blob: 338e0c708c765859018fddf1a06edccb3e9d5d1c [file] [log] [blame]
Jim Flynn05c342a2020-07-23 11:20:59 +01001// Formatting library for C++ - the core API
2//
3// Copyright (c) 2012 - present, Victor Zverovich
4// All rights reserved.
5//
6// For the license information refer to format.h.
7
8#ifndef FMT_CORE_H_
9#define FMT_CORE_H_
10
11#include <cstdio> // std::FILE
12#include <cstring>
13#include <functional>
14#include <iterator>
15#include <memory>
16#include <string>
17#include <type_traits>
18#include <vector>
19
20// The fmt library version in the form major * 10000 + minor * 100 + patch.
21#define FMT_VERSION 70001
22
23#ifdef __clang__
24# define FMT_CLANG_VERSION (__clang_major__ * 100 + __clang_minor__)
25#else
26# define FMT_CLANG_VERSION 0
27#endif
28
29#if defined(__GNUC__) && !defined(__clang__)
30# define FMT_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
31#else
32# define FMT_GCC_VERSION 0
33#endif
34
35#if defined(__INTEL_COMPILER)
36# define FMT_ICC_VERSION __INTEL_COMPILER
37#else
38# define FMT_ICC_VERSION 0
39#endif
40
41#if __cplusplus >= 201103L || defined(__GXX_EXPERIMENTAL_CXX0X__)
42# define FMT_HAS_GXX_CXX11 FMT_GCC_VERSION
43#else
44# define FMT_HAS_GXX_CXX11 0
45#endif
46
47#ifdef __NVCC__
48# define FMT_NVCC __NVCC__
49#else
50# define FMT_NVCC 0
51#endif
52
53#ifdef _MSC_VER
54# define FMT_MSC_VER _MSC_VER
55# define FMT_SUPPRESS_MSC_WARNING(n) __pragma(warning(suppress : n))
56#else
57# define FMT_MSC_VER 0
58# define FMT_SUPPRESS_MSC_WARNING(n)
59#endif
60#ifdef __has_feature
61# define FMT_HAS_FEATURE(x) __has_feature(x)
62#else
63# define FMT_HAS_FEATURE(x) 0
64#endif
65
66#if defined(__has_include) && !defined(__INTELLISENSE__) && \
67 !(FMT_ICC_VERSION && FMT_ICC_VERSION < 1600)
68# define FMT_HAS_INCLUDE(x) __has_include(x)
69#else
70# define FMT_HAS_INCLUDE(x) 0
71#endif
72
73#ifdef __has_cpp_attribute
74# define FMT_HAS_CPP_ATTRIBUTE(x) __has_cpp_attribute(x)
75#else
76# define FMT_HAS_CPP_ATTRIBUTE(x) 0
77#endif
78
79#define FMT_HAS_CPP14_ATTRIBUTE(attribute) \
80 (__cplusplus >= 201402L && FMT_HAS_CPP_ATTRIBUTE(attribute))
81
82#define FMT_HAS_CPP17_ATTRIBUTE(attribute) \
83 (__cplusplus >= 201703L && FMT_HAS_CPP_ATTRIBUTE(attribute))
84
85// Check if relaxed C++14 constexpr is supported.
86// GCC doesn't allow throw in constexpr until version 6 (bug 67371).
87#ifndef FMT_USE_CONSTEXPR
88# define FMT_USE_CONSTEXPR \
89 (FMT_HAS_FEATURE(cxx_relaxed_constexpr) || FMT_MSC_VER >= 1910 || \
90 (FMT_GCC_VERSION >= 600 && __cplusplus >= 201402L)) && \
91 !FMT_NVCC && !FMT_ICC_VERSION
92#endif
93#if FMT_USE_CONSTEXPR
94# define FMT_CONSTEXPR constexpr
95# define FMT_CONSTEXPR_DECL constexpr
96#else
97# define FMT_CONSTEXPR inline
98# define FMT_CONSTEXPR_DECL
99#endif
100
101#ifndef FMT_OVERRIDE
102# if FMT_HAS_FEATURE(cxx_override) || \
103 (FMT_GCC_VERSION >= 408 && FMT_HAS_GXX_CXX11) || FMT_MSC_VER >= 1900
104# define FMT_OVERRIDE override
105# else
106# define FMT_OVERRIDE
107# endif
108#endif
109
110// Check if exceptions are disabled.
