENABLE_CPP11_CSTDINT
190 #include <cstdint>
191#endif
192#if HALF_ENABLE_CPP11_HASH
193 #include <functional>
194#endif
195
196
197/// Default rounding mode.
198/// This specifies the rounding mode used for all conversions between [half](\ref half_float::half)s and `float`s as well as
199/// for the half_cast() if not specifying a rounding mode explicitly. It can be redefined (before including half.hpp) to one
200/// of the standard rounding modes using their respective constants or the equivalent values of `std::float_round_style`:
201///
202/// `std::float_round_style` | value | rounding
203/// ---------------------------------|-------|-------------------------
204/// `std::round_indeterminate` | -1 | fastest (default)
205/// `std::round_toward_zero` | 0 | toward zero
206/// `std::round_to_nearest` | 1 | to nearest
207/// `std::round_toward_infinity` | 2 | toward positive infinity
208/// `std::round_toward_neg_infinity` | 3 | toward negative infinity
209///
210/// By default this is set to `-1` (`std::round_indeterminate`), which uses truncation (round toward zero, but with overflows
211/// set to infinity) and is the fastest rounding mode possible. It can even be set to `std::numeric_limits<float>::round_style`
212/// to synchronize the rounding mode with that of the underlying single-precision implementation.
213#ifndef HALF_ROUND_STYLE
214 #define HALF_ROUND_STYLE -1 // = std::round_indeterminate
215#endif
216
217/// Tie-breaking behaviour for round to nearest.
218/// This specifies if ties in round to nearest should be resolved by rounding to the nearest even value. By default this is
219/// defined to `0` resulting in the faster but slightly more biased behaviour of rounding away from zero in half-way cases (and
220/// thus equal to the round() function), but can be redefined to `1` (before including half.hpp) if more IEEE-conformant
221/// behaviour is needed.
222#ifndef HALF_ROUND_TIES_TO_EVEN
223 #define HALF_ROUND_TIES_TO_EVEN 0 // ties away from zero
224#endif
225
226/// Value signaling overflow.
227/// In correspondence with `HUGE_VAL[F|L]` from `<cmath>` this symbol expands to a positive value signaling the overflow of an
228/// operation, in particular it just evaluates to positive infinity.
229#define HUGE_VALH std::numeric_limits<half_float::half>::infinity()
230
231/// Fast half-precision fma function.
232/// This symbol is only defined if the fma() function generally executes as fast as, or faster than, a separate
233/// half-precision multiplication followed by an addition. Due to the internal single-precision implementation of all
234/// arithmetic operations, this is in fact always the case.
235#define FP_FAST_FMAH 1
236
237#ifndef FP_ILOGB0
238 #define FP_ILOGB0 INT_MIN
239#endif
240#ifndef FP_ILOGBNAN
241 #define FP_ILOGBNAN INT_MAX
242#endif
243#ifndef FP_SUBNORMAL
244 #define FP_SUBNORMAL 0
245#endif
246#ifndef FP_ZERO
247 #define FP_ZERO 1
248#endif
249#ifndef FP_NAN
250 #define FP_NAN 2
251#endif
252#ifndef FP_INFINITE
253 #define FP_INFINITE 3
254#endif
255#ifndef FP_NORMAL
256 #define FP_NORMAL 4
257#endif
258
259
260/// Main namespace for half precision functionality.
261/// This namespace contains all the functionality provided by the library.
262namespace half_float
263{
264 class half;
265
266#if HALF_ENABLE_CPP11_USER_LITERALS
267 /// Library-defined half-precision literals.
268 /// Import this namespace to enable half-precision floating point literals:
269 /// ~~~~{.cpp}
270 /// using namespace half_float::literal;
271 /// half_float::half = 4.2_h;
272 /// ~~~~
273 namespace literal
274 {
275 half operator""_h(long double);
276 }
277#endif
278
279 /// \internal
280 /// \brief Implementation details.
281 namespace detail
282 {
283 #if HALF_ENABLE_CPP11_TYPE_TRAITS
284 /// Conditional type.
285 template<bool B,typename T,typename F> struct conditional : std::conditional<B,T,F> {};
286
287 /// Helper for tag dispatching.
288 template<bool B> struct bool_type : std::integral_constant<bool,B> {};
289 using std::true_type;
290 using std::false_type;
291
292 /// Type traits for floating point types.
293 template<typename T> struct is_float : std::is_floating_point<T> {};
294 #else
295 /// Conditional type.
296 template<bool,typename T,typename> struct conditional { typedef T type; };
297 template<typename T,typename F> struct conditional<false,T,F> { typedef F type; };
298
299 /// Helper for tag dispatching.
300 template<bool> struct bool_type {};
301 typedef bool_type<true> true_type;
302 typedef bool_type<false> false_type;
303
304 /// Type traits for floating point types.
305 template<typename> struct is_float : false_type {};
306 template<typename T> struct is_float<const T> : is_float<T> {};
307 template<typename T> struct is_float<volatile T> : is_float<T> {};
308 template<typename T> struct is_float<const volatile T> : is_float<T> {};
309 template<> struct is_float<float> : true_type {};
310 template<> struct is_float<double> : true_type {};
311 template<> struct is_float<long double> : true_type {};
312 #endif
313
314 /// Type traits for floating point bits.
315 template<typename T> struct bits { typedef unsigned char type; };
316 template<typename T> struct bits<const T> : bits<T> {};
317 template<typename T> struct bits<volatile T> : bits<T> {};
318 template<typename T> struct bits<const volatile T> : bits<T> {};
319
320 #if HALF_ENABLE_CPP11_CSTDINT
321 /// Unsigned integer of (at least) 16 bits width.
322 typedef std::uint_least16_t uint16;
323
324 /// Unsigned integer of (at least) 32 bits width.
325 template<> struct bits<float> { typedef std::uint_least32_t type; };
326
327 /// Unsigned integer of (at least) 64 bits width.
328 template<> struct bits<double> { typedef std::uint_least64_t type; };
329 #else
330 /// Unsigned integer of (at least) 16 bits width.
331 typedef unsigned short uint16;
332
333 /// Unsigned integer of (at least) 32 bits width.
334 template<> struct bits<float> : conditional<std::numeric_limits<unsigned int>::digits>=32,unsigned int,unsigned long> {};
335
336 #if HALF_ENABLE_CPP11_LONG_LONG
337 /// Unsigned integer of (at least) 64 bits width.
338 template<> struct bits<double> : conditional<std::numeric_limits<unsigned long>::digits>=64,unsigned long,unsigned long long> {};
339 #else
340 /// Unsigned integer of (at least) 64 bits width.
341 template<> struct bits<double> { typedef unsigned long type; };
342 #endif
343 #endif
344
345 /// Tag type for binary construction.
346 struct binary_t {};
347
348 /// Tag for binary construction.
349 HALF_CONSTEXPR_CONST binary_t binary = binary_t();
350
351 /// Temporary half-precision expression.
352 /// This class represents a half-precision expression which just stores a single-precision value internally.
353 struct expr
354 {
355 /// Conversion constructor.
356 /// \param f single-precision value to convert
357 explicit HALF_CONSTEXPR expr(float f) HALF_NOEXCEPT : value_(f) {}
358
359 /// Conversion to single-precision.
360 /// \return single precision value representing expression value
361 HALF_CONSTEXPR operator float() const HALF_NOEXCEPT { return value_; }
362
363 private:
364 /// Internal expression value stored in single-precision.
365 float value_;
366 };
367
368 /// SFINAE helper for generic half-precision functions.
369 /// This class template has to be specialized for each valid combination of argument types to provide a corresponding
370 /// `type` member equivalent to \a T.
371 /// \tparam T type to return
372 template<typename T,typename,typename=void,typename=void> struct enable {};
373 template<typename T> struct enable<T,half,void,void> { typedef T type; };
374 template<typename T> struct enable<T,expr,void,void> { typedef T type; };
375 template<typename T> struct enable<T,half,half,void> { typedef T type; };
376 template<typename T> struct enable<T,half,expr,void> { typedef T type; };
377 template<typename T> struct enable<T,expr,half,void> { typedef T type; };
378 template<typename T> struct enable<T,expr,expr,void> { typedef T type; };
379 template<typename T> struct enable<T,half,half,half> { typedef T type; };
380 template<typename T> struct enable<T,half,half,expr> { typedef T type; };
381 template<typename T> struct enable<T,half,expr,half> { typedef T type; };
382 template<typename T> struct enable<T,half,expr,expr> { typedef T type; };
383 template<typename T> struct enable<T,expr,half,half> { typedef T type; };
384 template<typename T> struct enable<T,expr,half,expr> { typedef T type; };
385 template<typename T> struct enable<T,expr,expr,half> { typedef T type; };
386 template<typename T> struct enable<T,expr,expr,expr> { typedef T type; };
387
388 /// Return type for specialized generic 2-argument half-precision functions.
389 /// This class template has to be specialized for each valid combination of argument types to provide a corresponding
390 /// `type` member denoting the appropriate return type.
391 /// \tparam T first argument type
392 /// \tparam U first argument type
393 template<typename T,typename U> struct result : enable<expr,T,U> {};
394 template<> struct result<half,half> { typedef half type; };
395
396 /// \name Classification helpers
397 /// \{
398
399 /// Check for infinity.
400 /// \tparam T argument type (builtin floating point type)
401 /// \param arg value to query
402 /// \retval true if infinity
403 /// \retval false else
404 template<typename T> bool builtin_isinf(T arg)
405 {
406 #if HALF_ENABLE_CPP11_CMATH
407 return std::isinf(arg);
408 #elif defined(_MSC_VER)
409 return !::_finite(static_cast<double>(arg)) && !::_isnan(static_cast<double>(arg));
410 #else
411 return arg == std::numeric_limits<T>::infinity() || arg == -std::numeric_limits<T>::infinity();
412 #endif
413 }
414
415 /// Check for NaN.
416 /// \tparam T argument type (builtin floating point type)
417 /// \param arg value to query
418 /// \retval true if not a number
419 /// \retval false else
420 template<typename T> bool builtin_isnan(T arg)
421 {
422 #if HALF_ENABLE_CPP11_CMATH
423 return std::isnan(arg);
424 #elif defined(_MSC_VER)
425 return ::_isnan(static_cast<double>(arg)) != 0;
426 #else
427 return arg != arg;
428 #endif
429 }
430
431 /// Check sign.
432 /// \tparam T argument type (builtin floating point type)
433 /// \param arg value to query
434 /// \retval true if signbit set
435 /// \retval false else
436 template<typename T> bool builtin_signbit(T arg)
437 {
438 #if HALF_ENABLE_CPP11_CMATH
439 return std::signbit(arg);
440 #else
441 return arg < T() || (arg == T() && T(1)/arg < T());
442 #endif
443 }
444
445 /// \}
446 /// \name Conversion
447 /// \{
448
449 /// Convert IEEE single-precision to half-precision.
450 /// Credit for this goes to [Jeroen van der Zijp](ftp://ftp.fox-toolkit.org/pub/fasthalffloatconversion.pdf).
451 /// \tparam R rounding mode to use, `std::round_indeterminate` for fastest rounding
452 /// \param value single-precision value
453 /// \return binary representation of half-precision value
454 template<std::float_round_style R> uint16 float2half_impl(float value, true_type)
455 {
456 typedef bits<float>::type uint32;
457 uint32 bits;// = *reinterpret_cast<uint32*>(&value); //violating strict aliasing!
458 std::memcpy(&bits, &value, sizeof(float));
459/* uint16 hbits = (bits>>16) & 0x8000;
460 bits &= 0x7FFFFFFF;
461 int exp = bits >> 23;
462 if(exp == 255)
463 return hbits | 0x7C00 | (0x3FF&-static_cast<unsigned>((bits&0x7FFFFF)!=0));
464 if(exp > 142)
465 {
466 if(R == std::round_toward_infinity)
467 return hbits | 0x7C00 - (hbits>>15);
468 if(R == std::round_toward_neg_infinity)
469 return hbits | 0x7BFF + (hbits>>15);
470 return hbits | 0x7BFF + (R!=std::round_toward_zero);
471 }
472 int g, s;
473 if(exp > 112)
474 {
475 g = (bits>>12) & 1;
476 s = (bits&0xFFF) != 0;
477 hbits |= ((exp-112)<<10) | ((bits>>13)&0x3FF);
478 }
479 else if(exp > 101)
480 {
481 int i = 125 - exp;
482 bits = (bits&0x7FFFFF) | 0x800000;
483 g = (bits>>i) & 1;
484 s = (bits&((1L<<i)-1)) != 0;
485 hbits |= bits >> (i+1);
486 }
487 else
488 {
489 g = 0;
490 s = bits != 0;
491 }
492 if(R == std::round_to_nearest)
493 #if HALF_ROUND_TIES_TO_EVEN
494 hbits += g & (s|hbits);
495 #else
496 hbits += g;
497 #endif
498 else if(R == std::round_toward_infinity)
499 hbits += ~(hbits>>15) & (s|g);
500 else if(R == std::round_toward_neg_infinity)
501 hbits += (hbits>>15) & (g|s);
502*/ static const uint16 base_table[512] = {
503 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
504 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
505 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
506 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
507 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
508 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
509 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, 0x0100,
510 0x0200, 0x0400, 0x0800, 0x0C00, 0x1000, 0x1400, 0x1800, 0x1C00, 0x2000, 0x2400, 0x2800, 0x2C00, 0x3000, 0x3400, 0x3800, 0x3C00,
511 0x4000, 0x4400, 0x4800, 0x4C00, 0x5000, 0x5400, 0x5800, 0x5C00, 0x6000, 0x6400, 0x6800, 0x6C00, 0x7000, 0x7400, 0x7800, 0x7C00,
512 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00,
513 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00,
514 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00,
515 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00,
516 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00,
517 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00,
518 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00,
519 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
520 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
521 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
522 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
523 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
524 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
525 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8001, 0x8002, 0x8004, 0x8008, 0x8010, 0x8020, 0x8040, 0x8080, 0x8100,
526 0x8200, 0x8400, 0x8800, 0x8C00, 0x9000, 0x9400, 0x9800, 0x9C00, 0xA000, 0xA400, 0xA800, 0xAC00, 0xB000, 0xB400, 0xB800, 0xBC00,
527 0xC000, 0xC400, 0xC800, 0xCC00, 0xD000, 0xD400, 0xD800, 0xDC00, 0xE000, 0xE400, 0xE800, 0xEC00, 0xF000, 0xF400, 0xF800, 0xFC00,
528 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00,
529 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00,
530 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00,
531 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00,
532 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00,
533 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00,
534 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00 };
535 static const unsigned char shift_table[512] = {
536 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
537 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
538 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
539 24, 24, 24, 24, 24, 24, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
540 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
541 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
542 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
543 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 13,
544 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
545 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
546 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
547 24, 24, 24, 24, 24, 24, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
548 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
549 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
550 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
551 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 13 };
552 uint16 hbits = base_table[bits>>23] + static_cast<uint16>((bits&0x7FFFFF)>>shift_table[bits>>23]);
553 if(R == std::round_to_nearest)
554 hbits += (((bits&0x7FFFFF)>>(shift_table[bits>>23]-1))|(((bits>>23)&0xFF)==102)) & ((hbits&0x7C00)!=0x7C00)
555 #if HALF_ROUND_TIES_TO_EVEN
556 & (((((static_cast<uint32>(1)<<(shift_table[bits>>23]-1))-1)&bits)!=0)|hbits)
557 #endif
558 ;
559 else if(R == std::round_toward_zero)
560 hbits -= ((hbits&0x7FFF)==0x7C00) & ~shift_table[bits>>23];
561 else if(R == std::round_toward_infinity)
562 hbits += ((((bits&0x7FFFFF&((static_cast<uint32>(1)<<(shift_table[bits>>23]))-1))!=0)|(((bits>>23)<=102)&
563 ((bits>>23)!=0)))&(hbits<0x7C00)) - ((hbits==0xFC00)&((bits>>23)!=511));
564 else if(R == std::round_toward_neg_infinity)
565 hbits += ((((bits&0x7FFFFF&((static_cast<uint32>(1)<<(shift_table[bits>>23]))-1))!=0)|(((bits>>23)<=358)&
566 ((bits>>23)!=256)))&(hbits<0xFC00)&(hbits>>15)) - ((hbits==0x7C00)&((bits>>23)!=255));
567 return hbits;
568 }
569
570 /// Convert IEEE double-precision to half-precision.
571 /// \tparam R rounding mode to use, `std::round_indeterminate` for fastest rounding
572 /// \param value double-precision value
573 /// \return binary representation of half-precision value
574 template<std::float_round_style R> uint16 float2half_impl(double value, true_type)
575 {
576 typedef bits<float>::type uint32;
577 typedef bits<double>::type uint64;
578 uint64 bits;// = *reinterpret_cast<uint64*>(&value); //violating strict aliasing!
579 std::memcpy(&bits, &value, sizeof(double));
580 uint32 hi = bits >> 32, lo = bits & 0xFFFFFFFF;
581 uint16 hbits = (hi>>16) & 0x8000;
582 hi &= 0x7FFFFFFF;
583 int exp = hi >> 20;
584 if(exp == 2047)
585 return hbits | 0x7C00 | (0x3FF&-static_cast<unsigned>((bits&0xFFFFFFFFFFFFF)!=0));
586 if(exp > 1038)
587 {
588 if(R == std::round_toward_infinity)
589 return hbits | 0x7C00 - (hbits>>15);
590 if(R == std::round_toward_neg_infinity)
591 return hbits | 0x7BFF + (hbits>>15);
592 return hbits | 0x7BFF + (R!=std::round_toward_zero);
593 }
594 int g, s = lo != 0;
595 if(exp > 1008)
596 {
597 g = (hi>>9) & 1;
598 s |= (hi&0x1FF) != 0;
599 hbits |= ((exp-1008)<<10) | ((hi>>10)&0x3FF);
600 }
601 else if(exp > 997)
602 {
603 int i = 1018 - exp;
604 hi = (hi&0xFFFFF) | 0x100000;
605 g = (hi>>i) & 1;
606 s |= (hi&((1L<<i)-1)) != 0;
607 hbits |= hi >> (i+1);
608 }
609 else
610 {
611 g = 0;
612 s |= hi != 0;
613 }
614 if(R == std::round_to_nearest)
615 #if HALF_ROUND_TIES_TO_EVEN
616 hbits += g & (s|hbits);
617 #else
618 hbits += g;
619 #endif
620 else if(R == std::round_toward_infinity)
621 hbits += ~(hbits>>15) & (s|g);
622 else if(R == std::round_toward_neg_infinity)
623 hbits += (hbits>>15) & (g|s);
624 return hbits;
625 }
626
627 /// Convert non-IEEE floating point to half-precision.
628 /// \tparam R rounding mode to use, `std::round_indeterminate` for fastest rounding
629 /// \tparam T source type (builtin floating point type)
630 /// \param value floating point value
631 /// \return binary representation of half-precision value
632 template<std::float_round_style R,typename T> uint16 float2half_impl(T value, ...)
633 {
634 uint16 hbits = static_cast<unsigned>(builtin_signbit(value)) << 15;
635 if(value == T())
636 return hbits;
637 if(builtin_isnan(value))
638 return hbits | 0x7FFF;
639 if(builtin_isinf(value))
640 return hbits | 0x7C00;
641 int exp;
642 std::frexp(value, &exp);
643 if(exp > 16)
644 {
645 if(R == std::round_toward_infinity)
646 return hbits | (0x7C00-(hbits>>15));
647 else if(R == std::round_toward_neg_infinity)
648 return hbits | (0x7BFF+(hbits>>15));
649 return hbits | (0x7BFF+(R!=std::round_toward_zero));
650 }
651 if(exp < -13)
652 value = std::ldexp(value, 24);
653 else
654 {
655 value = std::ldexp(value, 11-exp);
656 hbits |= ((exp+13)<<10);
657 }
658 T ival, frac = std::modf(value, &ival);
659 hbits += static_cast<uint16>(std::abs(static_cast<int>(ival)));
660 if(R == std::round_to_nearest)
661 {
662 frac = std::abs(frac);
663 #if HALF_ROUND_TIES_TO_EVEN
664 hbits += (frac>T(0.5)) | ((frac==T(0.5))&hbits);
665 #else
666 hbits += frac >= T(0.5);
667 #endif
668 }
669 else if(R == std::round_toward_infinity)
670 hbits += frac > T();
671 else if(R == std::round_toward_neg_infinity)
672 hbits += frac < T();
673 return hbits;
674 }
675
676 /// Convert floating point to half-precision.