111#ifndef FMT_EXCEPTIONS
112# if (defined(__GNUC__) && !defined(__EXCEPTIONS)) || \
113 FMT_MSC_VER && !_HAS_EXCEPTIONS
114# define FMT_EXCEPTIONS 0
115# else
116# define FMT_EXCEPTIONS 1
117# endif
118#endif
119
120// Define FMT_USE_NOEXCEPT to make fmt use noexcept (C++11 feature).
121#ifndef FMT_USE_NOEXCEPT
122# define FMT_USE_NOEXCEPT 0
123#endif
124
125#if FMT_USE_NOEXCEPT || FMT_HAS_FEATURE(cxx_noexcept) || \
126 (FMT_GCC_VERSION >= 408 && FMT_HAS_GXX_CXX11) || FMT_MSC_VER >= 1900
127# define FMT_DETECTED_NOEXCEPT noexcept
128# define FMT_HAS_CXX11_NOEXCEPT 1
129#else
130# define FMT_DETECTED_NOEXCEPT throw()
131# define FMT_HAS_CXX11_NOEXCEPT 0
132#endif
133
134#ifndef FMT_NOEXCEPT
135# if FMT_EXCEPTIONS || FMT_HAS_CXX11_NOEXCEPT
136# define FMT_NOEXCEPT FMT_DETECTED_NOEXCEPT
137# else
138# define FMT_NOEXCEPT
139# endif
140#endif
141
142// [[noreturn]] is disabled on MSVC and NVCC because of bogus unreachable code
143// warnings.
144#if FMT_EXCEPTIONS && FMT_HAS_CPP_ATTRIBUTE(noreturn) && !FMT_MSC_VER && \
145 !FMT_NVCC
146# define FMT_NORETURN [[noreturn]]
147#else
148# define FMT_NORETURN
149#endif
150
151#ifndef FMT_DEPRECATED
152# if FMT_HAS_CPP14_ATTRIBUTE(deprecated) || FMT_MSC_VER >= 1900
153# define FMT_DEPRECATED [[deprecated]]
154# else
155# if defined(__GNUC__) || defined(__clang__)
156# define FMT_DEPRECATED __attribute__((deprecated))
157# elif FMT_MSC_VER
158# define FMT_DEPRECATED __declspec(deprecated)
159# else
160# define FMT_DEPRECATED /* deprecated */
161# endif
162# endif
163#endif
164
165// Workaround broken [[deprecated]] in the Intel, PGI and NVCC compilers.
166#if FMT_ICC_VERSION || defined(__PGI) || FMT_NVCC
167# define FMT_DEPRECATED_ALIAS
168#else
169# define FMT_DEPRECATED_ALIAS FMT_DEPRECATED
170#endif
171
172#ifndef FMT_INLINE
173# if FMT_GCC_VERSION || FMT_CLANG_VERSION
174# define FMT_INLINE inline __attribute__((always_inline))
175# else
176# define FMT_INLINE inline
177# endif
178#endif
179
180#ifndef FMT_BEGIN_NAMESPACE
181# if FMT_HAS_FEATURE(cxx_inline_namespaces) || FMT_GCC_VERSION >= 404 || \
182 FMT_MSC_VER >= 1900
183# define FMT_INLINE_NAMESPACE inline namespace
184# define FMT_END_NAMESPACE \
185 } \
186 }
187# else
188# define FMT_INLINE_NAMESPACE namespace
189# define FMT_END_NAMESPACE \
190 } \
191 using namespace v7; \
192 }
193# endif
194# define FMT_BEGIN_NAMESPACE \
195 namespace fmt { \
196 FMT_INLINE_NAMESPACE v7 {
197#endif
198
199#if !defined(FMT_HEADER_ONLY) && defined(_WIN32)
200# define FMT_CLASS_API FMT_SUPPRESS_MSC_WARNING(4275)
201# ifdef FMT_EXPORT
202# define FMT_API __declspec(dllexport)
203# define FMT_EXTERN_TEMPLATE_API FMT_API
204# define FMT_EXPORTED
205# elif defined(FMT_SHARED)
206# define FMT_API __declspec(dllimport)
207# define FMT_EXTERN_TEMPLATE_API FMT_API
208# endif
209#else
210# define FMT_CLASS_API
211#endif
212#ifndef FMT_API
213# define FMT_API
214#endif
215#ifndef FMT_EXTERN_TEMPLATE_API
216# define FMT_EXTERN_TEMPLATE_API
217#endif
218#ifndef FMT_INSTANTIATION_DEF_API
219# define FMT_INSTANTIATION_DEF_API FMT_API
220#endif
221
222#ifndef FMT_HEADER_ONLY
223# define FMT_EXTERN extern
224#else
225# define FMT_EXTERN
226#endif
227
228// libc++ supports string_view in pre-c++17.