677 /// \tparam R rounding mode to use, `std::round_indeterminate` for fastest rounding
678 /// \tparam T source type (builtin floating point type)
679 /// \param value floating point value
680 /// \return binary representation of half-precision value
681 template<std::float_round_style R,typename T> uint16 float2half(T value)
682 {
683 return float2half_impl<R>(value, bool_type<std::numeric_limits<T>::is_iec559&&sizeof(typename bits<T>::type)==sizeof(T)>());
684 }
685
686 /// Convert integer to half-precision floating point.
687 /// \tparam R rounding mode to use, `std::round_indeterminate` for fastest rounding
688 /// \tparam S `true` if value negative, `false` else
689 /// \tparam T type to convert (builtin integer type)
690 /// \param value non-negative integral value
691 /// \return binary representation of half-precision value
692 template<std::float_round_style R,bool S,typename T> uint16 int2half_impl(T value)
693 {
694 #if HALF_ENABLE_CPP11_STATIC_ASSERT && HALF_ENABLE_CPP11_TYPE_TRAITS
695 static_assert(std::is_integral<T>::value, "int to half conversion only supports builtin integer types");
696 #endif
697 if(S)
698 value = -value;
699 uint16 bits = S << 15;
700 if(value > 0xFFFF)
701 {
702 if(R == std::round_toward_infinity)
703 bits |= 0x7C00 - S;
704 else if(R == std::round_toward_neg_infinity)
705 bits |= 0x7BFF + S;
706 else
707 bits |= 0x7BFF + (R!=std::round_toward_zero);
708 }
709 else if(value)
710 {
711 unsigned int m = value, exp = 24;
712 for(; m<0x400; m<<=1,--exp) ;
713 for(; m>0x7FF; m>>=1,++exp) ;
714 bits |= (exp<<10) + m;
715 if(exp > 24)
716 {
717 if(R == std::round_to_nearest)
718 bits += (value>>(exp-25)) & 1
719 #if HALF_ROUND_TIES_TO_EVEN
720 & (((((1<<(exp-25))-1)&value)!=0)|bits)
721 #endif
722 ;
723 else if(R == std::round_toward_infinity)
724 bits += ((value&((1<<(exp-24))-1))!=0) & !S;
725 else if(R == std::round_toward_neg_infinity)
726 bits += ((value&((1<<(exp-24))-1))!=0) & S;
727 }
728 }
729 return bits;
730 }
731
732 /// Convert integer to half-precision floating point.
733 /// \tparam R rounding mode to use, `std::round_indeterminate` for fastest rounding
734 /// \tparam T type to convert (builtin integer type)
735 /// \param value integral value
736 /// \return binary representation of half-precision value
737 template<std::float_round_style R,typename T> uint16 int2half(T value)
738 {
739 return (value<0) ? int2half_impl<R,true>(value) : int2half_impl<R,false>(value);
740 }
741
742 /// Convert half-precision to IEEE single-precision.
743 /// Credit for this goes to [Jeroen van der Zijp](ftp://ftp.fox-toolkit.org/pub/fasthalffloatconversion.pdf).
744 /// \param value binary representation of half-precision value
745 /// \return single-precision value
746 inline float half2float_impl(uint16 value, float, true_type)
747 {
748 typedef bits<float>::type uint32;
749/* uint32 bits = static_cast<uint32>(value&0x8000) << 16;
750 int abs = value & 0x7FFF;
751 if(abs)
752 {
753 bits |= 0x38000000 << static_cast<unsigned>(abs>=0x7C00);
754 for(; abs<0x400; abs<<=1,bits-=0x800000) ;
755 bits += static_cast<uint32>(abs) << 13;
756 }
757*/ static const uint32 mantissa_table[2048] = {
758 0x00000000, 0x33800000, 0x34000000, 0x34400000, 0x34800000, 0x34A00000, 0x34C00000, 0x34E00000, 0x35000000, 0x35100000, 0x35200000, 0x35300000, 0x35400000, 0x35500000, 0x35600000, 0x35700000,
759 0x35800000, 0x35880000, 0x35900000, 0x35980000, 0x35A00000, 0x35A80000, 0x35B00000, 0x35B80000, 0x35C00000, 0x35C80000, 0x35D00000, 0x35D80000, 0x35E00000, 0x35E80000, 0x35F00000, 0x35F80000,
760 0x36000000, 0x36040000, 0x36080000, 0x360C0000, 0x36100000, 0x36140000, 0x36180000, 0x361C0000, 0x36200000, 0x36240000, 0x36280000, 0x362C0000, 0x36300000, 0x36340000, 0x36380000, 0x363C0000,
761 0x36400000, 0x36440000, 0x36480000, 0x364C0000, 0x36500000, 0x36540000, 0x36580000, 0x365C0000, 0x36600000, 0x36640000, 0x36680000, 0x366C0000, 0x36700000, 0x36740000, 0x36780000, 0x367C0000,
762 0x36800000, 0x36820000, 0x36840000, 0x36860000, 0x36880000, 0x368A0000, 0x368C0000, 0x368E0000, 0x36900000, 0x36920000, 0x36940000, 0x36960000, 0x36980000, 0x369A0000, 0x369C0000, 0x369E0000,
763 0x36A00000, 0x36A20000, 0x36A40000, 0x36A60000, 0x36A80000, 0x36AA0000, 0x36AC0000, 0x36AE0000, 0x36B00000, 0x36B20000, 0x36B40000, 0x36B60000, 0x36B80000, 0x36BA0000, 0x36BC0000, 0x36BE0000,
764 0x36C00000, 0x36C20000, 0x36C40000, 0x36C60000, 0x36C80000, 0x36CA0000, 0x36CC0000, 0x36CE0000, 0x36D00000, 0x36D20000, 0x36D40000, 0x36D60000, 0x36D80000, 0x36DA0000, 0x36DC0000, 0x36DE0000,
765 0x36E00000, 0x36E20000, 0x36E40000, 0x36E60000, 0x36E80000, 0x36EA0000, 0x36EC0000, 0x36EE0000, 0x36F00000, 0x36F20000, 0x36F40000, 0x36F60000, 0x36F80000, 0x36FA0000, 0x36FC0000, 0x36FE0000,
766 0x37000000, 0x37010000, 0x37020000, 0x37030000, 0x37040000, 0x37050000, 0x37060000, 0x37070000, 0x37080000, 0x37090000, 0x370A0000, 0x370B0000, 0x370C0000, 0x370D0000, 0x370E0000, 0x370F0000,
767 0x37100000, 0x37110000, 0x37120000, 0x37130000, 0x37140000, 0x37150000, 0x37160000, 0x37170000, 0x37180000, 0x37190000, 0x371A0000, 0x371B0000, 0x371C0000, 0x371D0000, 0x371E0000, 0x371F0000,
768 0x37200000, 0x37210000, 0x37220000, 0x37230000, 0x37240000, 0x37250000, 0x37260000, 0x37270000, 0x37280000, 0x37290000, 0x372A0000, 0x372B0000, 0x372C0000, 0x372D0000, 0x372E0000, 0x372F0000,
769 0x37300000, 0x37310000, 0x37320000, 0x37330000, 0x37340000, 0x37350000, 0x37360000, 0x37370000, 0x37380000, 0x37390000, 0x373A0000, 0x373B0000, 0x373C0000, 0x373D0000, 0x373E0000, 0x373F0000,
770 0x37400000, 0x37410000, 0x37420000, 0x37430000, 0x37440000, 0x37450000, 0x37460000, 0x37470000, 0x37480000, 0x37490000, 0x374A0000, 0x374B0000, 0x374C0000, 0x374D0000, 0x374E0000, 0x374F0000,
771 0x37500000, 0x37510000, 0x37520000, 0x37530000, 0x37540000, 0x37550000, 0x37560000, 0x37570000, 0x37580000, 0x37590000, 0x375A0000, 0x375B0000, 0x375C0000, 0x375D0000, 0x375E0000, 0x375F0000,
772 0x37600000, 0x37610000, 0x37620000, 0x37630000, 0x37640000, 0x37650000, 0x37660000, 0x37670000, 0x37680000, 0x37690000, 0x376A0000, 0x376B0000, 0x376C0000, 0x376D0000, 0x376E0000, 0x376F0000,
773 0x37700000, 0x37710000, 0x37720000, 0x37730000, 0x37740000, 0x37750000, 0x37760000, 0x37770000, 0x37780000, 0x37790000, 0x377A0000, 0x377B0000, 0x377C0000, 0x377D0000, 0x377E0000, 0x377F0000,
774 0x37800000, 0x37808000, 0x37810000, 0x37818000, 0x37820000, 0x37828000, 0x37830000, 0x37838000, 0x37840000, 0x37848000, 0x37850000, 0x37858000, 0x37860000, 0x37868000, 0x37870000, 0x37878000,
775 0x37880000, 0x37888000, 0x37890000, 0x37898000, 0x378A0000, 0x378A8000, 0x378B0000, 0x378B8000, 0x378C0000, 0x378C8000, 0x378D0000, 0x378D8000, 0x378E0000, 0x378E8000, 0x378F0000, 0x378F8000,
776 0x37900000, 0x37908000, 0x37910000, 0x37918000, 0x37920000, 0x37928000, 0x37930000, 0x37938000, 0x37940000, 0x37948000, 0x37950000, 0x37958000, 0x37960000, 0x37968000, 0x37970000, 0x37978000,
777 0x37980000, 0x37988000, 0x37990000, 0x37998000, 0x379A0000, 0x379A8000, 0x379B0000, 0x379B8000, 0x379C0000, 0x379C8000, 0x379D0000, 0x379D8000, 0x379E0000, 0x379E8000, 0x379F0000, 0x379F8000,
778 0x37A00000, 0x37A08000, 0x37A10000, 0x37A18000, 0x37A20000, 0x37A28000, 0x37A30000, 0x37A38000, 0x37A40000, 0x37A48000, 0x37A50000, 0x37A58000, 0x37A60000, 0x37A68000, 0x37A70000, 0x37A78000,
779 0x37A80000, 0x37A88000, 0x37A90000, 0x37A98000, 0x37AA0000, 0x37AA8000, 0x37AB0000, 0x37AB8000, 0x37AC0000, 0x37AC8000, 0x37AD0000, 0x37AD8000, 0x37AE0000, 0x37AE8000, 0x37AF0000, 0x37AF8000,
780 0x37B00000, 0x37B08000, 0x37B10000, 0x37B18000, 0x37B20000, 0x37B28000, 0x37B30000, 0x37B38000, 0x37B40000, 0x37B48000, 0x37B50000, 0x37B58000, 0x37B60000, 0x37B68000, 0x37B70000, 0x37B78000,
781 0x37B80000, 0x37B88000, 0x37B90000, 0x37B98000, 0x37BA0000, 0x37BA8000, 0x37BB0000, 0x37BB8000, 0x37BC0000, 0x37BC8000, 0x37BD0000, 0x37BD8000, 0x37BE0000, 0x37BE8000, 0x37BF0000, 0x37BF8000,
782 0x37C00000, 0x37C08000, 0x37C10000, 0x37C18000, 0x37C20000, 0x37C28000, 0x37C30000, 0x37C38000, 0x37C40000, 0x37C48000, 0x37C50000, 0x37C58000, 0x37C60000, 0x37C68000, 0x37C70000, 0x37C78000,
783 0x37C80000, 0x37C88000, 0x37C90000, 0x37C98000, 0x37CA0000, 0x37CA8000, 0x37CB0000, 0x37CB8000, 0x37CC0000, 0x37CC8000, 0x37CD0000, 0x37CD8000, 0x37CE0000, 0x37CE8000, 0x37CF0000, 0x37CF8000,
784 0x37D00000, 0x37D08000, 0x37D10000, 0x37D18000, 0x37D20000, 0x37D28000, 0x37D30000, 0x37D38000, 0x37D40000, 0x37D48000, 0x37D50000, 0x37D58000, 0x37D60000, 0x37D68000, 0x37D70000, 0x37D78000,
785 0x37D80000, 0x37D88000, 0x37D90000, 0x37D98000, 0x37DA0000, 0x37DA8000, 0x37DB0000, 0x37DB8000, 0x37DC0000, 0x37DC8000, 0x37DD0000, 0x37DD8000, 0x37DE0000, 0x37DE8000, 0x37DF0000, 0x37DF8000,
786 0x37E00000, 0x37E08000, 0x37E10000, 0x37E18000, 0x37E20000, 0x37E28000, 0x37E30000, 0x37E38000, 0x37E40000, 0x37E48000, 0x37E50000, 0x37E58000, 0x37E60000, 0x37E68000, 0x37E70000, 0x37E78000,
787 0x37E80000, 0x37E88000, 0x37E90000, 0x37E98000, 0x37EA0000, 0x37EA8000, 0x37EB0000, 0x37EB8000, 0x37EC0000, 0x37EC8000, 0x37ED0000, 0x37ED8000, 0x37EE0000, 0x37EE8000, 0x37EF0000, 0x37EF8000,
788 0x37F00000, 0x37F08000, 0x37F10000, 0x37F18000, 0x37F20000, 0x37F28000, 0x37F30000, 0x37F38000, 0x37F40000, 0x37F48000, 0x37F50000, 0x37F58000, 0x37F60000, 0x37F68000, 0x37F70000, 0x37F78000,
789 0x37F80000, 0x37F88000, 0x37F90000, 0x37F98000, 0x37FA0000, 0x37FA8000, 0x37FB0000, 0x37FB8000, 0x37FC0000, 0x37FC8000, 0x37FD0000, 0x37FD8000, 0x37FE0000, 0x37FE8000, 0x37FF0000, 0x37FF8000,
790 0x38000000, 0x38004000, 0x38008000, 0x3800C000, 0x38010000, 0x38014000, 0x38018000, 0x3801C000, 0x38020000, 0x38024000, 0x38028000, 0x3802C000, 0x38030000, 0x38034000, 0x38038000, 0x3803C000,
791 0x38040000, 0x38044000, 0x38048000, 0x3804C000, 0x38050000, 0x38054000, 0x38058000, 0x3805C000, 0x38060000, 0x38064000, 0x38068000, 0x3806C000, 0x38070000, 0x38074000, 0x38078000, 0x3807C000,
792 0x38080000, 0x38084000, 0x38088000, 0x3808C000, 0x38090000, 0x38094000, 0x38098000, 0x3809C000, 0x380A0000, 0x380A4000, 0x380A8000, 0x380AC000, 0x380B0000, 0x380B4000, 0x380B8000, 0x380BC000,
793 0x380C0000, 0x380C4000, 0x380C8000, 0x380CC000, 0x380D0000, 0x380D4000, 0x380D8000, 0x380DC000, 0x380E0000, 0x380E4000, 0x380E8000, 0x380EC000, 0x380F0000, 0x380F4000, 0x380F8000, 0x380FC000,
794 0x38100000, 0x38104000, 0x38108000, 0x3810C000, 0x38110000, 0x38114000, 0x38118000, 0x3811C000, 0x38120000, 0x38124000, 0x38128000, 0x3812C000, 0x38130000, 0x38134000, 0x38138000, 0x3813C000,
795 0x38140000, 0x38144000, 0x38148000, 0x3814C000, 0x38150000, 0x38154000, 0x38158000, 0x3815C000, 0x38160000, 0x38164000, 0x38168000, 0x3816C000, 0x38170000, 0x38174000, 0x38178000, 0x3817C000,
796 0x38180000, 0x38184000, 0x38188000, 0x3818C000, 0x38190000, 0x38194000, 0x38198000, 0x3819C000, 0x381A0000, 0x381A4000, 0x381A8000, 0x381AC000, 0x381B0000, 0x381B4000, 0x381B8000, 0x381BC000,
797 0x381C0000, 0x381C4000, 0x381C8000, 0x381CC000, 0x381D0000, 0x381D4000, 0x381D8000, 0x381DC000, 0x381E0000, 0x381E4000, 0x381E8000, 0x381EC000, 0x381F0000, 0x381F4000, 0x381F8000, 0x381FC000,
798 0x38200000, 0x38204000, 0x38208000, 0x3820C000, 0x38210000, 0x38214000, 0x38218000, 0x3821C000, 0x38220000, 0x38224000, 0x38228000, 0x3822C000, 0x38230000, 0x38234000, 0x38238000, 0x3823C000,
799 0x38240000, 0x38244000, 0x38248000, 0x3824C000, 0x38250000, 0x38254000, 0x38258000, 0x3825C000, 0x38260000, 0x38264000, 0x38268000, 0x3826C000, 0x38270000, 0x38274000, 0x38278000, 0x3827C000,
800 0x38280000, 0x38284000, 0x38288000, 0x3828C000, 0x38290000, 0x38294000, 0x38298000, 0x3829C000, 0x382A0000, 0x382A4000, 0x382A8000, 0x382AC000, 0x382B0000, 0x382B4000, 0x382B8000, 0x382BC000,
801 0x382C0000, 0x382C4000, 0x382C8000, 0x382CC000, 0x382D0000, 0x382D4000, 0x382D8000, 0x382DC000, 0x382E0000, 0x382E4000, 0x382E8000, 0x382EC000, 0x382F0000, 0x382F4000, 0x382F8000, 0x382FC000,
802 0x38300000, 0x38304000, 0x38308000, 0x3830C000, 0x38310000, 0x38314000, 0x38318000, 0x3831C000, 0x38320000, 0x38324000, 0x38328000, 0x3832C000, 0x38330000, 0x38334000, 0x38338000, 0x3833C000,
803 0x38340000, 0x38344000, 0x38348000, 0x3834C000, 0x38350000, 0x38354000, 0x38358000, 0x3835C000, 0x38360000, 0x38364000, 0x38368000, 0x3836C000, 0x38370000, 0x38374000, 0x38378000, 0x3837C000,
804 0x38380000, 0x38384000, 0x38388000, 0x3838C000, 0x38390000, 0x38394000, 0x38398000, 0x3839C000, 0x383A0000, 0x383A4000, 0x383A8000, 0x383AC000, 0x383B0000, 0x383B4000, 0x383B8000, 0x383BC000,
805 0x383C0000, 0x383C4000, 0x383C8000, 0x383CC000, 0x383D0000, 0x383D4000, 0x383D8000, 0x383DC000, 0x383E0000, 0x383E4000, 0x383E8000, 0x383EC000, 0x383F0000, 0x383F4000, 0x383F8000, 0x383FC000,
806 0x38400000, 0x38404000, 0x38408000, 0x3840C000, 0x38410000, 0x38414000, 0x38418000, 0x3841C000, 0x38420000, 0x38424000, 0x38428000, 0x3842C000, 0x38430000, 0x38434000, 0x38438000, 0x3843C000,
807 0x38440000, 0x38444000, 0x38448000, 0x3844C000, 0x38450000, 0x38454000, 0x38458000, 0x3845C000, 0x38460000, 0x38464000, 0x38468000, 0x3846C000, 0x38470000, 0x38474000, 0x38478000, 0x3847C000,
808 0x38480000, 0x38484000, 0x38488000, 0x3848C000, 0x38490000, 0x38494000, 0x38498000, 0x3849C000, 0x384A0000, 0x384A4000, 0x384A8000, 0x384AC000, 0x384B0000, 0x384B4000, 0x384B8000, 0x384BC000,
809 0x384C0000, 0x384C4000, 0x384C8000, 0x384CC000, 0x384D0000, 0x384D4000, 0x384D8000, 0x384DC000, 0x384E0000, 0x384E4000, 0x384E8000, 0x384EC000, 0x384F0000, 0x384F4000, 0x384F8000, 0x384FC000,
810 0x38500000, 0x38504000, 0x38508000, 0x3850C000, 0x38510000, 0x38514000, 0x38518000, 0x3851C000, 0x38520000, 0x38524000, 0x38528000, 0x3852C000, 0x38530000, 0x38534000, 0x38538000, 0x3853C000,
811 0x38540000, 0x38544000, 0x38548000, 0x3854C000, 0x38550000, 0x38554000, 0x38558000, 0x3855C000, 0x38560000, 0x38564000, 0x38568000, 0x3856C000, 0x38570000, 0x38574000, 0x38578000, 0x3857C000,
812 0x38580000, 0x38584000, 0x38588000, 0x3858C000, 0x38590000, 0x38594000, 0x38598000, 0x3859C000, 0x385A0000, 0x385A4000, 0x385A8000, 0x385AC000, 0x385B0000, 0x385B4000, 0x385B8000, 0x385BC000,
813 0x385C0000, 0x385C4000, 0x385C8000, 0x385CC000, 0x385D0000, 0x385D4000, 0x385D8000, 0x385DC000, 0x385E0000, 0x385E4000, 0x385E8000, 0x385EC000, 0x385F0000, 0x385F4000, 0x385F8000, 0x385FC000,
814 0x38600000, 0x38604000, 0x38608000, 0x3860C000, 0x38610000, 0x38614000, 0x38618000, 0x3861C000, 0x38620000, 0x38624000, 0x38628000, 0x3862C000, 0x38630000, 0x38634000, 0x38638000, 0x3863C000,
815 0x38640000, 0x38644000, 0x38648000, 0x3864C000, 0x38650000, 0x38654000, 0x38658000, 0x3865C000, 0x38660000, 0x38664000, 0x38668000, 0x3866C000, 0x38670000, 0x38674000, 0x38678000, 0x3867C000,
816 0x38680000, 0x38684000, 0x38688000, 0x3868C000, 0x38690000, 0x38694000, 0x38698000, 0x3869C000, 0x386A0000, 0x386A4000, 0x386A8000, 0x386AC000, 0x386B0000, 0x386B4000, 0x386B8000, 0x386BC000,
817 0x386C0000, 0x386C4000, 0x386C8000, 0x386CC000, 0x386D0000, 0x386D4000, 0x386D8000, 0x386DC000, 0x386E0000, 0x386E4000, 0x386E8000, 0x386EC000, 0x386F0000, 0x386F4000, 0x386F8000, 0x386FC000,
818 0x38700000, 0x38704000, 0x38708000, 0x3870C000, 0x38710000, 0x38714000, 0x38718000, 0x3871C000, 0x38720000, 0x38724000, 0x38728000, 0x3872C000, 0x38730000, 0x38734000, 0x38738000, 0x3873C000,
819 0x38740000, 0x38744000, 0x38748000, 0x3874C000, 0x38750000, 0x38754000, 0x38758000, 0x3875C000, 0x38760000, 0x38764000, 0x38768000, 0x3876C000, 0x38770000, 0x38774000, 0x38778000, 0x3877C000,
820 0x38780000, 0x38784000, 0x38788000, 0x3878C000, 0x38790000, 0x38794000, 0x38798000, 0x3879C000, 0x387A0000, 0x387A4000, 0x387A8000, 0x387AC000, 0x387B0000, 0x387B4000, 0x387B8000, 0x387BC000,
821 0x387C0000, 0x387C4000, 0x387C8000, 0x387CC000, 0x387D0000, 0x387D4000, 0x387D8000, 0x387DC000, 0x387E0000, 0x387E4000, 0x387E8000, 0x387EC000, 0x387F0000, 0x387F4000, 0x387F8000, 0x387FC000,
822 0x38000000, 0x38002000, 0x38004000, 0x38006000, 0x38008000, 0x3800A000, 0x3800C000, 0x3800E000, 0x38010000, 0x38012000, 0x38014000, 0x38016000, 0x38018000, 0x3801A000, 0x3801C000, 0x3801E000,
823 0x38020000, 0x38022000, 0x38024000, 0x38026000, 0x38028000, 0x3802A000, 0x3802C000, 0x3802E000, 0x38030000, 0x38032000, 0x38034000, 0x38036000, 0x38038000, 0x3803A000, 0x3803C000, 0x3803E000,
824 0x38040000, 0x38042000, 0x38044000, 0x38046000, 0x38048000, 0x3804A000, 0x3804C000, 0x3804E000, 0x38050000, 0x38052000, 0x38054000, 0x38056000, 0x38058000, 0x3805A000, 0x3805C000, 0x3805E000,
825 0x38060000, 0x38062000, 0x38064000, 0x38066000, 0x38068000, 0x3806A000, 0x3806C000, 0x3806E000, 0x38070000, 0x38072000, 0x38074000, 0x38076000, 0x38078000, 0x3807A000, 0x3807C000, 0x3807E000,
826 0x38080000, 0x38082000, 0x38084000, 0x38086000, 0x38088000, 0x3808A000, 0x3808C000, 0x3808E000, 0x38090000, 0x38092000, 0x38094000, 0x38096000, 0x38098000, 0x3809A000, 0x3809C000, 0x3809E000,
827 0x380A0000, 0x380A2000, 0x380A4000, 0x380A6000, 0x380A8000, 0x380AA000, 0x380AC000, 0x380AE000, 0x380B0000, 0x380B2000, 0x380B4000, 0x380B6000, 0x380B8000, 0x380BA000, 0x380BC000, 0x380BE000,
828 0x380C0000, 0x380C2000, 0x380C4000, 0x380C6000, 0x380C8000, 0x380CA000, 0x380CC000, 0x380CE000, 0x380D0000, 0x380D2000, 0x380D4000, 0x380D6000, 0x380D8000, 0x380DA000, 0x380DC000, 0x380DE000,
829 0x380E0000, 0x380E2000, 0x380E4000, 0x380E6000, 0x380E8000, 0x380EA000, 0x380EC000, 0x380EE000, 0x380F0000, 0x380F2000, 0x380F4000, 0x380F6000, 0x380F8000, 0x380FA000, 0x380FC000, 0x380FE000,
830 0x38100000, 0x38102000, 0x38104000, 0x38106000, 0x38108000, 0x3810A000, 0x3810C000, 0x3810E000, 0x38110000, 0x38112000, 0x38114000, 0x38116000, 0x38118000, 0x3811A000, 0x3811C000, 0x3811E000,
831 0x38120000, 0x38122000, 0x38124000, 0x38126000, 0x38128000, 0x3812A000, 0x3812C000, 0x3812E000, 0x38130000, 0x38132000, 0x38134000, 0x38136000, 0x38138000, 0x3813A000, 0x3813C000, 0x3813E000,
832 0x38140000, 0x38142000, 0x38144000, 0x38146000, 0x38148000, 0x3814A000, 0x3814C000, 0x3814E000, 0x38150000, 0x38152000, 0x38154000, 0x38156000, 0x38158000, 0x3815A000, 0x3815C000, 0x3815E000,
833 0x38160000, 0x38162000, 0x38164000, 0x38166000, 0x38168000, 0x3816A000, 0x3816C000, 0x3816E000, 0x38170000, 0x38172000, 0x38174000, 0x38176000, 0x38178000, 0x3817A000, 0x3817C000, 0x3817E000,
834 0x38180000, 0x38182000, 0x38184000, 0x38186000, 0x38188000, 0x3818A000, 0x3818C000, 0x3818E000, 0x38190000, 0x38192000, 0x38194000, 0x38196000, 0x38198000, 0x3819A000, 0x3819C000, 0x3819E000,
835 0x381A0000, 0x381A2000, 0x381A4000, 0x381A6000, 0x381A8000, 0x381AA000, 0x381AC000, 0x381AE000, 0x381B0000, 0x381B2000, 0x381B4000, 0x381B6000, 0x381B8000, 0x381BA000, 0x381BC000, 0x381BE000,
836 0x381C0000, 0x381C2000, 0x381C4000, 0x381C6000, 0x381C8000, 0x381CA000, 0x381CC000, 0x381CE000, 0x381D0000, 0x381D2000, 0x381D4000, 0x381D6000, 0x381D8000, 0x381DA000, 0x381DC000, 0x381DE000,
837 0x381E0000, 0x381E2000, 0x381E4000, 0x381E6000, 0x381E8000, 0x381EA000, 0x381EC000, 0x381EE000, 0x381F0000, 0x381F2000, 0x381F4000, 0x381F6000, 0x381F8000, 0x381FA000, 0x381FC000, 0x381FE000,
838 0x38200000, 0x38202000, 0x38204000, 0x38206000, 0x38208000, 0x3820A000, 0x3820C000, 0x3820E000, 0x38210000, 0x38212000, 0x38214000, 0x38216000, 0x38218000, 0x3821A000, 0x3821C000, 0x3821E000,
839 0x38220000, 0x38222000, 0x38224000, 0x38226000, 0x38228000, 0x3822A000, 0x3822C000, 0x3822E000, 0x38230000, 0x38232000, 0x38234000, 0x38236000, 0x38238000, 0x3823A000, 0x3823C000, 0x3823E000,
840 0x38240000, 0x38242000, 0x38244000, 0x38246000, 0x38248000, 0x3824A000, 0x3824C000, 0x3824E000, 0x38250000, 0x38252000, 0x38254000, 0x38256000, 0x38258000, 0x3825A000, 0x3825C000, 0x3825E000,
841 0x38260000, 0x38262000, 0x38264000, 0x38266000, 0x38268000, 0x3826A000, 0x3826C000, 0x3826E000, 0x38270000, 0x38272000, 0x38274000, 0x38276000, 0x38278000, 0x3827A000, 0x3827C000, 0x3827E000,
842 0x38280000, 0x38282000, 0x38284000, 0x38286000, 0x38288000, 0x3828A000, 0x3828C000, 0x3828E000, 0x38290000, 0x38292000, 0x38294000, 0x38296000, 0x38298000, 0x3829A000, 0x3829C000, 0x3829E000,
843 0x382A0000, 0x382A2000, 0x382A4000, 0x382A6000, 0x382A8000, 0x382AA000, 0x382AC000, 0x382AE000, 0x382B0000, 0x382B2000, 0x382B4000, 0x382B6000, 0x382B8000, 0x382BA000, 0x382BC000, 0x382BE000,
844 0x382C0000, 0x382C2000, 0x382C4000, 0x382C6000, 0x382C8000, 0x382CA000, 0x382CC000, 0x382CE000, 0x382D0000, 0x382D2000, 0x382D4000, 0x382D6000, 0x382D8000, 0x382DA000, 0x382DC000, 0x382DE000,
845 0x382E0000, 0x382E2000, 0x382E4000, 0x382E6000, 0x382E8000, 0x382EA000, 0x382EC000, 0x382EE000, 0x382F0000, 0x382F2000, 0x382F4000, 0x382F6000, 0x382F8000, 0x382FA000, 0x382FC000, 0x382FE000,
846 0x38300000, 0x38302000, 0x38304000, 0x38306000, 0x38308000, 0x3830A000, 0x3830C000, 0x3830E000, 0x38310000, 0x38312000, 0x38314000, 0x38316000, 0x38318000, 0x3831A000, 0x3831C000, 0x3831E000,
847 0x38320000, 0x38322000, 0x38324000, 0x38326000, 0x38328000, 0x3832A000, 0x3832C000, 0x3832E000, 0x38330000, 0x38332000, 0x38334000, 0x38336000, 0x38338000, 0x3833A000, 0x3833C000, 0x3833E000,
848 0x38340000, 0x38342000, 0x38344000, 0x38346000, 0x38348000, 0x3834A000, 0x3834C000, 0x3834E000, 0x38350000, 0x38352000, 0x38354000, 0x38356000, 0x38358000, 0x3835A000, 0x3835C000, 0x3835E000,
849 0x38360000, 0x38362000, 0x38364000, 0x38366000, 0x38368000, 0x3836A000, 0x3836C000, 0x3836E000, 0x38370000, 0x38372000, 0x38374000, 0x38376000, 0x38378000, 0x3837A000, 0x3837C000, 0x3837E000,
850 0x38380000, 0x38382000, 0x38384000, 0x38386000, 0x38388000, 0x3838A000, 0x3838C000, 0x3838E000, 0x38390000, 0x38392000, 0x38394000, 0x38396000, 0x38398000, 0x3839A000, 0x3839C000, 0x3839E000,
851 0x383A0000, 0x383A2000, 0x383A4000, 0x383A6000, 0x383A8000, 0x383AA000, 0x383AC000, 0x383AE000, 0x383B0000, 0x383B2000, 0x383B4000, 0x383B6000, 0x383B8000, 0x383BA000, 0x383BC000, 0x383BE000,
852 0x383C0000, 0x383C2000, 0x383C4000, 0x383C6000, 0x383C8000, 0x383CA000, 0x383CC000, 0x383CE000, 0x383D0000, 0x383D2000, 0x383D4000, 0x383D6000, 0x383D8000, 0x383DA000, 0x383DC000, 0x383DE000,
853 0x383E0000, 0x383E2000, 0x383E4000, 0x383E6000, 0x383E8000, 0x383EA000, 0x383EC000, 0x383EE000, 0x383F0000, 0x383F2000, 0x383F4000, 0x383F6000, 0x383F8000, 0x383FA000, 0x383FC000, 0x383FE000,
854 0x38400000, 0x38402000, 0x38404000, 0x38406000, 0x38408000, 0x3840A000, 0x3840C000, 0x3840E000, 0x38410000, 0x38412000, 0x38414000, 0x38416000, 0x38418000, 0x3841A000, 0x3841C000, 0x3841E000,
855 0x38420000, 0x38422000, 0x38424000, 0x38426000, 0x38428000, 0x3842A000, 0x3842C000, 0x3842E000, 0x38430000, 0x38432000, 0x38434000, 0x38436000, 0x38438000, 0x3843A000, 0x3843C000, 0x3843E000,
856 0x38440000, 0x38442000, 0x38444000, 0x38446000, 0x38448000, 0x3844A000, 0x3844C000, 0x3844E000, 0x38450000, 0x38452000, 0x38454000, 0x38456000, 0x38458000, 0x3845A000, 0x3845C000, 0x3845E000,
857 0x38460000, 0x38462000, 0x38464000, 0x38466000, 0x38468000, 0x3846A000, 0x3846C000, 0x3846E000, 0x38470000, 0x38472000, 0x38474000, 0x38476000, 0x38478000, 0x3847A000, 0x3847C000, 0x3847E000,
858 0x38480000, 0x38482000, 0x38484000, 0x38486000, 0x38488000, 0x3848A000, 0x3848C000, 0x3848E000, 0x38490000, 0x38492000, 0x38494000, 0x38496000, 0x38498000, 0x3849A000, 0x3849C000, 0x3849E000,
859 0x384A0000, 0x384A2000, 0x384A4000, 0x384A6000, 0x384A8000, 0x384AA000, 0x384AC000, 0x384AE000, 0x384B0000, 0x384B2000, 0x384B4000, 0x384B6000, 0x384B8000, 0x384BA000, 0x384BC000, 0x384BE000,
860 0x384C0000, 0x384C2000, 0x384C4000, 0x384C6000, 0x384C8000, 0x384CA000, 0x384CC000, 0x384CE000, 0x384D0000, 0x384D2000, 0x384D4000, 0x384D6000, 0x384D8000, 0x384DA000, 0x384DC000, 0x384DE000,
861 0x384E0000, 0x384E2000, 0x384E4000, 0x384E6000, 0x384E8000, 0x384EA000, 0x384EC000, 0x384EE000, 0x384F0000, 0x384F2000, 0x384F4000, 0x384F6000, 0x384F8000, 0x384FA000, 0x384FC000, 0x384FE000,
862 0x38500000, 0x38502000, 0x38504000, 0x38506000, 0x38508000, 0x3850A000, 0x3850C000, 0x3850E000, 0x38510000, 0x38512000, 0x38514000, 0x38516000, 0x38518000, 0x3851A000, 0x3851C000, 0x3851E000,
863 0x38520000, 0x38522000, 0x38524000, 0x38526000, 0x38528000, 0x3852A000, 0x3852C000, 0x3852E000, 0x38530000, 0x38532000, 0x38534000, 0x38536000, 0x38538000, 0x3853A000, 0x3853C000, 0x3853E000,
864 0x38540000, 0x38542000, 0x38544000, 0x38546000, 0x38548000, 0x3854A000, 0x3854C000, 0x3854E000, 0x38550000, 0x38552000, 0x38554000, 0x38556000, 0x38558000, 0x3855A000, 0x3855C000, 0x3855E000,
865 0x38560000, 0x38562000, 0x38564000, 0x38566000, 0x38568000, 0x3856A000, 0x3856C000, 0x3856E000, 0x38570000, 0x38572000, 0x38574000, 0x38576000, 0x38578000, 0x3857A000, 0x3857C000, 0x3857E000,
866 0x38580000, 0x38582000, 0x38584000, 0x38586000, 0x38588000, 0x3858A000, 0x3858C000, 0x3858E000, 0x38590000, 0x38592000, 0x38594000, 0x38596000, 0x38598000, 0x3859A000, 0x3859C000, 0x3859E000,
867 0x385A0000, 0x385A2000, 0x385A4000, 0x385A6000, 0x385A8000, 0x385AA000, 0x385AC000, 0x385AE000, 0x385B0000, 0x385B2000, 0x385B4000, 0x385B6000, 0x385B8000, 0x385BA000, 0x385BC000, 0x385BE000,
868 0x385C0000, 0x385C2000, 0x385C4000, 0x385C6000, 0x385C8000, 0x385CA000, 0x385CC000, 0x385CE000, 0x385D0000, 0x385D2000, 0x385D4000, 0x385D6000, 0x385D8000, 0x385DA000, 0x385DC000, 0x385DE000,
869 0x385E0000, 0x385E2000, 0x385E4000, 0x385E6000, 0x385E8000, 0x385EA000, 0x385EC000, 0x385EE000, 0x385F0000, 0x385F2000, 0x385F4000, 0x385F6000, 0x385F8000, 0x385FA000, 0x385FC000, 0x385FE000,
870 0x38600000, 0x38602000, 0x38604000, 0x38606000, 0x38608000, 0x3860A000, 0x3860C000, 0x3860E000, 0x38610000, 0x38612000, 0x38614000, 0x38616000, 0x38618000, 0x3861A000, 0x3861C000, 0x3861E000,
871 0x38620000, 0x38622000, 0x38624000, 0x38626000, 0x38628000, 0x3862A000, 0x3862C000, 0x3862E000, 0x38630000, 0x38632000, 0x38634000, 0x38636000, 0x38638000, 0x3863A000, 0x3863C000, 0x3863E000,
872 0x38640000, 0x38642000, 0x38644000, 0x38646000, 0x38648000, 0x3864A000, 0x3864C000, 0x3864E000, 0x38650000, 0x38652000, 0x38654000, 0x38656000, 0x38658000, 0x3865A000, 0x3865C000, 0x3865E000,
873 0x38660000, 0x38662000, 0x38664000, 0x38666000, 0x38668000, 0x3866A000, 0x3866C000, 0x3866E000, 0x38670000, 0x38672000, 0x38674000, 0x38676000, 0x38678000, 0x3867A000, 0x3867C000, 0x3867E000,
874 0x38680000, 0x38682000, 0x38684000, 0x38686000, 0x38688000, 0x3868A000, 0x3868C000, 0x3868E000, 0x38690000, 0x38692000, 0x38694000, 0x38696000, 0x38698000, 0x3869A000, 0x3869C000, 0x3869E000,
875 0x386A0000, 0x386A2000, 0x386A4000, 0x386A6000, 0x386A8000, 0x386AA000, 0x386AC000, 0x386AE000, 0x386B0000, 0x386B2000, 0x386B4000, 0x386B6000, 0x386B8000, 0x386BA000, 0x386BC000, 0x386BE000,
876 0x386C0000, 0x386C2000, 0x386C4000, 0x386C6000, 0x386C8000, 0x386CA000, 0x386CC000, 0x386CE000, 0x386D0000, 0x386D2000, 0x386D4000, 0x386D6000, 0x386D8000, 0x386DA000, 0x386DC000, 0x386DE000,
877 0x386E0000, 0x386E2000, 0x386E4000, 0x386E6000, 0x386E8000, 0x386EA000, 0x386EC000, 0x386EE000, 0x386F0000, 0x386F2000, 0x386F4000, 0x386F6000, 0x386F8000, 0x386FA000, 0x386FC000, 0x386FE000,
878 0x38700000, 0x38702000, 0x38704000, 0x38706000, 0x38708000, 0x3870A000, 0x3870C000, 0x3870E000, 0x38710000, 0x38712000, 0x38714000, 0x38716000, 0x38718000, 0x3871A000, 0x3871C000, 0x3871E000,
879 0x38720000, 0x38722000, 0x38724000, 0x38726000, 0x38728000, 0x3872A000, 0x3872C000, 0x3872E000, 0x38730000, 0x38732000, 0x38734000, 0x38736000, 0x38738000, 0x3873A000, 0x3873C000, 0x3873E000,
880 0x38740000, 0x38742000, 0x38744000, 0x38746000, 0x38748000, 0x3874A000, 0x3874C000, 0x3874E000, 0x38750000, 0x38752000, 0x38754000, 0x38756000, 0x38758000, 0x3875A000, 0x3875C000, 0x3875E000,
881 0x38760000, 0x38762000, 0x38764000, 0x38766000, 0x38768000, 0x3876A000, 0x3876C000, 0x3876E000, 0x38770000, 0x38772000, 0x38774000, 0x38776000, 0x38778000, 0x3877A000, 0x3877C000, 0x3877E000,
882 0x38780000, 0x38782000, 0x38784000, 0x38786000, 0x38788000, 0x3878A000, 0x3878C000, 0x3878E000, 0x38790000, 0x38792000, 0x38794000, 0x38796000, 0x38798000, 0x3879A000, 0x3879C000, 0x3879E000,
883 0x387A0000, 0x387A2000, 0x387A4000, 0x387A6000, 0x387A8000, 0x387AA000, 0x387AC000, 0x387AE000, 0x387B0000, 0x387B2000, 0x387B4000, 0x387B6000, 0x387B8000, 0x387BA000, 0x387BC000, 0x387BE000,
884 0x387C0000, 0x387C2000, 0x387C4000, 0x387C6000, 0x387C8000, 0x387CA000, 0x387CC000, 0x387CE000, 0x387D0000, 0x387D2000, 0x387D4000, 0x387D6000, 0x387D8000, 0x387DA000, 0x387DC000, 0x387DE000,
885 0x387E0000, 0x387E2000, 0x387E4000, 0x387E6000, 0x387E8000, 0x387EA000, 0x387EC000, 0x387EE000, 0x387F0000, 0x387F2000, 0x387F4000, 0x387F6000, 0x387F8000, 0x387FA000, 0x387FC000, 0x387FE000 };
886 static const uint32 exponent_table[64] = {
887 0x00000000, 0x00800000, 0x01000000, 0x01800000, 0x02000000, 0x02800000, 0x03000000, 0x03800000, 0x04000000, 0x04800000, 0x05000000, 0x05800000, 0x06000000, 0x06800000, 0x07000000, 0x07800000,
888 0x08000000, 0x08800000, 0x09000000, 0x09800000, 0x0A000000, 0x0A800000, 0x0B000000, 0x0B800000, 0x0C000000, 0x0C800000, 0x0D000000, 0x0D800000, 0x0E000000, 0x0E800000, 0x0F000000, 0x47800000,
889 0x80000000, 0x80800000, 0x81000000, 0x81800000, 0x82000000, 0x82800000, 0x83000000, 0x83800000, 0x84000000, 0x84800000, 0x85000000, 0x85800000, 0x86000000, 0x86800000, 0x87000000, 0x87800000,
890 0x88000000, 0x88800000, 0x89000000, 0x89800000, 0x8A000000, 0x8A800000, 0x8B000000, 0x8B800000, 0x8C000000, 0x8C800000, 0x8D000000, 0x8D800000, 0x8E000000, 0x8E800000, 0x8F000000, 0xC7800000 };
891 static const unsigned short offset_table[64] = {
892 0, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024,
893 0, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024 };
894 uint32 bits = mantissa_table[offset_table[value>>10]+(value&0x3FF)] + exponent_table[value>>10];
895// return *reinterpret_cast<float*>(&bits); //violating strict aliasing!