229#if (FMT_HAS_INCLUDE(<string_view>) && \
230 (__cplusplus > 201402L || defined(_LIBCPP_VERSION))) || \
231 (defined(_MSVC_LANG) && _MSVC_LANG > 201402L && _MSC_VER >= 1910)
232# include <string_view>
233# define FMT_USE_STRING_VIEW
234#elif FMT_HAS_INCLUDE("experimental/string_view") && __cplusplus >= 201402L
235# include <experimental/string_view>
236# define FMT_USE_EXPERIMENTAL_STRING_VIEW
237#endif
238
239#ifndef FMT_UNICODE
240# define FMT_UNICODE !FMT_MSC_VER
241#endif
242#if FMT_UNICODE && FMT_MSC_VER
243# pragma execution_character_set("utf-8")
244#endif
245
246FMT_BEGIN_NAMESPACE
247
248// Implementations of enable_if_t and other metafunctions for older systems.
249template <bool B, class T = void>
250using enable_if_t = typename std::enable_if<B, T>::type;
251template <bool B, class T, class F>
252using conditional_t = typename std::conditional<B, T, F>::type;
253template <bool B> using bool_constant = std::integral_constant<bool, B>;
254template <typename T>
255using remove_reference_t = typename std::remove_reference<T>::type;
256template <typename T>
257using remove_const_t = typename std::remove_const<T>::type;
258template <typename T>
259using remove_cvref_t = typename std::remove_cv<remove_reference_t<T>>::type;
260template <typename T> struct type_identity { using type = T; };
261template <typename T> using type_identity_t = typename type_identity<T>::type;
262
263struct monostate {};
264
265// An enable_if helper to be used in template parameters which results in much
266// shorter symbols: https://godbolt.org/z/sWw4vP. Extra parentheses are needed
267// to workaround a bug in MSVC 2019 (see #1140 and #1186).
268#define FMT_ENABLE_IF(...) enable_if_t<(__VA_ARGS__), int> = 0
269
270namespace detail {
271
272// A helper function to suppress bogus "conditional expression is constant"
273// warnings.
274template <typename T> constexpr T const_check(T value) { return value; }
275
276FMT_NORETURN FMT_API void assert_fail(const char* file, int line,
277 const char* message);
278
279#ifndef FMT_ASSERT
280# ifdef NDEBUG
281// FMT_ASSERT is not empty to avoid -Werror=empty-body.
282# define FMT_ASSERT(condition, message) ((void)0)
283# else
284# define FMT_ASSERT(condition, message) \
285 ((condition) /* void() fails with -Winvalid-constexpr on clang 4.0.1 */ \
286 ? (void)0 \
287 : ::fmt::detail::assert_fail(__FILE__, __LINE__, (message)))
288# endif
289#endif
290
291#if defined(FMT_USE_STRING_VIEW)
292template <typename Char> using std_string_view = std::basic_string_view<Char>;
293#elif defined(FMT_USE_EXPERIMENTAL_STRING_VIEW)
294template <typename Char>
295using std_string_view = std::experimental::basic_string_view<Char>;
296#else
297template <typename T> struct std_string_view {};
298#endif
299
300#ifdef FMT_USE_INT128
301// Do nothing.
302#elif defined(__SIZEOF_INT128__) && !FMT_NVCC
303# define FMT_USE_INT128 1
304using int128_t = __int128_t;
305using uint128_t = __uint128_t;
306#else
307# define FMT_USE_INT128 0
308#endif
309#if !FMT_USE_INT128
310struct int128_t {};
311struct uint128_t {};
312#endif
313
314// Casts a nonnegative integer to unsigned.