896 float out;
897 std::memcpy(&out, &bits, sizeof(float));
898 return out;
899 }
900
901 /// Convert half-precision to IEEE double-precision.
902 /// \param value binary representation of half-precision value
903 /// \return double-precision value
904 inline double half2float_impl(uint16 value, double, true_type)
905 {
906 typedef bits<float>::type uint32;
907 typedef bits<double>::type uint64;
908 uint32 hi = static_cast<uint32>(value&0x8000) << 16;
909 int abs = value & 0x7FFF;
910 if(abs)
911 {
912 hi |= 0x3F000000 << static_cast<unsigned>(abs>=0x7C00);
913 for(; abs<0x400; abs<<=1,hi-=0x100000) ;
914 hi += static_cast<uint32>(abs) << 10;
915 }
916 uint64 bits = static_cast<uint64>(hi) << 32;
917// return *reinterpret_cast<double*>(&bits); //violating strict aliasing!
918 double out;
919 std::memcpy(&out, &bits, sizeof(double));
920 return out;
921 }
922
923 /// Convert half-precision to non-IEEE floating point.
924 /// \tparam T type to convert to (builtin integer type)
925 /// \param value binary representation of half-precision value
926 /// \return floating point value
927 template<typename T> T half2float_impl(uint16 value, T, ...)
928 {
929 T out;
930 int abs = value & 0x7FFF;
931 if(abs > 0x7C00)
932 out = std::numeric_limits<T>::has_quiet_NaN ? std::numeric_limits<T>::quiet_NaN() : T();
933 else if(abs == 0x7C00)
934 out = std::numeric_limits<T>::has_infinity ? std::numeric_limits<T>::infinity() : std::numeric_limits<T>::max();
935 else if(abs > 0x3FF)
936 out = std::ldexp(static_cast<T>((abs&0x3FF)|0x400), (abs>>10)-25);
937 else
938 out = std::ldexp(static_cast<T>(abs), -24);
939 return (value&0x8000) ? -out : out;
940 }
941
942 /// Convert half-precision to floating point.
943 /// \tparam T type to convert to (builtin integer type)
944 /// \param value binary representation of half-precision value
945 /// \return floating point value
946 template<typename T> T half2float(uint16 value)
947 {
948 return half2float_impl(value, T(), bool_type<std::numeric_limits<T>::is_iec559&&sizeof(typename bits<T>::type)==sizeof(T)>());
949 }
950
951 /// Convert half-precision floating point to integer.
952 /// \tparam R rounding mode to use, `std::round_indeterminate` for fastest rounding
953 /// \tparam E `true` for round to even, `false` for round away from zero
954 /// \tparam T type to convert to (buitlin integer type with at least 16 bits precision, excluding any implicit sign bits)
955 /// \param value binary representation of half-precision value
956 /// \return integral value
957 template<std::float_round_style R,bool E,typename T> T half2int_impl(uint16 value)
958 {
959 #if HALF_ENABLE_CPP11_STATIC_ASSERT && HALF_ENABLE_CPP11_TYPE_TRAITS
960 static_assert(std::is_integral<T>::value, "half to int conversion only supports builtin integer types");
961 #endif
962 unsigned int e = value & 0x7FFF;
963 if(e >= 0x7C00)
964 return (value&0x8000) ? std::numeric_limits<T>::min() : std::numeric_limits<T>::max();
965 if(e < 0x3800)
966 {
967 if(R == std::round_toward_infinity)
968 return T(~(value>>15)&(e!=0));
969 else if(R == std::round_toward_neg_infinity)
970 return -T(value>0x8000);
971 return T();
972 }
973 unsigned int m = (value&0x3FF) | 0x400;
974 e >>= 10;
975 if(e < 25)
976 {
977 if(R == std::round_to_nearest)
978 m += (1<<(24-e)) - (~(m>>(25-e))&E);
979 else if(R == std::round_toward_infinity)
980 m += ((value>>15)-1) & ((1<<(25-e))-1U);
981 else if(R == std::round_toward_neg_infinity)
982 m += -(value>>15) & ((1<<(25-e))-1U);
983 m >>= 25 - e;
984 }
985 else
986 m <<= e - 25;
987 return (value&0x8000) ? -static_cast<T>(m) : static_cast<T>(m);
988 }
989
990 /// Convert half-precision floating point to integer.
991 /// \tparam R rounding mode to use, `std::round_indeterminate` for fastest rounding
992 /// \tparam T type to convert to (buitlin integer type with at least 16 bits precision, excluding any implicit sign bits)
993 /// \param value binary representation of half-precision value
994 /// \return integral value
995 template<std::float_round_style R,typename T> T half2int(uint16 value) { return half2int_impl<R,HALF_ROUND_TIES_TO_EVEN,T>(value); }
996
997 /// Convert half-precision floating point to integer using round-to-nearest-away-from-zero.
998 /// \tparam T type to convert to (buitlin integer type with at least 16 bits precision, excluding any implicit sign bits)
999 /// \param value binary representation of half-precision value
1000 /// \return integral value
1001 template<typename T> T half2int_up(uint16 value) { return half2int_impl<std::round_to_nearest,0,T>(value); }
1002
1003 /// Round half-precision number to nearest integer value.
1004 /// \tparam R rounding mode to use, `std::round_indeterminate` for fastest rounding
1005 /// \tparam E `true` for round to even, `false` for round away from zero
1006 /// \param value binary representation of half-precision value
1007 /// \return half-precision bits for nearest integral value
1008 template<std::float_round_style R,bool E> uint16 round_half_impl(uint16 value)
1009 {
1010 unsigned int e = value & 0x7FFF;
1011 uint16 result = value;
1012 if(e < 0x3C00)
1013 {
1014 result &= 0x8000;
1015 if(R == std::round_to_nearest)
1016 result |= 0x3C00U & -(e>=(0x3800+E));
1017 else if(R == std::round_toward_infinity)
1018 result |= 0x3C00U & -(~(value>>15)&(e!=0));
1019 else if(R == std::round_toward_neg_infinity)
1020 result |= 0x3C00U & -(value>0x8000);
1021 }
1022 else if(e < 0x6400)
1023 {
1024 e = 25 - (e>>10);
1025 unsigned int mask = (1<<e) - 1;
1026 if(R == std::round_to_nearest)
1027 result += (1<<(e-1)) - (~(result>>e)&E);
1028 else if(R == std::round_toward_infinity)
1029 result += mask & ((value>>15)-1);
1030 else if(R == std::round_toward_neg_infinity)
1031 result += mask & -(value>>15);
1032 result &= ~mask;
1033 }
1034 return result;
1035 }
1036
1037 /// Round half-precision number to nearest integer value.
1038 /// \tparam R rounding mode to use, `std::round_indeterminate` for fastest rounding
1039 /// \param value binary representation of half-precision value
1040 /// \return half-precision bits for nearest integral value
1041 template<std::float_round_style R> uint16 round_half(uint16 value) { return round_half_impl<R,HALF_ROUND_TIES_TO_EVEN>(value); }
1042
1043 /// Round half-precision number to nearest integer value using round-to-nearest-away-from-zero.
1044 /// \param value binary representation of half-precision value
1045 /// \return half-precision bits for nearest integral value
1046 inline uint16 round_half_up(uint16 value) { return round_half_impl<std::round_to_nearest,0>(value); }
1047 /// \}
1048
1049 struct functions;
1050 template<typename> struct unary_specialized;
1051 template<typename,typename> struct binary_specialized;
1052 template<typename,typename,std::float_round_style> struct half_caster;
1053 }
1054
1055 /// Half-precision floating point type.
1056 /// This class implements an IEEE-conformant half-precision floating point type with the usual arithmetic operators and
1057 /// conversions. It is implicitly convertible to single-precision floating point, which makes artihmetic expressions and
1058 /// functions with mixed-type operands to be of the most precise operand type. Additionally all arithmetic operations
1059 /// (and many mathematical functions) are carried out in single-precision internally. All conversions from single- to
1060 /// half-precision are done using the library's default rounding mode, but temporary results inside chained arithmetic
1061 /// expressions are kept in single-precision as long as possible (while of course still maintaining a strong half-precision type).
1062 ///
1063 /// According to the C++98/03 definition, the half type is not a POD type. But according to C++11's less strict and
1064 /// extended definitions it is both a standard layout type and a trivially copyable type (even if not a POD type), which
1065 /// means it can be standard-conformantly copied using raw binary copies. But in this context some more words about the
1066 /// actual size of the type. Although the half is representing an IEEE 16-bit type, it does not neccessarily have to be of
1067 /// exactly 16-bits size. But on any reasonable implementation the actual binary representation of this type will most
1068 /// probably not ivolve any additional "magic" or padding beyond the simple binary representation of the underlying 16-bit
1069 /// IEEE number, even if not strictly guaranteed by the standard. But even then it only has an actual size of 16 bits if
1070 /// your C++ implementation supports an unsigned integer type of exactly 16 bits width. But this should be the case on
1071 /// nearly any reasonable platform.
1072 ///
1073 /// So if your C++ implementation is not totally exotic or imposes special alignment requirements, it is a reasonable
1074 /// assumption that the data of a half is just comprised of the 2 bytes of the underlying IEEE representation.
1075 class half
1076 {
1077 friend struct detail::functions;
1078 friend struct detail::unary_specialized<half>;
1079 friend struct detail::binary_specialized<half,half>;
1080 template<typename,typename,std::float_round_style> friend struct detail::half_caster;
1081 friend class std::numeric_limits<half>;
1082 #if HALF_ENABLE_CPP11_HASH
1083 friend struct std::hash<half>;
1084 #endif
1085 #if HALF_ENABLE_CPP11_USER_LITERALS
1086 friend half literal::operator""_h(long double);
1087 #endif
1088
1089 public:
1090 /// Default constructor.
1091 /// This initializes the half to 0. Although this does not match the builtin types' default-initialization semantics
1092 /// and may be less efficient than no initialization, it is needed to provide proper value-initialization semantics.
1093 HALF_CONSTEXPR half() HALF_NOEXCEPT : data_() {}
1094
1095 /// Copy constructor.
1096 /// \tparam T type of concrete half expression
1097 /// \param rhs half expression to copy from
1098 half(detail::expr rhs) : data_(detail::float2half<round_style>(static_cast<float>(rhs))) {}
1099
1100 /// Conversion constructor.
1101 /// \param rhs float to convert
1102 explicit half(float rhs) : data_(detail::float2half<round_style>(rhs)) {}
1103
1104 /// Conversion to single-precision.
1105 /// \return single precision value representing expression value
1106 operator float() const { return detail::half2float<float>(data_); }
1107
1108 /// Assignment operator.
1109 /// \tparam T type of concrete half expression
1110 /// \param rhs half expression to copy from
1111 /// \return reference to this half
1112 half& operator=(detail::expr rhs) { return *this = static_cast<float>(rhs); }
1113
1114 /// Arithmetic assignment.
1115 /// \tparam T type of concrete half expression
1116 /// \param rhs half expression to add
1117 /// \return reference to this half
1118 template<typename T> typename detail::enable<half&,T>::type operator+=(T rhs) { return *this += static_cast<float>(rhs); }
1119
1120 /// Arithmetic assignment.
1121 /// \tparam T type of concrete half expression
1122 /// \param rhs half expression to subtract
1123 /// \return reference to this half
1124 template<typename T> typename detail::enable<half&,T>::type operator-=(T rhs) { return *this -= static_cast<float>(rhs); }
1125
1126 /// Arithmetic assignment.
1127 /// \tparam T type of concrete half expression
1128 /// \param rhs half expression to multiply with
1129 /// \return reference to this half
1130 template<typename T> typename detail::enable<half&,T>::type operator*=(T rhs) { return *this *= static_cast<float>(rhs); }
1131
1132 /// Arithmetic assignment.
1133 /// \tparam T type of concrete half expression
1134 /// \param rhs half expression to divide by
1135 /// \return reference to this half
1136 template<typename T> typename detail::enable<half&,T>::type operator/=(T rhs) { return *this /= static_cast<float>(rhs); }
1137
1138 /// Assignment operator.
1139 /// \param rhs single-precision value to copy from
1140 /// \return reference to this half
1141 half& operator=(float rhs) { data_ = detail::float2half<round_style>(rhs); return *this; }
1142
1143 /// Arithmetic assignment.
1144 /// \param rhs single-precision value to add
1145 /// \return reference to this half
1146 half& operator+=(float rhs) { data_ = detail::float2half<round_style>(detail::half2float<float>(data_)+rhs); return *this; }
1147
1148 /// Arithmetic assignment.
1149 /// \param rhs single-precision value to subtract
1150 /// \return reference to this half
1151 half& operator-=(float rhs) { data_ = detail::float2half<round_style>(detail::half2float<float>(data_)-rhs); return *this; }
1152
1153 /// Arithmetic assignment.
1154 /// \param rhs single-precision value to multiply with
1155 /// \return reference to this half
1156 half& operator*=(float rhs) { data_ = detail::float2half<round_style>(detail::half2float<float>(data_)*rhs); return *this; }
1157
1158 /// Arithmetic assignment.
1159 /// \param rhs single-precision value to divide by
1160 /// \return reference to this half
1161 half& operator/=(float rhs) { data_ = detail::float2half<round_style>(detail::half2float<float>(data_)/rhs); return *this; }
1162
1163 /// Prefix increment.
1164 /// \return incremented half value
1165 half& operator++() { return *this += 1.0f; }
1166
1167 /// Prefix decrement.
1168 /// \return decremented half value
1169 half& operator--() { return *this -= 1.0f; }
1170
1171 /// Postfix increment.
1172 /// \return non-incremented half value
1173 half operator++(int) { half out(*this); ++*this; return out; }
1174
1175 /// Postfix decrement.
1176 /// \return non-decremented half value
1177 half operator--(int) { half out(*this); --*this; return out; }
1178
1179 private:
1180 /// Rounding mode to use
1181 static const std::float_round_style round_style = (std::float_round_style)(HALF_ROUND_STYLE);
1182
1183 /// Constructor.
1184 /// \param bits binary representation to set half to
1185 HALF_CONSTEXPR half(detail::binary_t, detail::uint16 bits) HALF_NOEXCEPT : data_(bits) {}
1186
1187 /// Internal binary representation
1188 detail::uint16 data_;
1189 };
1190
1191#if HALF_ENABLE_CPP11_USER_LITERALS
1192 namespace literal
1193 {
1194 /// Half literal.
1195 /// While this returns an actual half-precision value, half literals can unfortunately not be constant expressions due
1196 /// to rather involved conversions.
1197 /// \param value literal value
1198 /// \return half with given value (if representable)
1199 inline half operator""_h(long double value) { return half(detail::binary, detail::float2half<half::round_style>(value)); }
1200 }
1201#endif
1202
1203 namespace detail
1204 {
1205 /// Wrapper implementing unspecialized half-precision functions.
1206 struct functions
1207 {
1208 /// Addition implementation.
1209 /// \param x first operand
1210 /// \param y second operand
1211 /// \return Half-precision sum stored in single-precision
1212 static expr plus(float x, float y) { return expr(x+y); }
1213
1214 /// Subtraction implementation.
1215 /// \param x first operand
1216 /// \param y second operand
1217 /// \return Half-precision difference stored in single-precision
1218 static expr minus(float x, float y) { return expr(x-y); }
1219
1220 /// Multiplication implementation.
1221 /// \param x first operand
1222 /// \param y second operand
1223 /// \return Half-precision product stored in single-precision
1224 static expr multiplies(float x, float y) { return expr(x*y); }
1225
1226 /// Division implementation.
1227 /// \param x first operand
1228 /// \param y second operand
1229 /// \return Half-precision quotient stored in single-precision
1230 static expr divides(float x, float y) { return expr(x/y); }
1231
1232 /// Output implementation.
1233 /// \param out stream to write to
1234 /// \param arg value to write
1235 /// \return reference to stream
1236 template<typename charT,typename traits> static std::basic_ostream<charT,traits>& write(std::basic_ostream<charT,traits> &out, float arg) { return out << arg; }
1237
1238 /// Input implementation.
1239 /// \param in stream to read from
1240 /// \param arg half to read into
1241 /// \return reference to stream
1242 template<typename charT,typename traits> static std::basic_istream<charT,traits>& read(std::basic_istream<charT,traits> &in, half &arg)
1243 {
1244 float f;
1245 if(in >> f)
1246 arg = f;
1247 return in;
1248 }
1249
1250 /// Modulo implementation.
1251 /// \param x first operand
1252 /// \param y second operand
1253 /// \return Half-precision division remainder stored in single-precision
1254 static expr fmod(float x, float y) { return expr(std::fmod(x, y)); }
1255
1256 /// Remainder implementation.
1257 /// \param x first operand
1258 /// \param y second operand
1259 /// \return Half-precision division remainder stored in single-precision
1260 static expr remainder(float x, float y)
1261 {
1262 #if HALF_ENABLE_CPP11_CMATH
1263 return expr(std::remainder(x, y));
1264 #else
1265 if(builtin_isnan(x) || builtin_isnan(y))
1266 return expr(std::numeric_limits<float>::quiet_NaN());
1267 float ax = std::fabs(x), ay = std::fabs(y);
1268 if(ax >= 65536.0f || ay < std::ldexp(1.0f, -24))
1269 return expr(std::numeric_limits<float>::quiet_NaN());
1270 if(ay >= 65536.0f)
1271 return expr(x);
1272 if(ax == ay)
1273 return expr(builtin_signbit(x) ? -0.0f : 0.0f);
1274 ax = std::fmod(ax, ay+ay);
1275 float y2 = 0.5f * ay;
1276 if(ax > y2)
1277 {
1278 ax -= ay;
1279 if(ax >= y2)
1280 ax -= ay;
1281 }
1282 return expr(builtin_signbit(x) ? -ax : ax);
1283 #endif
1284 }
1285
1286 /// Remainder implementation.