315template <typename Int>
316FMT_CONSTEXPR typename std::make_unsigned<Int>::type to_unsigned(Int value) {
317 FMT_ASSERT(value >= 0, "negative value");
318 return static_cast<typename std::make_unsigned<Int>::type>(value);
319}
320
321FMT_SUPPRESS_MSC_WARNING(4566) constexpr unsigned char micro[] = "\u00B5";
322
323template <typename Char> constexpr bool is_unicode() {
324 return FMT_UNICODE || sizeof(Char) != 1 ||
325 (sizeof(micro) == 3 && micro[0] == 0xC2 && micro[1] == 0xB5);
326}
327
328#ifdef __cpp_char8_t
329using char8_type = char8_t;
330#else
331enum char8_type : unsigned char {};
332#endif
333} // namespace detail
334
335#ifdef FMT_USE_INTERNAL
336namespace internal = detail; // DEPRECATED
337#endif
338
339/**
340 An implementation of ``std::basic_string_view`` for pre-C++17. It provides a
341 subset of the API. ``fmt::basic_string_view`` is used for format strings even
342 if ``std::string_view`` is available to prevent issues when a library is
343 compiled with a different ``-std`` option than the client code (which is not
344 recommended).
345 */
346template <typename Char> class basic_string_view {
347 private:
348 const Char* data_;
349 size_t size_;
350
351 public:
352 using value_type = Char;
353 using iterator = const Char*;
354
355 constexpr basic_string_view() FMT_NOEXCEPT : data_(nullptr), size_(0) {}
356
357 /** Constructs a string reference object from a C string and a size. */
358 constexpr basic_string_view(const Char* s, size_t count) FMT_NOEXCEPT
359 : data_(s),
360 size_(count) {}
361
362 /**
363 \rst
364 Constructs a string reference object from a C string computing
365 the size with ``std::char_traits<Char>::length``.
366 \endrst
367 */
368#if __cplusplus >= 201703L // C++17's char_traits::length() is constexpr.
369 FMT_CONSTEXPR
370#endif
371 basic_string_view(const Char* s)
372 : data_(s), size_(std::char_traits<Char>::length(s)) {}
373
374 /** Constructs a string reference from a ``std::basic_string`` object. */
375 template <typename Traits, typename Alloc>
376 FMT_CONSTEXPR basic_string_view(
377 const std::basic_string<Char, Traits, Alloc>& s) FMT_NOEXCEPT
378 : data_(s.data()),
379 size_(s.size()) {}
380
381 template <typename S, FMT_ENABLE_IF(std::is_same<
382 S, detail::std_string_view<Char>>::value)>
383 FMT_CONSTEXPR basic_string_view(S s) FMT_NOEXCEPT : data_(s.data()),
384 size_(s.size()) {}
385
386 /** Returns a pointer to the string data. */
387 constexpr const Char* data() const { return data_; }
388
389 /** Returns the string size. */
390 constexpr size_t size() const { return size_; }
391
392 constexpr iterator begin() const { return data_; }
393 constexpr iterator end() const { return data_ + size_; }
394
395 constexpr const Char& operator[](size_t pos) const { return data_[pos]; }
396
397 FMT_CONSTEXPR void remove_prefix(size_t n) {
398 data_ += n;
399 size_ -= n;
400 }
401
402 // Lexicographically compare this string reference to other.
403 int compare(basic_string_view other) const {
404 size_t str_size = size_ < other.size_ ? size_ : other.size_;
405 int result = std::char_traits<Char>::compare(data_, other.data_, str_size);
406 if (result == 0)
407 result = size_ == other.size_ ? 0 : (size_ < other.size_ ? -1 : 1);
408 return result;
409 }
410
411 friend bool operator==(basic_string_view lhs, basic_string_view rhs) {
412 return lhs.compare(rhs) == 0;
413 }
414 friend bool operator!=(basic_string_view lhs, basic_string_view rhs) {
415 return lhs.compare(rhs) != 0;
416 }
417 friend bool operator<(basic_string_view lhs, basic_string_view rhs) {
418 return lhs.compare(rhs) < 0;
419 }
420 friend bool operator<=(basic_string_view lhs, basic_string_view rhs) {
421 return lhs.compare(rhs) <= 0;
422 }
423 friend bool operator>(basic_string_view lhs, basic_string_view rhs) {
424 return lhs.compare(rhs) > 0;
425 }
426 friend bool operator>=(basic_string_view lhs, basic_string_view rhs) {
427 return lhs.compare(rhs) >= 0;
428 }
429};
430
431using string_view = basic_string_view<char>;
432using wstring_view = basic_string_view<wchar_t>;
433
434/** Specifies if ``T`` is a character type. Can be specialized by users. */
435template <typename T> struct is_char : std::false_type {};
436template <> struct is_char<char> : std::true_type {};
437template <> struct is_char<wchar_t> : std::true_type {};
438template <> struct is_char<detail::char8_type> : std::true_type {};
439template <> struct is_char<char16_t> : std::true_type {};
440template <> struct is_char<char32_t> : std::true_type {};
441
442/**
443 \rst
444 Returns a string view of `s`. In order to add custom string type support to
445 {fmt} provide an overload of `to_string_view` for it in the same namespace as
446 the type for the argument-dependent lookup to work.