1287 /// \param x first operand
1288 /// \param y second operand
1289 /// \param quo address to store quotient bits at
1290 /// \return Half-precision division remainder stored in single-precision
1291 static expr remquo(float x, float y, int *quo)
1292 {
1293 #if HALF_ENABLE_CPP11_CMATH
1294 return expr(std::remquo(x, y, quo));
1295 #else
1296 if(builtin_isnan(x) || builtin_isnan(y))
1297 return expr(std::numeric_limits<float>::quiet_NaN());
1298 bool sign = builtin_signbit(x), qsign = static_cast<bool>(sign^builtin_signbit(y));
1299 float ax = std::fabs(x), ay = std::fabs(y);
1300 if(ax >= 65536.0f || ay < std::ldexp(1.0f, -24))
1301 return expr(std::numeric_limits<float>::quiet_NaN());
1302 if(ay >= 65536.0f)
1303 return expr(x);
1304 if(ax == ay)
1305 return *quo = qsign ? -1 : 1, expr(sign ? -0.0f : 0.0f);
1306 ax = std::fmod(ax, 8.0f*ay);
1307 int cquo = 0;
1308 if(ax >= 4.0f * ay)
1309 {
1310 ax -= 4.0f * ay;
1311 cquo += 4;
1312 }
1313 if(ax >= 2.0f * ay)
1314 {
1315 ax -= 2.0f * ay;
1316 cquo += 2;
1317 }
1318 float y2 = 0.5f * ay;
1319 if(ax > y2)
1320 {
1321 ax -= ay;
1322 ++cquo;
1323 if(ax >= y2)
1324 {
1325 ax -= ay;
1326 ++cquo;
1327 }
1328 }
1329 return *quo = qsign ? -cquo : cquo, expr(sign ? -ax : ax);
1330 #endif
1331 }
1332
1333 /// Positive difference implementation.
1334 /// \param x first operand
1335 /// \param y second operand
1336 /// \return Positive difference stored in single-precision
1337 static expr fdim(float x, float y)
1338 {
1339 #if HALF_ENABLE_CPP11_CMATH
1340 return expr(std::fdim(x, y));
1341 #else
1342 return expr((x<=y) ? 0.0f : (x-y));
1343 #endif
1344 }
1345
1346 /// Fused multiply-add implementation.
1347 /// \param x first operand
1348 /// \param y second operand
1349 /// \param z third operand
1350 /// \return \a x * \a y + \a z stored in single-precision
1351 static expr fma(float x, float y, float z)
1352 {
1353 #if HALF_ENABLE_CPP11_CMATH && defined(FP_FAST_FMAF)
1354 return expr(std::fma(x, y, z));
1355 #else
1356 return expr(x*y+z);
1357 #endif
1358 }
1359
1360 /// Get NaN.
1361 /// \return Half-precision quiet NaN
1362 static half nanh() { return half(binary, 0x7FFF); }
1363
1364 /// Exponential implementation.
1365 /// \param arg function argument
1366 /// \return function value stored in single-preicision
1367 static expr exp(float arg) { return expr(std::exp(arg)); }
1368
1369 /// Exponential implementation.
1370 /// \param arg function argument
1371 /// \return function value stored in single-preicision
1372 static expr expm1(float arg)
1373 {
1374 #if HALF_ENABLE_CPP11_CMATH
1375 return expr(std::expm1(arg));
1376 #else
1377 return expr(static_cast<float>(std::exp(static_cast<double>(arg))-1.0));
1378 #endif
1379 }
1380
1381 /// Binary exponential implementation.
1382 /// \param arg function argument
1383 /// \return function value stored in single-preicision
1384 static expr exp2(float arg)
1385 {
1386 #if HALF_ENABLE_CPP11_CMATH
1387 return expr(std::exp2(arg));
1388 #else
1389 return expr(static_cast<float>(std::exp(arg*0.69314718055994530941723212145818)));
1390 #endif
1391 }
1392
1393 /// Logarithm implementation.
1394 /// \param arg function argument
1395 /// \return function value stored in single-preicision
1396 static expr log(float arg) { return expr(std::log(arg)); }
1397
1398 /// Common logarithm implementation.
1399 /// \param arg function argument
1400 /// \return function value stored in single-preicision
1401 static expr log10(float arg) { return expr(std::log10(arg)); }
1402
1403 /// Logarithm implementation.
1404 /// \param arg function argument
1405 /// \return function value stored in single-preicision
1406 static expr log1p(float arg)
1407 {
1408 #if HALF_ENABLE_CPP11_CMATH
1409 return expr(std::log1p(arg));
1410 #else
1411 return expr(static_cast<float>(std::log(1.0+arg)));
1412 #endif
1413 }
1414
1415 /// Binary logarithm implementation.
1416 /// \param arg function argument
1417 /// \return function value stored in single-preicision
1418 static expr log2(float arg)
1419 {
1420 #if HALF_ENABLE_CPP11_CMATH
1421 return expr(std::log2(arg));
1422 #else
1423 return expr(static_cast<float>(std::log(static_cast<double>(arg))*1.4426950408889634073599246810019));
1424 #endif
1425 }
1426
1427 /// Square root implementation.
1428 /// \param arg function argument
1429 /// \return function value stored in single-preicision
1430 static expr sqrt(float arg) { return expr(std::sqrt(arg)); }
1431
1432 /// Cubic root implementation.
1433 /// \param arg function argument
1434 /// \return function value stored in single-preicision
1435 static expr cbrt(float arg)
1436 {
1437 #if HALF_ENABLE_CPP11_CMATH
1438 return expr(std::cbrt(arg));
1439 #else
1440 if(builtin_isnan(arg) || builtin_isinf(arg))
1441 return expr(arg);
1442 return expr(builtin_signbit(arg) ? -static_cast<float>(std::pow(-static_cast<double>(arg), 1.0/3.0)) :
1443 static_cast<float>(std::pow(static_cast<double>(arg), 1.0/3.0)));
1444 #endif
1445 }
1446
1447 /// Hypotenuse implementation.
1448 /// \param x first argument
1449 /// \param y second argument
1450 /// \return function value stored in single-preicision
1451 static expr hypot(float x, float y)
1452 {
1453 #if HALF_ENABLE_CPP11_CMATH
1454 return expr(std::hypot(x, y));
1455 #else
1456 return expr((builtin_isinf(x) || builtin_isinf(y)) ? std::numeric_limits<float>::infinity() :
1457 static_cast<float>(std::sqrt(static_cast<double>(x)*x+static_cast<double>(y)*y)));
1458 #endif
1459 }
1460
1461 /// Power implementation.
1462 /// \param base value to exponentiate
1463 /// \param exp power to expontiate to
1464 /// \return function value stored in single-preicision
1465 static expr pow(float base, float exp) { return expr(std::pow(base, exp)); }
1466
1467 /// Sine implementation.
1468 /// \param arg function argument
1469 /// \return function value stored in single-preicision
1470 static expr sin(float arg) { return expr(std::sin(arg)); }
1471
1472 /// Cosine implementation.
1473 /// \param arg function argument
1474 /// \return function value stored in single-preicision
1475 static expr cos(float arg) { return expr(std::cos(arg)); }
1476
1477 /// Tan implementation.
1478 /// \param arg function argument
1479 /// \return function value stored in single-preicision
1480 static expr tan(float arg) { return expr(std::tan(arg)); }
1481
1482 /// Arc sine implementation.
1483 /// \param arg function argument
1484 /// \return function value stored in single-preicision
1485 static expr asin(float arg) { return expr(std::asin(arg)); }
1486
1487 /// Arc cosine implementation.
1488 /// \param arg function argument
1489 /// \return function value stored in single-preicision
1490 static expr acos(float arg) { return expr(std::acos(arg)); }
1491
1492 /// Arc tangent implementation.
1493 /// \param arg function argument
1494 /// \return function value stored in single-preicision
1495 static expr atan(float arg) { return expr(std::atan(arg)); }
1496
1497 /// Arc tangent implementation.
1498 /// \param x first argument
1499 /// \param y second argument
1500 /// \return function value stored in single-preicision
1501 static expr atan2(float x, float y) { return expr(std::atan2(x, y)); }
1502
1503 /// Hyperbolic sine implementation.
1504 /// \param arg function argument
1505 /// \return function value stored in single-preicision
1506 static expr sinh(float arg) { return expr(std::sinh(arg)); }
1507
1508 /// Hyperbolic cosine implementation.
1509 /// \param arg function argument
1510 /// \return function value stored in single-preicision
1511 static expr cosh(float arg) { return expr(std::cosh(arg)); }
1512
1513 /// Hyperbolic tangent implementation.
1514 /// \param arg function argument
1515 /// \return function value stored in single-preicision
1516 static expr tanh(float arg) { return expr(std::tanh(arg)); }
1517
1518 /// Hyperbolic area sine implementation.
1519 /// \param arg function argument
1520 /// \return function value stored in single-preicision
1521 static expr asinh(float arg)
1522 {
1523 #if HALF_ENABLE_CPP11_CMATH
1524 return expr(std::asinh(arg));
1525 #else
1526 return expr((arg==-std::numeric_limits<float>::infinity()) ? arg : static_cast<float>(std::log(arg+std::sqrt(arg*arg+1.0))));
1527 #endif
1528 }
1529
1530 /// Hyperbolic area cosine implementation.
1531 /// \param arg function argument
1532 /// \return function value stored in single-preicision
1533 static expr acosh(float arg)
1534 {
1535 #if HALF_ENABLE_CPP11_CMATH
1536 return expr(std::acosh(arg));
1537 #else
1538 return expr((arg<-1.0f) ? std::numeric_limits<float>::quiet_NaN() : static_cast<float>(std::log(arg+std::sqrt(arg*arg-1.0))));
1539 #endif
1540 }
1541
1542 /// Hyperbolic area tangent implementation.
1543 /// \param arg function argument
1544 /// \return function value stored in single-preicision
1545 static expr atanh(float arg)
1546 {
1547 #if HALF_ENABLE_CPP11_CMATH
1548 return expr(std::atanh(arg));
1549 #else
1550 return expr(static_cast<float>(0.5*std::log((1.0+arg)/(1.0-arg))));
1551 #endif
1552 }
1553
1554 /// Error function implementation.
1555 /// \param arg function argument
1556 /// \return function value stored in single-preicision
1557 static expr erf(float arg)
1558 {
1559 #if HALF_ENABLE_CPP11_CMATH
1560 return expr(std::erf(arg));
1561 #else
1562 return expr(static_cast<float>(erf(static_cast<double>(arg))));
1563 #endif
1564 }
1565
1566 /// Complementary implementation.
1567 /// \param arg function argument
1568 /// \return function value stored in single-preicision
1569 static expr erfc(float arg)
1570 {
1571 #if HALF_ENABLE_CPP11_CMATH
1572 return expr(std::erfc(arg));
1573 #else
1574 return expr(static_cast<float>(1.0-erf(static_cast<double>(arg))));
1575 #endif
1576 }
1577
1578 /// Gamma logarithm implementation.
1579 /// \param arg function argument
1580 /// \return function value stored in single-preicision
1581 static expr lgamma(float arg)
1582 {
1583 #if HALF_ENABLE_CPP11_CMATH
1584 return expr(std::lgamma(arg));
1585 #else
1586 if(builtin_isinf(arg))
1587 return expr(std::numeric_limits<float>::infinity());
1588 if(arg < 0.0f)
1589 {
1590 float i, f = std::modf(-arg, &i);
1591 if(f == 0.0f)
1592 return expr(std::numeric_limits<float>::infinity());
1593 return expr(static_cast<float>(1.1447298858494001741434273513531-
1594 std::log(std::abs(std::sin(3.1415926535897932384626433832795*f)))-lgamma(1.0-arg)));
1595 }
1596 return expr(static_cast<float>(lgamma(static_cast<double>(arg))));
1597 #endif
1598 }
1599
1600 /// Gamma implementation.
1601 /// \param arg function argument
1602 /// \return function value stored in single-preicision
1603 static expr tgamma(float arg)
1604 {
1605 #if HALF_ENABLE_CPP11_CMATH
1606 return expr(std::tgamma(arg));
1607 #else
1608 if(arg == 0.0f)
1609 return builtin_signbit(arg) ? expr(-std::numeric_limits<float>::infinity()) : expr(std::numeric_limits<float>::infinity());
1610 if(arg < 0.0f)
1611 {
1612 float i, f = std::modf(-arg, &i);
1613 if(f == 0.0f)
1614 return expr(std::numeric_limits<float>::quiet_NaN());
1615 double value = 3.1415926535897932384626433832795 / (std::sin(3.1415926535897932384626433832795*f)*std::exp(lgamma(1.0-arg)));
1616 return expr(static_cast<float>((std::fmod(i, 2.0f)==0.0f) ? -value : value));
1617 }
1618 if(builtin_isinf(arg))
1619 return expr(arg);
1620 return expr(static_cast<float>(std::exp(lgamma(static_cast<double>(arg)))));
1621 #endif
1622 }
1623
1624 /// Floor implementation.
1625 /// \param arg value to round
1626 /// \return rounded value
1627 static half floor(half arg) { return half(binary, round_half<std::round_toward_neg_infinity>(arg.data_)); }
1628
1629 /// Ceiling implementation.
1630 /// \param arg value to round
1631 /// \return rounded value
1632 static half ceil(half arg) { return half(binary, round_half<std::round_toward_infinity>(arg.data_)); }
1633
1634 /// Truncation implementation.
1635 /// \param arg value to round
1636 /// \return rounded value
1637 static half trunc(half arg) { return half(binary, round_half<std::round_toward_zero>(arg.data_)); }
1638
1639 /// Nearest integer implementation.
1640 /// \param arg value to round
1641 /// \return rounded value
1642 static half round(half arg) { return half(binary, round_half_up(arg.data_)); }
1643
1644 /// Nearest integer implementation.
1645 /// \param arg value to round
1646 /// \return rounded value
1647 static long lround(half arg) { return detail::half2int_up<long>(arg.data_); }
1648
1649 /// Nearest integer implementation.
1650 /// \param arg value to round
1651 /// \return rounded value
1652 static half rint(half arg) { return half(binary, round_half<half::round_style>(arg.data_)); }
1653
1654 /// Nearest integer implementation.
1655 /// \param arg value to round
1656 /// \return rounded value
1657 static long lrint(half arg) { return detail::half2int<half::round_style,long>(arg.data_); }
1658
1659 #if HALF_ENABLE_CPP11_LONG_LONG
1660 /// Nearest integer implementation.
1661 /// \param arg value to round
1662 /// \return rounded value
1663 static long long llround(half arg) { return detail::half2int_up<long long>(arg.data_); }
1664
1665 /// Nearest integer implementation.
1666 /// \param arg value to round
1667 /// \return rounded value
1668 static long long llrint(half arg) { return detail::half2int<half::round_style,long long>(arg.data_); }
1669 #endif
1670
1671 /// Decompression implementation.
1672 /// \param arg number to decompress
1673 /// \param exp address to store exponent at
1674 /// \return normalized significant
1675 static half frexp(half arg, int *exp)
1676 {
1677 int m = arg.data_ & 0x7FFF, e = -14;
1678 if(m >= 0x7C00 || !m)
1679 return *exp = 0, arg;
1680 for(; m<0x400; m<<=1,--e) ;
1681 return *exp = e+(m>>10), half(binary, (arg.data_&0x8000)|0x3800|(m&0x3FF));
1682 }
1683
1684 /// Decompression implementation.
1685 /// \param arg number to decompress
1686 /// \param iptr address to store integer part at
1687 /// \return fractional part
1688 static half modf(half arg, half *iptr)
1689 {
1690 unsigned int e = arg.data_ & 0x7FFF;
1691 if(e >= 0x6400)
1692 return *iptr = arg, half(binary, arg.data_&(0x8000U|-(e>0x7C00)));
1693 if(e < 0x3C00)
1694 return iptr->data_ = arg.data_ & 0x8000, arg;
1695 e >>= 10;
1696 unsigned int mask = (1<<(25-e)) - 1, m = arg.data_ & mask;
1697 iptr->data_ = arg.data_ & ~mask;
1698 if(!m)
1699 return half(binary, arg.data_&0x8000);
1700 for(; m<0x400; m<<=1,--e) ;
1701 return half(binary, static_cast<uint16>((arg.data_&0x8000)|(e<<10)|(m&0x3FF)));
1702 }
1703
1704 /// Scaling implementation.
1705 /// \param arg number to scale
1706 /// \param exp power of two to scale by
1707 /// \return scaled number
1708 static half scalbln(half arg, long exp)
1709 {
1710 unsigned int m = arg.data_ & 0x7FFF;
1711 if(m >= 0x7C00 || !m)
1712 return arg;
1713 for(; m<0x400; m<<=1,--exp) ;
1714 exp += m >> 10;
1715 uint16 value = arg.data_ & 0x8000;
1716 if(exp > 30)
1717 {
1718 if(half::round_style == std::round_toward_zero)
1719 value |= 0x7BFF;
1720 else if(half::round_style == std::round_toward_infinity)
1721 value |= 0x7C00 - (value>>15);
1722 else if(half::round_style == std::round_toward_neg_infinity)
1723 value |= 0x7BFF + (value>>15);
1724 else
1725 value |= 0x7C00;
1726 }
1727 else if(exp > 0)
1728 value |= (exp<<10) | (m&0x3FF);
1729 else if(exp > -11)
1730 {
1731 m = (m&0x3FF) | 0x400;
1732 if(half::round_style == std::round_to_nearest)
1733 {
1734 m += 1 << -exp;
1735 #if HALF_ROUND_TIES_TO_EVEN
1736 m -= (m>>(1-exp)) & 1;
1737 #endif
1738 }
1739 else if(half::round_style == std::round_toward_infinity)
1740 m += ((value>>15)-1) & ((1<<(1-exp))-1U);
1741 else if(half::round_style == std::round_toward_neg_infinity)
1742 m += -(value>>15) & ((1<<(1-exp))-1U);
1743 value |= m >> (1-exp);
1744 }
1745 else if(half::round_style == std::round_toward_infinity)
1746 value -= (value>>15) - 1;
1747 else if(half::round_style == std::round_toward_neg_infinity)
1748 value += value >> 15;
1749 return half(binary, value);
1750 }
1751
1752 /// Exponent implementation.
1753 /// \param arg number to query
1754 /// \return floating point exponent
1755 static int ilogb(half arg)
1756 {
1757 int abs = arg.data_ & 0x7FFF;
1758 if(!abs)
1759 return FP_ILOGB0;
1760 if(abs < 0x7C00)
1761 {
1762 int exp = (abs>>10) - 15;
1763 if(abs < 0x400)
1764 for(; abs<0x200; abs<<=1,--exp) ;
1765 return exp;
1766 }
1767 if(abs > 0x7C00)
1768 return FP_ILOGBNAN;
1769 return INT_MAX;
1770 }
1771
1772 /// Exponent implementation.
1773 /// \param arg number to query
1774 /// \return floating point exponent
1775 static half logb(half arg)
1776 {
1777 int abs = arg.data_ & 0x7FFF;
1778 if(!abs)
1779 return half(binary, 0xFC00);
1780 if(abs < 0x7C00)
1781 {
1782 int exp = (abs>>10) - 15;
1783 if(abs < 0x400)
1784 for(; abs<0x200; abs<<=1,--exp) ;
1785 uint16 bits = (exp<0) << 15;
1786 if(exp)
1787 {
1788 unsigned int m = std::abs(exp) << 6, e = 18;
1789 for(; m<0x400; m<<=1,--e) ;
1790 bits |= (e<<10) + m;
1791 }
1792 return half(binary, bits);
1793 }
1794 if(abs > 0x7C00)
1795 return arg;
1796 return half(binary, 0x7C00);
1797 }
1798
1799 /// Enumeration implementation.
1800 /// \param from number to increase/decrease
1801 /// \param to direction to enumerate into
1802 /// \return next representable number
1803 static half nextafter(half from, half to)
1804 {
1805 uint16 fabs = from.data_ & 0x7FFF, tabs = to.data_ & 0x7FFF;
1806 if(fabs > 0x7C00)
1807 return from;
1808 if(tabs > 0x7C00 || from.data_ == to.data_ || !(fabs|tabs))
1809 return to;
1810 if(!fabs)
1811 return half(binary, (to.data_&0x8000)+1);
1812 bool lt = ((fabs==from.data_) ? static_cast<int>(fabs) : -static_cast<int>(fabs)) <
1813 ((tabs==to.data_) ? static_cast<int>(tabs) : -static_cast<int>(tabs));
1814 return half(binary, from.data_+(((from.data_>>15)^static_cast<unsigned>(lt))<<1)-1);
1815 }
1816
1817 /// Enumeration implementation.
1818 /// \param from number to increase/decrease
1819 /// \param to direction to enumerate into
1820 /// \return next representable number
1821 static half nexttoward(half from, long double to)
1822 {
1823 if(isnan(from))
1824 return from;
1825 long double lfrom = static_cast<long double>(from);
1826 if(builtin_isnan(to) || lfrom == to)
1827 return half(static_cast<float>(to));
1828 if(!(from.data_&0x7FFF))
1829 return half(binary, (static_cast<detail::uint16>(builtin_signbit(to))<<15)+1);
1830 return half(binary, from.data_+(((from.data_>>15)^static_cast<unsigned>(lfrom<to))<<1)-1);
1831 }
1832
1833 /// Sign implementation
1834 /// \param x first operand
1835 /// \param y second operand
1836 /// \return composed value
1837 static half copysign(half x, half y) { return half(binary, x.data_^((x.data_^y.data_)&0x8000)); }
1838
1839 /// Classification implementation.
1840 /// \param arg value to classify
1841 /// \retval true if infinite number
1842 /// \retval false else
1843 static int fpclassify(half arg)
1844 {
1845 unsigned int abs = arg.data_ & 0x7FFF;
1846 return abs ? ((abs>0x3FF) ? ((abs>=0x7C00) ? ((abs>0x7C00) ? FP_NAN : FP_INFINITE) : FP_NORMAL) :FP_SUBNORMAL) : FP_ZERO;
1847 }
1848
1849 /// Classification implementation.
1850 /// \param arg value to classify
1851 /// \retval true if finite number
1852 /// \retval false else
1853 static bool isfinite(half arg) { return (arg.data_&0x7C00) != 0x7C00; }
1854
1855 /// Classification implementation.
1856 /// \param arg value to classify
1857 /// \retval true if infinite number
1858 /// \retval false else
1859 static bool isinf(half arg) { return (arg.data_&0x7FFF) == 0x7C00; }
1860
1861 /// Classification implementation.
1862 /// \param arg value to classify
1863 /// \retval true if not a number
1864 /// \retval false else
1865 static bool isnan(half arg) { return (arg.data_&0x7FFF) > 0x7C00; }
1866
1867 /// Classification implementation.
1868 /// \param arg value to classify
1869 /// \retval true if normal number
1870 /// \retval false else
1871 static bool isnormal(half arg) { return ((arg.data_&0x7C00)!=0) & ((arg.data_&0x7C00)!=0x7C00); }
1872
1873 /// Sign bit implementation.
1874 /// \param arg value to check
1875 /// \retval true if signed
1876 /// \retval false if unsigned
1877 static bool signbit(half arg) { return (arg.data_&0x8000) != 0; }
1878
1879 /// Comparison implementation.
1880 /// \param x first operand
1881 /// \param y second operand
1882 /// \retval true if operands equal
1883 /// \retval false else
1884 static bool isequal(half x, half y) { return (x.data_==y.data_ || !((x.data_|y.data_)&0x7FFF)) && !isnan(x); }
1885
1886 /// Comparison implementation.
1887 /// \param x first operand
1888 /// \param y second operand
1889 /// \retval true if operands not equal
1890 /// \retval false else
1891 static bool isnotequal(half x, half y) { return (x.data_!=y.data_ && ((x.data_|y.data_)&0x7FFF)) || isnan(x); }
1892
1893 /// Comparison implementation.
1894 /// \param x first operand
1895 /// \param y second operand
1896 /// \retval true if \a x > \a y
1897 /// \retval false else
1898 static bool isgreater(half x, half y)
1899 {
1900 int xabs = x.data_ & 0x7FFF, yabs = y.data_ & 0x7FFF;
1901 return xabs<=0x7C00 && yabs<=0x7C00 && (((xabs==x.data_) ? xabs : -xabs) > ((yabs==y.data_) ? yabs : -yabs));
1902 }
1903
1904 /// Comparison implementation.
1905 /// \param x first operand
1906 /// \param y second operand
1907 /// \retval true if \a x >= \a y
1908 /// \retval false else
1909 static bool isgreaterequal(half x, half y)
1910 {
1911 int xabs = x.data_ & 0x7FFF, yabs = y.data_ & 0x7FFF;
1912 return xabs<=0x7C00 && yabs<=0x7C00 && (((xabs==x.data_) ? xabs : -xabs) >= ((yabs==y.data_) ? yabs : -yabs));
1913 }
1914
1915 /// Comparison implementation.
1916 /// \param x first operand
1917 /// \param y second operand
1918 /// \retval true if \a x < \a y
1919 /// \retval false else
1920 static bool isless(half x, half y)
1921 {
1922 int xabs = x.data_ & 0x7FFF, yabs = y.data_ & 0x7FFF;
1923 return xabs<=0x7C00 && yabs<=0x7C00 && (((xabs==x.data_) ? xabs : -xabs) < ((yabs==y.data_) ? yabs : -yabs));
1924 }
1925
1926 /// Comparison implementation.
1927 /// \param x first operand
1928 /// \param y second operand
1929 /// \retval true if \a x <= \a y
1930 /// \retval false else
1931 static bool islessequal(half x, half y)
1932 {
1933 int xabs = x.data_ & 0x7FFF, yabs = y.data_ & 0x7FFF;
1934 return xabs<=0x7C00 && yabs<=0x7C00 && (((xabs==x.data_) ? xabs : -xabs) <= ((yabs==y.data_) ? yabs : -yabs));
1935 }
1936
1937 /// Comparison implementation.
1938 /// \param x first operand
1939 /// \param y second operand
1940 /// \retval true if either \a x > \a y nor \a x < \a y
1941 /// \retval false else
1942 static bool islessgreater(half x, half y)
1943 {
1944 int xabs = x.data_ & 0x7FFF, yabs = y.data_ & 0x7FFF;
1945 if(xabs > 0x7C00 || yabs > 0x7C00)
1946 return false;
1947 int a = (xabs==x.data_) ? xabs : -xabs, b = (yabs==y.data_) ? yabs : -yabs;
1948 return a < b || a > b;
1949 }
1950
1951 /// Comparison implementation.
1952 /// \param x first operand
1953 /// \param y second operand
1954 /// \retval true if operand unordered
1955 /// \retval false else
1956 static bool isunordered(half x, half y) { return isnan(x) || isnan(y); }
1957
1958 private:
1959 static double erf(double arg)
1960 {
1961 if(builtin_isinf(arg))
1962 return (arg<0.0) ? -1.0 : 1.0;
1963 double x2 = arg * arg, ax2 = 0.147 * x2, value = std::sqrt(1.0-std::exp(-x2*(1.2732395447351626861510701069801+ax2)/(1.0+ax2)));
1964 return builtin_signbit(arg) ? -value : value;
1965 }
1966
1967 static double lgamma(double arg)
1968 {
1969 double v = 1.0;
1970 for(; arg<8.0; ++arg) v *= arg;
1971 double w = 1.0 / (arg*arg);
1972 return (((((((-0.02955065359477124183006535947712*w+0.00641025641025641025641025641026)*w+
1973 -0.00191752691752691752691752691753)*w+8.4175084175084175084175084175084e-4)*w+
1974 -5.952380952380952380952380952381e-4)*w+7.9365079365079365079365079365079e-4)*w+
1975 -0.00277777777777777777777777777778)*w+0.08333333333333333333333333333333)/arg +
1976 0.91893853320467274178032973640562 - std::log(v) - arg + (arg-0.5) * std::log(arg);
1977 }
1978 };
1979
1980 /// Wrapper for unary half-precision functions needing specialization for individual argument types.
1981 /// \tparam T argument type
1982 template<typename T> struct unary_specialized
1983 {
1984 /// Negation implementation.
1985 /// \param arg value to negate
1986 /// \return negated value
1987 static HALF_CONSTEXPR half negate(half arg) { return half(binary, arg.data_^0x8000); }
1988
1989 /// Absolute value implementation.
1990 /// \param arg function argument
1991 /// \return absolute value
1992 static half fabs(half arg) { return half(binary, arg.data_&0x7FFF); }
1993 };
1994 template<> struct unary_specialized<expr>
1995 {
1996 static HALF_CONSTEXPR expr negate(float arg) { return expr(-arg); }
1997 static expr fabs(float arg) { return expr(std::fabs(arg)); }
1998 };
1999
2000 /// Wrapper for binary half-precision functions needing specialization for individual argument types.
2001 /// \tparam T first argument type
2002 /// \tparam U first argument type
2003 template<typename T,typename U> struct binary_specialized
2004 {
2005 /// Minimum implementation.
2006 /// \param x first operand
2007 /// \param y second operand
2008 /// \return minimum value
2009 static expr fmin(float x, float y)
2010 {
2011 #if HALF_ENABLE_CPP11_CMATH
2012 return expr(std::fmin(x, y));
2013 #else
2014 if(builtin_isnan(x))
2015 return expr(y);
2016 if(builtin_isnan(y))
2017 return expr(x);
2018 return expr(std::min(x, y));
2019 #endif
2020 }
2021
2022 /// Maximum implementation.
2023 /// \param x first operand
2024 /// \param y second operand
2025 /// \return maximum value
2026 static expr fmax(float x, float y)
2027 {
2028 #if HALF_ENABLE_CPP11_CMATH
2029 return expr(std::fmax(x, y));
2030 #else
2031 if(builtin_isnan(x))
2032 return expr(y);
2033 if(builtin_isnan(y))
2034 return expr(x);
2035 return expr(std::max(x, y));
2036 #endif
2037 }
2038 };
2039 template<> struct binary_specialized<half,half>
2040 {
2041 static half fmin(half x, half y)
2042 {
2043 int xabs = x.data_ & 0x7FFF, yabs = y.data_ & 0x7FFF;
2044 if(xabs > 0x7C00)
2045 return y;
2046 if(yabs > 0x7C00)
2047 return x;
2048 return (((xabs==x.data_) ? xabs : -xabs) > ((yabs==y.data_) ? yabs : -yabs)) ? y : x;
2049 }
2050 static half fmax(half x, half y)
2051 {
2052 int xabs = x.data_ & 0x7FFF, yabs = y.data_ & 0x7FFF;
2053 if(xabs > 0x7C00)
2054 return y;
2055 if(yabs > 0x7C00)
2056 return x;
2057 return (((xabs==x.data_) ? xabs : -xabs) < ((yabs==y.data_) ? yabs : -yabs)) ? y : x;
2058 }
2059 };
2060
2061 /// Helper class for half casts.
2062 /// This class template has to be specialized for all valid cast argument to define an appropriate static `cast` member
2063 /// function and a corresponding `type` member denoting its return type.
2064 /// \tparam T destination type
2065 /// \tparam U source type
2066 /// \tparam R rounding mode to use
2067 template<typename T,typename U,std::float_round_style R=(std::float_round_style)(HALF_ROUND_STYLE)> struct half_caster {};
2068 template<typename U,std::float_round_style R> struct half_caster<half,U,R>
2069 {
2070 #if HALF_ENABLE_CPP11_STATIC_ASSERT && HALF_ENABLE_CPP11_TYPE_TRAITS
2071 static_assert(std::is_arithmetic<U>::value, "half_cast from non-arithmetic type unsupported");
2072 #endif
2073
2074 static half cast(U arg) { return cast_impl(arg, is_float<U>()); };
2075
2076 private:
2077 static half cast_impl(U arg, true_type) { return half(binary, float2half<R>(arg)); }
2078 static half cast_impl(U arg, false_type) { return half(binary, int2half<R>(arg)); }
2079 };
2080 template<typename T,std::float_round_style R> struct half_caster<T,half,R>
2081 {
2082 #if HALF_ENABLE_CPP11_STATIC_ASSERT && HALF_ENABLE_CPP11_TYPE_TRAITS
2083 static_assert(std::is_arithmetic<T>::value, "half_cast to non-arithmetic type unsupported");
2084 #endif
2085
2086 static T cast(half arg) { return cast_impl(arg, is_float<T>()); }
2087
2088 private:
2089 static T cast_impl(half arg, true_type) { return half2float<T>(arg.data_); }
2090 static T cast_impl(half arg, false_type) { return half2int<R,T>(arg.data_); }
2091 };
2092 template<typename T,std::float_round_style R> struct half_caster<T,expr,R>
2093 {
2094 #if HALF_ENABLE_CPP11_STATIC_ASSERT && HALF_ENABLE_CPP11_TYPE_TRAITS
2095 static_assert(std::is_arithmetic<T>::value, "half_cast to non-arithmetic type unsupported");
2096 #endif
2097
2098 static T cast(expr arg) { return cast_impl(arg, is_float<T>()); }
2099
2100 private:
2101 static T cast_impl(float arg, true_type) { return static_cast<T>(arg); }
2102 static T cast_impl(half arg, false_type) { return half2int<R,T>(arg.data_); }
2103 };
2104 template<std::float_round_style R> struct half_caster<half,half,R>
2105 {
2106 static half cast(half arg) { return arg; }
2107 };
2108 template<std::float_round_style R> struct half_caster<half,expr,R> : half_caster<half,half,R> {};
2109
2110 /// \name Comparison operators
2111 /// \{
2112
2113 /// Comparison for equality.
2114 /// \param x first operand
2115 /// \param y second operand
2116 /// \retval true if operands equal
2117 /// \retval false else
2118 template<typename T,typename U> typename enable<bool,T,U>::type operator==(T x, U y) { return functions::isequal(x, y); }
2119
2120 /// Comparison for inequality.
2121 /// \param x first operand
2122 /// \param y second operand
2123 /// \retval true if operands not equal
2124 /// \retval false else
2125 template<typename T,typename U> typename enable<bool,T,U>::type operator!=(T x, U y) { return functions::isnotequal(x, y); }
2126
2127 /// Comparison for less than.
2128 /// \param x first operand
2129 /// \param y second operand
2130 /// \retval true if \a x less than \a y
2131 /// \retval false else
2132 template<typename T,typename U> typename enable<bool,T,U>::type operator<(T x, U y) { return functions::isless(x, y); }
2133
2134 /// Comparison for greater than.
2135 /// \param x first operand
2136 /// \param y second operand
2137 /// \retval true if \a x greater than \a y
2138 /// \retval false else
2139 template<typename T,typename U> typename enable<bool,T,U>::type operator>(T x, U y) { return functions::isgreater(x, y); }
2140
2141 /// Comparison for less equal.
2142 /// \param x first operand
2143 /// \param y second operand
2144 /// \retval true if \a x less equal \a y
2145 /// \retval false else
2146 template<typename T,typename U> typename enable<bool,T,U>::type operator<=(T x, U y) { return functions::islessequal(x, y); }
2147
2148 /// Comparison for greater equal.
2149 /// \param x first operand
2150 /// \param y second operand
2151 /// \retval true if \a x greater equal \a y
2152 /// \retval false else
2153 template<typename T,typename U> typename enable<bool,T,U>::type operator>=(T x, U y) { return functions::isgreaterequal(x, y); }
2154
2155 /// \}
2156 /// \name Arithmetic operators
2157 /// \{
2158
2159 /// Add halfs.
2160 /// \param x left operand
2161 /// \param y right operand
2162 /// \return sum of half expressions
2163 template<typename T,typename U> typename enable<expr,T,U>::type operator+(T x, U y) { return functions::plus(x, y); }
2164
2165 /// Subtract halfs.
2166 /// \param x left operand
2167 /// \param y right operand
2168 /// \return difference of half expressions
2169 template<typename T,typename U> typename enable<expr,T,U>::type operator-(T x, U y) { return functions::minus(x, y); }
2170
2171 /// Multiply halfs.
2172 /// \param x left operand
2173 /// \param y right operand
2174 /// \return product of half expressions
2175 template<typename T,typename U> typename enable<expr,T,U>::type operator*(T x, U y) { return functions::multiplies(x, y); }
2176
2177 /// Divide halfs.
2178 /// \param x left operand
2179 /// \param y right operand
2180 /// \return quotient of half expressions
2181 template<typename T,typename U> typename enable<expr,T,U>::type operator/(T x, U y) { return functions::divides(x, y); }
2182
2183 /// Identity.
2184 /// \param arg operand
2185 /// \return uncahnged operand
2186 template<typename T> HALF_CONSTEXPR typename enable<T,T>::type operator+(T arg) { return arg; }
2187
2188 /// Negation.
2189 /// \param arg operand
2190 /// \return negated operand
2191 template<typename T> HALF_CONSTEXPR typename enable<T,T>::type operator-(T arg) { return unary_specialized<T>::negate(arg); }
2192
2193 /// \}
2194 /// \name Input and output
2195 /// \{
2196
2197 /// Output operator.
2198 /// \param out output stream to write into
2199 /// \param arg half expression to write
2200 /// \return reference to output stream
2201 template<typename T,typename charT,typename traits> typename enable<std::basic_ostream<charT,traits>&,T>::type
2202 operator<<(std::basic_ostream<charT,traits> &out, T arg) { return functions::write(out, arg); }
2203
2204 /// Input operator.
2205 /// \param in input stream to read from
2206 /// \param arg half to read into
2207 /// \return reference to input stream
2208 template<typename charT,typename traits> std::basic_istream<charT,traits>&
2209 operator>>(std::basic_istream<charT,traits> &in, half &arg) { return functions::read(in, arg); }
2210
2211 /// \}
2212 /// \name Basic mathematical operations
2213 /// \{
2214
2215 /// Absolute value.
2216 /// \param arg operand
2217 /// \return absolute value of \a arg
2218// template<typename T> typename enable<T,T>::type abs(T arg) { return unary_specialized<T>::fabs(arg); }
2219 inline half abs(half arg) { return unary_specialized<half>::fabs(arg); }
2220 inline expr abs(expr arg) { return unary_specialized<expr>::fabs(arg); }
2221
2222 /// Absolute value.
2223 /// \param arg operand
2224 /// \return absolute value of \a arg
2225// template<typename T> typename enable<T,T>::type fabs(T arg) { return unary_specialized<T>::fabs(arg); }
2226 inline half fabs(half arg) { return unary_specialized<half>::fabs(arg); }
2227 inline expr fabs(expr arg) { return unary_specialized<expr>::fabs(arg); }
2228
2229 /// Remainder of division.
2230 /// \param x first operand
2231 /// \param y second operand
2232 /// \return remainder of floating point division.
2233// template<typename T,typename U> typename enable<expr,T,U>::type fmod(T x, U y) { return functions::fmod(x, y); }
2234 inline expr fmod(half x, half y) { return functions::fmod(x, y); }
2235 inline expr fmod(half x, expr y) { return functions::fmod(x, y); }
2236 inline expr fmod(expr x, half y) { return functions::fmod(x, y); }
2237 inline expr fmod(expr x, expr y) { return functions::fmod(x, y); }
2238
2239 /// Remainder of division.
2240 /// \param x first operand
2241 /// \param y second operand
2242 /// \return remainder of floating point division.
2243// template<typename T,typename U> typename enable<expr,T,U>::type remainder(T x, U y) { return functions::remainder(x, y); }
2244 inline expr remainder(half x, half y) { return functions::remainder(x, y); }
2245 inline expr remainder(half x, expr y) { return functions::remainder(x, y); }
2246 inline expr remainder(expr x, half y) { return functions::remainder(x, y); }
2247 inline expr remainder(expr x, expr y) { return functions::remainder(x, y); }
2248
2249 /// Remainder of division.
2250 /// \param x first operand
2251 /// \param y second operand
2252 /// \param quo address to store some bits of quotient at
2253 /// \return remainder of floating point division.
2254// template<typename T,typename U> typename enable<expr,T,U>::type remquo(T x, U y, int *quo) { return functions::remquo(x, y, quo); }
2255 inline expr remquo(half x, half y, int *quo) { return functions::remquo(x, y, quo); }
2256 inline expr remquo(half x, expr y, int *quo) { return functions::remquo(x, y, quo); }
2257 inline expr remquo(expr x, half y, int *quo) { return functions::remquo(x, y, quo); }
2258 inline expr remquo(expr x, expr y, int *quo) { return functions::remquo(x, y, quo); }
2259
2260 /// Fused multiply add.
2261 /// \param x first operand
2262 /// \param y second operand
2263 /// \param z third operand
2264 /// \return ( \a x * \a y ) + \a z rounded as one operation.
2265// template<typename T,typename U,typename V> typename enable<expr,T,U,V>::type fma(T x, U y, V z) { return functions::fma(x, y, z); }
2266 inline expr fma(half x, half y, half z) { return functions::fma(x, y, z); }
2267 inline expr fma(half x, half y, expr z) { return functions::fma(x, y, z); }
2268 inline expr fma(half x, expr y, half z) { return functions::fma(x, y, z); }
2269 inline expr fma(half x, expr y, expr z) { return functions::fma(x, y, z); }
2270 inline expr fma(expr x, half y, half z) { return functions::fma(x, y, z); }
2271 inline expr fma(expr x, half y, expr z) { return functions::fma(x, y, z); }
2272 inline expr fma(expr x, expr y, half z) { return functions::fma(x, y, z); }
2273 inline expr fma(expr x, expr y, expr z) { return functions::fma(x, y, z); }
2274
2275 /// Maximum of half expressions.
2276 /// \param x first operand
2277 /// \param y second operand
2278 /// \return maximum of operands
2279// template<typename T,typename U> typename result<T,U>::type fmax(T x, U y) { return binary_specialized<T,U>::fmax(x, y); }
2280 inline half fmax(half x, half y) { return binary_specialized<half,half>::fmax(x, y); }
2281 inline expr fmax(half x, expr y) { return binary_specialized<half,expr>::fmax(x, y); }
2282 inline expr fmax(expr x, half y) { return binary_specialized<expr,half>::fmax(x, y); }
2283 inline expr fmax(expr x, expr y) { return binary_specialized<expr,expr>::fmax(x, y); }
2284
2285 /// Minimum of half expressions.
2286 /// \param x first operand
2287 /// \param y second operand
2288 /// \return minimum of operands
2289// template<typename T,typename U> typename result<T,U>::type fmin(T x, U y) { return binary_specialized<T,U>::fmin(x, y); }
2290 inline half fmin(half x, half y) { return binary_specialized<half,half>::fmin(x, y); }
2291 inline expr fmin(half x, expr y) { return binary_specialized<half,expr>::fmin(x, y); }
2292 inline expr fmin(expr x, half y) { return binary_specialized<expr,half>::fmin(x, y); }
2293 inline expr fmin(expr x, expr y) { return binary_specialized<expr,expr>::fmin(x, y); }
2294
2295 /// Positive difference.
2296 /// \param x first operand
2297 /// \param y second operand
2298 /// \return \a x - \a y or 0 if difference negative
2299// template<typename T,typename U> typename enable<expr,T,U>::type fdim(T x, U y) { return functions::fdim(x, y); }
2300 inline expr fdim(half x, half y) { return functions::fdim(x, y); }
2301 inline expr fdim(half x, expr y) { return functions::fdim(x, y); }
2302 inline expr fdim(expr x, half y) { return functions::fdim(x, y); }
2303 inline expr fdim(expr x, expr y) { return functions::fdim(x, y); }
2304
2305 /// Get NaN value.
2306 /// \return quiet NaN
2307 inline half nanh(const char*) { return functions::nanh(); }
2308
2309 /// \}
2310 /// \name Exponential functions
2311 /// \{
2312
2313 /// Exponential function.
2314 /// \param arg function argument
2315 /// \return e raised to \a arg
2316// template<typename T> typename enable<expr,T>::type exp(T arg) { return functions::exp(arg); }
2317 inline expr exp(half arg) { return functions::exp(arg); }
2318 inline expr exp(expr arg) { return functions::exp(arg); }
2319
2320 /// Exponential minus one.
2321 /// \param arg function argument
2322 /// \return e raised to \a arg subtracted by 1
2323// template<typename T> typename enable<expr,T>::type expm1(T arg) { return functions::expm1(arg); }
2324 inline expr expm1(half arg) { return functions::expm1(arg); }
2325 inline expr expm1(expr arg) { return functions::expm1(arg); }
2326
2327 /// Binary exponential.
2328 /// \param arg function argument
2329 /// \return 2 raised to \a arg
2330// template<typename T> typename enable<expr,T>::type exp2(T arg) { return functions::exp2(arg); }
2331 inline expr exp2(half arg) { return functions::exp2(arg); }
2332 inline expr exp2(expr arg) { return functions::exp2(arg); }
2333
2334 /// Natural logorithm.
2335 /// \param arg function argument
2336 /// \return logarithm of \a arg to base e
2337// template<typename T> typename enable<expr,T>::type log(T arg) { return functions::log(arg); }
2338 inline expr log(half arg) { return functions::log(arg); }
2339 inline expr log(expr arg) { return functions::log(arg); }
2340
2341 /// Common logorithm.
2342 /// \param arg function argument
2343 /// \return logarithm of \a arg to base 10
2344// template<typename T> typename enable<expr,T>::type log10(T arg) { return functions::log10(arg); }
2345 inline expr log10(half arg) { return functions::log10(arg); }
2346 inline expr log10(expr arg) { return functions::log10(arg); }
2347
2348 /// Natural logorithm.
2349 /// \param arg function argument
2350 /// \return logarithm of \a arg plus 1 to base e
2351// template<typename T> typename enable<expr,T>::type log1p(T arg) { return functions::log1p(arg); }
2352 inline expr log1p(half arg) { return functions::log1p(arg); }
2353 inline expr log1p(expr arg) { return functions::log1p(arg); }
2354
2355 /// Binary logorithm.
2356 /// \param arg function argument
2357 /// \return logarithm of \a arg to base 2
2358// template<typename T> typename enable<expr,T>::type log2(T arg) { return functions::log2(arg); }
2359 inline expr log2(half arg) { return functions::log2(arg); }
2360 inline expr log2(expr arg) { return functions::log2(arg); }
2361
2362 /// \}
2363 /// \name Power functions
2364 /// \{
2365
2366 /// Square root.
2367 /// \param arg function argument
2368 /// \return square root of \a arg
2369// template<typename T> typename enable<expr,T>::type sqrt(T arg) { return functions::sqrt(arg); }
2370 inline expr sqrt(half arg) { return functions::sqrt(arg); }
2371 inline expr sqrt(expr arg) { return functions::sqrt(arg); }
2372
2373 /// Cubic root.
2374 /// \param arg function argument
2375 /// \return cubic root of \a arg
2376// template<typename T> typename enable<expr,T>::type cbrt(T arg) { return functions::cbrt(arg); }
2377 inline expr cbrt(half arg) { return functions::cbrt(arg); }
2378 inline expr cbrt(expr arg) { return functions::cbrt(arg); }
2379
2380 /// Hypotenuse function.
2381 /// \param x first argument
2382 /// \param y second argument
2383 /// \return square root of sum of squares without internal over- or underflows
2384// template<typename T,typename U> typename enable<expr,T,U>::type hypot(T x, U y) { return functions::hypot(x, y); }
2385 inline expr hypot(half x, half y) { return functions::hypot(x, y); }
2386 inline expr hypot(half x, expr y) { return functions::hypot(x, y); }
2387 inline expr hypot(expr x, half y) { return functions::hypot(x, y); }
2388 inline expr hypot(expr x, expr y) { return functions::hypot(x, y); }
2389
2390 /// Power function.
2391 /// \param base first argument
2392 /// \param exp second argument
2393 /// \return \a base raised to \a exp
2394// template<typename T,typename U> typename enable<expr,T,U>::type pow(T base, U exp) { return functions::pow(base, exp); }
2395 inline expr pow(half base, half exp) { return functions::pow(base, exp); }
2396 inline expr pow(half base, expr exp) { return functions::pow(base, exp); }
2397 inline expr pow(expr base, half exp) { return functions::pow(base, exp); }
2398 inline expr pow(expr base, expr exp) { return functions::pow(base, exp); }
2399
2400 /// \}
2401 /// \name Trigonometric functions
2402 /// \{
2403
2404 /// Sine function.
2405 /// \param arg function argument
2406 /// \return sine value of \a arg
2407// template<typename T> typename enable<expr,T>::type sin(T arg) { return functions::sin(arg); }
2408 inline expr sin(half arg) { return functions::sin(arg); }
2409 inline expr sin(expr arg) { return functions::sin(arg); }
2410
2411 /// Cosine function.
2412 /// \param arg function argument
2413 /// \return cosine value of \a arg
2414// template<typename T> typename enable<expr,T>::type cos(T arg) { return functions::cos(arg); }
2415 inline expr cos(half arg) { return functions::cos(arg); }
2416 inline expr cos(expr arg) { return functions::cos(arg); }
2417
2418 /// Tangent function.
2419 /// \param arg function argument
2420 /// \return tangent value of \a arg
2421// template<typename T> typename enable<expr,T>::type tan(T arg) { return functions::tan(arg); }
2422 inline expr tan(half arg) { return functions::tan(arg); }
2423 inline expr tan(expr arg) { return functions::tan(arg); }
2424
2425 /// Arc sine.
2426 /// \param arg function argument
2427 /// \return arc sine value of \a arg
2428// template<typename T> typename enable<expr,T>::type asin(T arg) { return functions::asin(arg); }
2429 inline expr asin(half arg) { return functions::asin(arg); }
2430 inline expr asin(expr arg) { return functions::asin(arg); }
2431
2432 /// Arc cosine function.
2433 /// \param arg function argument
2434 /// \return arc cosine value of \a arg
2435// template<typename T> typename enable<expr,T>::type acos(T arg) { return functions::acos(arg); }
2436 inline expr acos(half arg) { return functions::acos(arg); }
2437 inline expr acos(expr arg) { return functions::acos(arg); }
2438
2439 /// Arc tangent function.
2440 /// \param arg function argument
2441 /// \return arc tangent value of \a arg
2442// template<typename T> typename enable<expr,T>::type atan(T arg) { return functions::atan(arg); }
2443 inline expr atan(half arg) { return functions::atan(arg); }
2444 inline expr atan(expr arg) { return functions::atan(arg); }
2445
2446 /// Arc tangent function.
2447 /// \param x first argument
2448 /// \param y second argument
2449 /// \return arc tangent value
2450// template<typename T,typename U> typename enable<expr,T,U>::type atan2(T x, U y) { return functions::atan2(x, y); }
2451 inline expr atan2(half x, half y) { return functions::atan2(x, y); }
2452 inline expr atan2(half x, expr y) { return functions::atan2(x, y); }
2453 inline expr atan2(expr x, half y) { return functions::atan2(x, y); }
2454 inline expr atan2(expr x, expr y) { return functions::atan2(x, y); }
2455
2456 /// \}
2457 /// \name Hyperbolic functions
2458 /// \{
2459
2460 /// Hyperbolic sine.
2461 /// \param arg function argument
2462 /// \return hyperbolic sine value of \a arg
2463// template<typename T> typename enable<expr,T>::type sinh(T arg) { return functions::sinh(arg); }
2464 inline expr sinh(half arg) { return functions::sinh(arg); }
2465 inline expr sinh(expr arg) { return functions::sinh(arg); }
2466
2467 /// Hyperbolic cosine.
2468 /// \param arg function argument
2469 /// \return hyperbolic cosine value of \a arg
2470// template<typename T> typename enable<expr,T>::type cosh(T arg) { return functions::cosh(arg); }
2471 inline expr cosh(half arg) { return functions::cosh(arg); }
2472 inline expr cosh(expr arg) { return functions::cosh(arg); }
2473
2474 /// Hyperbolic tangent.
2475 /// \param arg function argument
2476 /// \return hyperbolic tangent value of \a arg
2477// template<typename T> typename enable<expr,T>::type tanh(T arg) { return functions::tanh(arg); }
2478 inline expr tanh(half arg) { return functions::tanh(arg); }
2479 inline expr tanh(expr arg) { return functions::tanh(arg); }
2480
2481 /// Hyperbolic area sine.
2482 /// \param arg function argument
2483 /// \return area sine value of \a arg
2484// template<typename T> typename enable<expr,T>::type asinh(T arg) { return functions::asinh(arg); }
2485 inline expr asinh(half arg) { return functions::asinh(arg); }
2486 inline expr asinh(expr arg) { return functions::asinh(arg); }
2487
2488 /// Hyperbolic area cosine.
2489 /// \param arg function argument
2490 /// \return area cosine value of \a arg
2491// template<typename T> typename enable<expr,T>::type acosh(T arg) { return functions::acosh(arg); }
2492 inline expr acosh(half arg) { return functions::acosh(arg); }
2493 inline expr acosh(expr arg) { return functions::acosh(arg); }
2494
2495 /// Hyperbolic area tangent.
2496 /// \param arg function argument
2497 /// \return area tangent value of \a arg
2498// template<typename T> typename enable<expr,T>::type atanh(T arg) { return functions::atanh(arg); }
2499 inline expr atanh(half arg) { return functions::atanh(arg); }
2500 inline expr atanh(expr arg) { return functions::atanh(arg); }
2501
2502 /// \}
2503 /// \name Error and gamma functions
2504 /// \{
2505
2506 /// Error function.
2507 /// \param arg function argument
2508 /// \return error function value of \a arg
2509// template<typename T> typename enable<expr,T>::type erf(T arg) { return functions::erf(arg); }
2510 inline expr erf(half arg) { return functions::erf(arg); }
2511 inline expr erf(expr arg) { return functions::erf(arg); }
2512
2513 /// Complementary error function.
2514 /// \param arg function argument
2515 /// \return 1 minus error function value of \a arg
2516// template<typename T> typename enable<expr,T>::type erfc(T arg) { return functions::erfc(arg); }
2517 inline expr erfc(half arg) { return functions::erfc(arg); }
2518 inline expr erfc(expr arg) { return functions::erfc(arg); }
2519
2520 /// Natural logarithm of gamma function.
2521 /// \param arg function argument
2522 /// \return natural logarith of gamma function for \a arg
2523// template<typename T> typename enable<expr,T>::type lgamma(T arg) { return functions::lgamma(arg); }
2524 inline expr lgamma(half arg) { return functions::lgamma(arg); }
2525 inline expr lgamma(expr arg) { return functions::lgamma(arg); }
2526
2527 /// Gamma function.
2528 /// \param arg function argument
2529 /// \return gamma function value of \a arg
2530// template<typename T> typename enable<expr,T>::type tgamma(T arg) { return functions::tgamma(arg); }
2531 inline expr tgamma(half arg) { return functions::tgamma(arg); }
2532 inline expr tgamma(expr arg) { return functions::tgamma(arg); }
2533
2534 /// \}
2535 /// \name Rounding
2536 /// \{
2537
2538 /// Nearest integer not less than half value.
2539 /// \param arg half to round
2540 /// \return nearest integer not less than \a arg
2541// template<typename T> typename enable<half,T>::type ceil(T arg) { return functions::ceil(arg); }
2542 inline half ceil(half arg) { return functions::ceil(arg); }
2543 inline half ceil(expr arg) { return functions::ceil(arg); }
2544
2545 /// Nearest integer not greater than half value.
2546 /// \param arg half to round
2547 /// \return nearest integer not greater than \a arg
2548// template<typename T> typename enable<half,T>::type floor(T arg) { return functions::floor(arg); }
2549 inline half floor(half arg) { return functions::floor(arg); }
2550 inline half floor(expr arg) { return functions::floor(arg); }
2551
2552 /// Nearest integer not greater in magnitude than half value.
2553 /// \param arg half to round
2554 /// \return nearest integer not greater in magnitude than \a arg
2555// template<typename T> typename enable<half,T>::type trunc(T arg) { return functions::trunc(arg); }
2556 inline half trunc(half arg) { return functions::trunc(arg); }
2557 inline half trunc(expr arg) { return functions::trunc(arg); }
2558
2559 /// Nearest integer.
2560 /// \param arg half to round
2561 /// \return nearest integer, rounded away from zero in half-way cases
2562// template<typename T> typename enable<half,T>::type round(T arg) { return functions::round(arg); }
2563 inline half round(half arg) { return functions::round(arg); }
2564 inline half round(expr arg) { return functions::round(arg); }
2565
2566 /// Nearest integer.
2567 /// \param arg half to round
2568 /// \return nearest integer, rounded away from zero in half-way cases
2569// template<typename T> typename enable<long,T>::type lround(T arg) { return functions::lround(arg); }
2570 inline long lround(half arg) { return functions::lround(arg); }
2571 inline long lround(expr arg) { return functions::lround(arg); }
2572
2573 /// Nearest integer using half's internal rounding mode.
2574 /// \param arg half expression to round
2575 /// \return nearest integer using default rounding mode
2576// template<typename T> typename enable<half,T>::type nearbyint(T arg) { return functions::nearbyint(arg); }
2577 inline half nearbyint(half arg) { return functions::rint(arg); }
2578 inline half nearbyint(expr arg) { return functions::rint(arg); }
2579
2580 /// Nearest integer using half's internal rounding mode.
2581 /// \param arg half expression to round
2582 /// \return nearest integer using default rounding mode
2583// template<typename T> typename enable<half,T>::type rint(T arg) { return functions::rint(arg); }
2584 inline half rint(half arg) { return functions::rint(arg); }
2585 inline half rint(expr arg) { return functions::rint(arg); }
2586
2587 /// Nearest integer using half's internal rounding mode.
2588 /// \param arg half expression to round
2589 /// \return nearest integer using default rounding mode
2590// template<typename T> typename enable<long,T>::type lrint(T arg) { return functions::lrint(arg); }
2591 inline long lrint(half arg) { return functions::lrint(arg); }
2592 inline long lrint(expr arg) { return functions::lrint(arg); }
2593 #if HALF_ENABLE_CPP11_LONG_LONG
2594 /// Nearest integer.
2595 /// \param arg half to round
2596 /// \return nearest integer, rounded away from zero in half-way cases
2597// template<typename T> typename enable<long long,T>::type llround(T arg) { return functions::llround(arg); }
2598 inline long long llround(half arg) { return functions::llround(arg); }
2599 inline long long llround(expr arg) { return functions::llround(arg); }
2600
2601 /// Nearest integer using half's internal rounding mode.
2602 /// \param arg half expression to round
2603 /// \return nearest integer using default rounding mode
2604// template<typename T> typename enable<long long,T>::type llrint(T arg) { return functions::llrint(arg); }
2605 inline long long llrint(half arg) { return functions::llrint(arg); }
2606 inline long long llrint(expr arg) { return functions::llrint(arg); }
2607 #endif
2608
2609 /// \}
2610 /// \name Floating point manipulation
2611 /// \{
2612
2613 /// Decompress floating point number.
2614 /// \param arg number to decompress
2615 /// \param exp address to store exponent at
2616 /// \return significant in range [0.5, 1)
2617// template<typename T> typename enable<half,T>::type frexp(T arg, int *exp) { return functions::frexp(arg, exp); }
2618 inline half frexp(half arg, int *exp) { return functions::frexp(arg, exp); }
2619 inline half frexp(expr arg, int *exp) { return functions::frexp(arg, exp); }
2620
2621 /// Multiply by power of two.
2622 /// \param arg number to modify
2623 /// \param exp power of two to multiply with
2624 /// \return \a arg multplied by 2 raised to \a exp
2625// template<typename T> typename enable<half,T>::type ldexp(T arg, int exp) { return functions::scalbln(arg, exp); }
2626 inline half ldexp(half arg, int exp) { return functions::scalbln(arg, exp); }
2627 inline half ldexp(expr arg, int exp) { return functions::scalbln(arg, exp); }
2628
2629 /// Extract integer and fractional parts.
2630 /// \param arg number to decompress
2631 /// \param iptr address to store integer part at
2632 /// \return fractional part
2633// template<typename T> typename enable<half,T>::type modf(T arg, half *iptr) { return functions::modf(arg, iptr); }
2634 inline half modf(half arg, half *iptr) { return functions::modf(arg, iptr); }
2635 inline half modf(expr arg, half *iptr) { return functions::modf(arg, iptr); }
2636
2637 /// Multiply by power of two.
2638 /// \param arg number to modify
2639 /// \param exp power of two to multiply with
2640 /// \return \a arg multplied by 2 raised to \a exp
2641// template<typename T> typename enable<half,T>::type scalbn(T arg, int exp) { return functions::scalbln(arg, exp); }
2642 inline half scalbn(half arg, int exp) { return functions::scalbln(arg, exp); }
2643 inline half scalbn(expr arg, int exp) { return functions::scalbln(arg, exp); }
2644
2645 /// Multiply by power of two.
2646 /// \param arg number to modify
2647 /// \param exp power of two to multiply with
2648 /// \return \a arg multplied by 2 raised to \a exp
2649// template<typename T> typename enable<half,T>::type scalbln(T arg, long exp) { return functions::scalbln(arg, exp); }
2650 inline half scalbln(half arg, long exp) { return functions::scalbln(arg, exp); }
2651 inline half scalbln(expr arg, long exp) { return functions::scalbln(arg, exp); }
2652
2653 /// Extract exponent.
2654 /// \param arg number to query
2655 /// \return floating point exponent
2656 /// \retval FP_ILOGB0 for zero
2657 /// \retval FP_ILOGBNAN for NaN
2658 /// \retval MAX_INT for infinity
2659// template<typename T> typename enable<int,T>::type ilogb(T arg) { return functions::ilogb(arg); }
2660 inline int ilogb(half arg) { return functions::ilogb(arg); }
2661 inline int ilogb(expr arg) { return functions::ilogb(arg); }
2662
2663 /// Extract exponent.
2664 /// \param arg number to query
2665 /// \return floating point exponent
2666// template<typename T> typename enable<half,T>::type logb(T arg) { return functions::logb(arg); }
2667 inline half logb(half arg) { return functions::logb(arg); }
2668 inline half logb(expr arg) { return functions::logb(arg); }
2669
2670 /// Next representable value.
2671 /// \param from value to compute next representable value for
2672 /// \param to direction towards which to compute next value
2673 /// \return next representable value after \a from in direction towards \a to
2674// template<typename T,typename U> typename enable<half,T,U>::type nextafter(T from, U to) { return functions::nextafter(from, to); }
2675 inline half nextafter(half from, half to) { return functions::nextafter(from, to); }
2676 inline half nextafter(half from, expr to) { return functions::nextafter(from, to); }
2677 inline half nextafter(expr from, half to) { return functions::nextafter(from, to); }
2678 inline half nextafter(expr from, expr to) { return functions::nextafter(from, to); }
2679
2680 /// Next representable value.
2681 /// \param from value to compute next representable value for
2682 /// \param to direction towards which to compute next value
2683 /// \return next representable value after \a from in direction towards \a to
2684// template<typename T> typename enable<half,T>::type nexttoward(T from, long double to) { return functions::nexttoward(from, to); }
2685 inline half nexttoward(half from, long double to) { return functions::nexttoward(from, to); }
2686 inline half nexttoward(expr from, long double to) { return functions::nexttoward(from, to); }
2687
2688 /// Take sign.
2689 /// \param x value to change sign for
2690 /// \param y value to take sign from
2691 /// \return value equal to \a x in magnitude and to \a y in sign
2692// template<typename T,typename U> typename enable<half,T,U>::type copysign(T x, U y) { return functions::copysign(x, y); }
2693 inline half copysign(half x, half y) { return functions::copysign(x, y); }
2694 inline half copysign(half x, expr y) { return functions::copysign(x, y); }
2695 inline half copysign(expr x, half y) { return functions::copysign(x, y); }
2696 inline half copysign(expr x, expr y) { return functions::copysign(x, y); }
2697
2698 /// \}
2699 /// \name Floating point classification
2700 /// \{
2701
2702
2703 /// Classify floating point value.
2704 /// \param arg number to classify
2705 /// \retval FP_ZERO for positive and negative zero
2706 /// \retval FP_SUBNORMAL for subnormal numbers
2707 /// \retval FP_INFINITY for positive and negative infinity
2708 /// \retval FP_NAN for NaNs
2709 /// \retval FP_NORMAL for all other (normal) values
2710// template<typename T> typename enable<int,T>::type fpclassify(T arg) { return functions::fpclassify(arg); }
2711 inline int fpclassify(half arg) { return functions::fpclassify(arg); }
2712 inline int fpclassify(expr arg) { return functions::fpclassify(arg); }
2713
2714 /// Check if finite number.
2715 /// \param arg number to check
2716 /// \retval true if neither infinity nor NaN
2717 /// \retval false else
2718// template<typename T> typename enable<bool,T>::type isfinite(T arg) { return functions::isfinite(arg); }
2719 inline bool isfinite(half arg) { return functions::isfinite(arg); }
2720 inline bool isfinite(expr arg) { return functions::isfinite(arg); }
2721
2722 /// Check for infinity.
2723 /// \param arg number to check
2724 /// \retval true for positive or negative infinity
2725 /// \retval false else
2726// template<typename T> typename enable<bool,T>::type isinf(T arg) { return functions::isinf(arg); }
2727 inline bool isinf(half arg) { return functions::isinf(arg); }
2728 inline bool isinf(expr arg) { return functions::isinf(arg); }
2729
2730 /// Check for NaN.
2731 /// \param arg number to check
2732 /// \retval true for NaNs
2733 /// \retval false else
2734// template<typename T> typename enable<bool,T>::type isnan(T arg) { return functions::isnan(arg); }
2735 inline bool isnan(half arg) { return functions::isnan(arg); }
2736 inline bool isnan(expr arg) { return functions::isnan(arg); }
2737
2738 /// Check if normal number.
2739 /// \param arg number to check
2740 /// \retval true if normal number
2741 /// \retval false if either subnormal, zero, infinity or NaN
2742// template<typename T> typename enable<bool,T>::type isnormal(T arg) { return functions::isnormal(arg); }
2743 inline bool isnormal(half arg) { return functions::isnormal(arg); }
2744 inline bool isnormal(expr arg) { return functions::isnormal(arg); }
2745
2746 /// Check sign.
2747 /// \param arg number to check
2748 /// \retval true for negative number
2749 /// \retval false for positive number
2750// template<typename T> typename enable<bool,T>::type signbit(T arg) { return functions::signbit(arg); }
2751 inline bool signbit(half arg) { return functions::signbit(arg); }
2752 inline bool signbit(expr arg) { return functions::signbit(arg); }
2753
2754 /// \}
2755 /// \name Comparison
2756 /// \{
2757
2758 /// Comparison for greater than.
2759 /// \param x first operand
2760 /// \param y second operand
2761 /// \retval true if \a x greater than \a y
2762 /// \retval false else
2763// template<typename T,typename U> typename enable<bool,T,U>::type isgreater(T x, U y) { return functions::isgreater(x, y); }
2764 inline bool isgreater(half x, half y) { return functions::isgreater(x, y); }
2765 inline bool isgreater(half x, expr y) { return functions::isgreater(x, y); }
2766 inline bool isgreater(expr x, half y) { return functions::isgreater(x, y); }
2767 inline bool isgreater(expr x, expr y) { return functions::isgreater(x, y); }
2768
2769 /// Comparison for greater equal.
2770 /// \param x first operand
2771 /// \param y second operand
2772 /// \retval true if \a x greater equal \a y
2773 /// \retval false else
2774// template<typename T,typename U> typename enable<bool,T,U>::type isgreaterequal(T x, U y) { return functions::isgreaterequal(x, y); }
2775 inline bool isgreaterequal(half x, half y) { return functions::isgreaterequal(x, y); }
2776 inline bool isgreaterequal(half x, expr y) { return functions::isgreaterequal(x, y); }
2777 inline bool isgreaterequal(expr x, half y) { return functions::isgreaterequal(x, y); }
2778 inline bool isgreaterequal(expr x, expr y) { return functions::isgreaterequal(x, y); }
2779
2780 /// Comparison for less than.
2781 /// \param x first operand
2782 /// \param y second operand
2783 /// \retval true if \a x less than \a y
2784 /// \retval false else
2785// template<typename T,typename U> typename enable<bool,T,U>::type isless(T x, U y) { return functions::isless(x, y); }
2786 inline bool isless(half x, half y) { return functions::isless(x, y); }
2787 inline bool isless(half x, expr y) { return functions::isless(x, y); }
2788 inline bool isless(expr x, half y) { return functions::isless(x, y); }
2789 inline bool isless(expr x, expr y) { return functions::isless(x, y); }
2790
2791 /// Comparison for less equal.
2792 /// \param x first operand
2793 /// \param y second operand
2794 /// \retval true if \a x less equal \a y
2795 /// \retval false else
2796// template<typename T,typename U> typename enable<bool,T,U>::type islessequal(T x, U y) { return functions::islessequal(x, y); }
2797 inline bool islessequal(half x, half y) { return functions::islessequal(x, y); }
2798 inline bool islessequal(half x, expr y) { return functions::islessequal(x, y); }
2799 inline bool islessequal(expr x, half y) { return functions::islessequal(x, y); }
2800 inline bool islessequal(expr x, expr y) { return functions::islessequal(x, y); }
2801
2802 /// Comarison for less or greater.
2803 /// \param x first operand
2804 /// \param y second operand
2805 /// \retval true if either less or greater
2806 /// \retval false else
2807// template<typename T,typename U> typename enable<bool,T,U>::type islessgreater(T x, U y) { return functions::islessgreater(x, y); }
2808 inline bool islessgreater(half x, half y) { return functions::islessgreater(x, y); }
2809 inline bool islessgreater(half x, expr y) { return functions::islessgreater(x, y); }
2810 inline bool islessgreater(expr x, half y) { return functions::islessgreater(x, y); }
2811 inline bool islessgreater(expr x, expr y) { return functions::islessgreater(x, y); }
2812
2813 /// Check if unordered.
2814 /// \param x first operand
2815 /// \param y second operand
2816 /// \retval true if unordered (one or two NaN operands)
2817 /// \retval false else
2818// template<typename T,typename U> typename enable<bool,T,U>::type isunordered(T x, U y) { return functions::isunordered(x, y); }
2819 inline bool isunordered(half x, half y) { return functions::isunordered(x, y); }
2820 inline bool isunordered(half x, expr y) { return functions::isunordered(x, y); }
2821 inline bool isunordered(expr x, half y) { return functions::isunordered(x, y); }
2822 inline bool isunordered(expr x, expr y) { return functions::isunordered(x, y); }
2823
2824 /// \name Casting
2825 /// \{
2826
2827 /// Cast to or from half-precision floating point number.
2828 /// This casts between [half](\ref half_float::half) and any built-in arithmetic type. The values are converted
2829 /// directly using the given rounding mode, without any roundtrip over `float` that a `static_cast` would otherwise do.
2830 /// It uses the default rounding mode.
2831 ///
2832 /// Using this cast with neither of the two types being a [half](\ref half_float::half) or with any of the two types
2833 /// not being a built-in arithmetic type (apart from [half](\ref half_float::half), of course) results in a compiler
2834 /// error and casting between [half](\ref half_float::half)s is just a no-op.
2835 /// \tparam T destination type (half or built-in arithmetic type)
2836 /// \tparam U source type (half or built-in arithmetic type)
2837 /// \param arg value to cast
2838 /// \return \a arg converted to destination type
2839 template<typename T,typename U> T half_cast(U arg) { return half_caster<T,U>::cast(arg); }
2840
2841 /// Cast to or from half-precision floating point number.
2842 /// This casts between [half](\ref half_float::half) and any built-in arithmetic type. The values are converted
2843 /// directly using the given rounding mode, without any roundtrip over `float` that a `static_cast` would otherwise do.
2844 ///
2845 /// Using this cast with neither of the two types being a [half](\ref half_float::half) or with any of the two types
2846 /// not being a built-in arithmetic type (apart from [half](\ref half_float::half), of course) results in a compiler
2847 /// error and casting between [half](\ref half_float::half)s is just a no-op.
2848 /// \tparam T destination type (half or built-in arithmetic type)
2849 /// \tparam R rounding mode to use.
2850 /// \tparam U source type (half or built-in arithmetic type)
2851 /// \param arg value to cast
2852 /// \return \a arg converted to destination type
2853 template<typename T,std::float_round_style R,typename U> T half_cast(U arg) { return half_caster<T,U,R>::cast(arg); }
2854 /// \}
2855 }
2856
2857 using detail::operator==;
2858 using detail::operator!=;
2859 using detail::operator<;
2860 using detail::operator>;
2861 using detail::operator<=;
2862 using detail::operator>=;
2863 using detail::operator+;
2864 using detail::operator-;
2865 using detail::operator*;
2866 using detail::operator/;
2867 using detail::operator<<;
2868 using detail::operator>>;
2869
2870 using detail::abs;
2871 using detail::fabs;
2872 using detail::fmod;
2873 using detail::remainder;
2874 using detail::remquo;
2875 using detail::fma;
2876 using detail::fmax;
2877 using detail::fmin;
2878 using detail::fdim;
2879 using detail::nanh;
2880 using detail::exp;
2881 using detail::expm1;
2882 using detail::exp2;
2883 using detail::log;
2884 using detail::log10;
2885 using detail::log1p;
2886 using detail::log2;
2887 using detail::sqrt;
2888 using detail::cbrt;
2889 using detail::hypot;
2890 using detail::pow;
2891 using detail::sin;
2892 using detail::cos;
2893 using detail::tan;
2894 using detail::asin;
2895 using detail::acos;
2896 using detail::atan;
2897 using detail::atan2;
2898 using detail::sinh;
2899 using detail::cosh;
2900 using detail::tanh;
2901 using detail::asinh;
2902 using detail::acosh;
2903 using detail::atanh;
2904 using detail::erf;
2905 using detail::erfc;
2906 using detail::lgamma;
2907 using detail::tgamma;
2908 using detail::ceil;
2909 using detail::floor;
2910 using detail::trunc;
2911 using detail::round;
2912 using detail::lround;
2913 using detail::nearbyint;
2914 using detail::rint;
2915 using detail::lrint;
2916#if HALF_ENABLE_CPP11_LONG_LONG
2917 using detail::llround;
2918 using detail::llrint;
2919#endif
2920 using detail::frexp;
2921 using detail::ldexp;
2922 using detail::modf;
2923 using detail::scalbn;
2924 using detail::scalbln;
2925 using detail::ilogb;
2926 using detail::logb;
2927 using detail::nextafter;
2928 using detail::nexttoward;
2929 using detail::copysign;
2930 using detail::fpclassify;
2931 using detail::isfinite;
2932 using detail::isinf;
2933 using detail::isnan;
2934 using detail::isnormal;
2935 using detail::signbit;
2936 using detail::isgreater;
2937 using detail::isgreaterequal;
2938 using detail::isless;
2939 using detail::islessequal;
2940 using detail::islessgreater;
2941 using detail::isunordered;
2942
2943 using detail::half_cast;
2944}
2945
2946
2947/// Extensions to the C++ standard library.
2948namespace std
2949{
2950 /// Numeric limits for half-precision floats.
2951 /// Because of the underlying single-precision implementation of many operations, it inherits some properties from
2952 /// `std::numeric_limits<float>`.
2953 template<> class numeric_limits<half_float::half> : public numeric_limits<float>
2954 {
2955 public:
2956 /// Supports signed values.
2957 static HALF_CONSTEXPR_CONST bool is_signed = true;
2958
2959 /// Is not exact.
2960 static HALF_CONSTEXPR_CONST bool is_exact = false;
2961
2962 /// Doesn't provide modulo arithmetic.
2963 static HALF_CONSTEXPR_CONST bool is_modulo = false;
2964
2965 /// IEEE conformant.
2966 static HALF_CONSTEXPR_CONST bool is_iec559 = true;
2967
2968 /// Supports infinity.
2969 static HALF_CONSTEXPR_CONST bool has_infinity = true;
2970
2971 /// Supports quiet NaNs.
2972 static HALF_CONSTEXPR_CONST bool has_quiet_NaN = true;
2973
2974 /// Supports subnormal values.
2975 static HALF_CONSTEXPR_CONST float_denorm_style has_denorm = denorm_present;
2976
2977 /// Rounding mode.
2978 /// Due to the mix of internal single-precision computations (using the rounding mode of the underlying
2979 /// single-precision implementation) with the rounding mode of the single-to-half conversions, the actual rounding
2980 /// mode might be `std::round_indeterminate` if the default half-precision rounding mode doesn't match the
2981 /// single-precision rounding mode.
2982 static HALF_CONSTEXPR_CONST float_round_style round_style = (std::numeric_limits<float>::round_style==
2983 half_float::half::round_style) ? half_float::half::round_style : round_indeterminate;
2984
2985 /// Significant digits.
2986 static HALF_CONSTEXPR_CONST int digits = 11;
2987
2988 /// Significant decimal digits.
2989 static HALF_CONSTEXPR_CONST int digits10 = 3;
2990
2991 /// Required decimal digits to represent all possible values.
2992 static HALF_CONSTEXPR_CONST int max_digits10 = 5;
2993
2994 /// Number base.
2995 static HALF_CONSTEXPR_CONST int radix = 2;
2996
2997 /// One more than smallest exponent.
2998 static HALF_CONSTEXPR_CONST int min_exponent = -13;
2999
3000 /// Smallest normalized representable power of 10.
3001 static HALF_CONSTEXPR_CONST int min_exponent10 = -4;
3002
3003 /// One more than largest exponent
3004 static HALF_CONSTEXPR_CONST int max_exponent = 16;
3005
3006 /// Largest finitely representable power of 10.
3007 static HALF_CONSTEXPR_CONST int max_exponent10 = 4;
3008
3009 /// Smallest positive normal value.
3010 static HALF_CONSTEXPR half_float::half min() HALF_NOTHROW { return half_float::half(half_float::detail::binary, 0x0400); }
3011
3012 /// Smallest finite value.
3013 static HALF_CONSTEXPR half_float::half lowest() HALF_NOTHROW { return half_float::half(half_float::detail::binary, 0xFBFF); }
3014
3015 /// Largest finite value.
3016 static HALF_CONSTEXPR half_float::half max() HALF_NOTHROW { return half_float::half(half_float::detail::binary, 0x7BFF); }
3017
3018 /// Difference between one and next representable value.
3019 static HALF_CONSTEXPR half_float::half epsilon() HALF_NOTHROW { return half_float::half(half_float::detail::binary, 0x1400); }
3020
3021 /// Maximum rounding error.
3022 static HALF_CONSTEXPR half_float::half round_error() HALF_NOTHROW
3023 { return half_float::half(half_float::detail::binary, (round_style==std::round_to_nearest) ? 0x3800 : 0x3C00); }
3024
3025 /// Positive infinity.
3026 static HALF_CONSTEXPR half_float::half infinity() HALF_NOTHROW { return half_float::half(half_float::detail::binary, 0x7C00); }
3027
3028 /// Quiet NaN.
3029 static HALF_CONSTEXPR half_float::half quiet_NaN() HALF_NOTHROW { return half_float::half(half_float::detail::binary, 0x7FFF); }
3030
3031 /// Signalling NaN.
3032 static HALF_CONSTEXPR half_float::half signaling_NaN() HALF_NOTHROW { return half_float::half(half_float::detail::binary, 0x7DFF); }
3033
3034 /// Smallest positive subnormal value.
3035 static HALF_CONSTEXPR half_float::half denorm_min() HALF_NOTHROW { return half_float::half(half_float::detail::binary, 0x0001); }
3036 };
3037
3038#if HALF_ENABLE_CPP11_HASH
3039 /// Hash function for half-precision floats.
3040 /// This is only defined if C++11 `std::hash` is supported and enabled.
3041 template<> struct hash<half_float::half> //: unary_function<half_float::half,size_t>
3042 {
3043 /// Type of function argument.
3044 typedef half_float::half argument_type;
3045
3046 /// Function return type.
3047 typedef size_t result_type;
3048
3049 /// Compute hash function.
3050 /// \param arg half to hash
3051 /// \return hash value
3052 result_type operator()(argument_type arg) const
3053 { return hash<half_float::detail::uint16>()(static_cast<unsigned>(arg.data_)&-(arg.data_!=0x8000)); }
3054 };
3055#endif
3056}
3057
3058
3059#undef HALF_CONSTEXPR
3060#undef HALF_CONSTEXPR_CONST
3061#undef HALF_NOEXCEPT
3062#undef HALF_NOTHROW
3063#ifdef HALF_POP_WARNINGS
3064 #pragma warning(pop)
3065 #undef HALF_POP_WARNINGS
3066#endif
3067
3068#endif