447
448 **Example**::
449
450 namespace my_ns {
451 inline string_view to_string_view(const my_string& s) {
452 return {s.data(), s.length()};
453 }
454 }
455 std::string message = fmt::format(my_string("The answer is {}"), 42);
456 \endrst
457 */
458template <typename Char, FMT_ENABLE_IF(is_char<Char>::value)>
459inline basic_string_view<Char> to_string_view(const Char* s) {
460 return s;
461}
462
463template <typename Char, typename Traits, typename Alloc>
464inline basic_string_view<Char> to_string_view(
465 const std::basic_string<Char, Traits, Alloc>& s) {
466 return s;
467}
468
469template <typename Char>
470inline basic_string_view<Char> to_string_view(basic_string_view<Char> s) {
471 return s;
472}
473
474template <typename Char,
475 FMT_ENABLE_IF(!std::is_empty<detail::std_string_view<Char>>::value)>
476inline basic_string_view<Char> to_string_view(detail::std_string_view<Char> s) {
477 return s;
478}
479
480// A base class for compile-time strings. It is defined in the fmt namespace to
481// make formatting functions visible via ADL, e.g. format(FMT_STRING("{}"), 42).
482struct compile_string {};
483
484template <typename S>
485struct is_compile_string : std::is_base_of<compile_string, S> {};
486
487template <typename S, FMT_ENABLE_IF(is_compile_string<S>::value)>
488constexpr basic_string_view<typename S::char_type> to_string_view(const S& s) {
489 return s;
490}
491
492namespace detail {
493void to_string_view(...);
494using fmt::v7::to_string_view;
495
496// Specifies whether S is a string type convertible to fmt::basic_string_view.
497// It should be a constexpr function but MSVC 2017 fails to compile it in
498// enable_if and MSVC 2015 fails to compile it as an alias template.
499template <typename S>
500struct is_string : std::is_class<decltype(to_string_view(std::declval<S>()))> {
501};
502
503template <typename S, typename = void> struct char_t_impl {};
504template <typename S> struct char_t_impl<S, enable_if_t<is_string<S>::value>> {
505 using result = decltype(to_string_view(std::declval<S>()));
506 using type = typename result::value_type;
507};
508
509// Reports a compile-time error if S is not a valid format string.
510template <typename..., typename S, FMT_ENABLE_IF(!is_compile_string<S>::value)>
511FMT_INLINE void check_format_string(const S&) {
512#ifdef FMT_ENFORCE_COMPILE_STRING
513 static_assert(is_compile_string<S>::value,
514 "FMT_ENFORCE_COMPILE_STRING requires all format strings to use "
515 "FMT_STRING.");
516#endif
517}
518template <typename..., typename S, FMT_ENABLE_IF(is_compile_string<S>::value)>
519void check_format_string(S);
520
521struct error_handler {
522 constexpr error_handler() = default;
523 constexpr error_handler(const error_handler&) = default;
524
525 // This function is intentionally not constexpr to give a compile-time error.
526 FMT_NORETURN FMT_API void on_error(const char* message);
527};
528} // namespace detail
529
530/** String's character type. */
531template <typename S> using char_t = typename detail::char_t_impl<S>::type;
532
533/**
534 \rst
535 Parsing context consisting of a format string range being parsed and an
536 argument counter for automatic indexing.
537
538 You can use one of the following type aliases for common character types:
539
540 +-----------------------+-------------------------------------+
541 | Type | Definition |
542 +=======================+=====================================+
543 | format_parse_context | basic_format_parse_context<char> |
544 +-----------------------+-------------------------------------+
545 | wformat_parse_context | basic_format_parse_context<wchar_t> |
546 +-----------------------+-------------------------------------+
547 \endrst
548 */
549template <typename Char, typename ErrorHandler = detail::error_handler>
550class basic_format_parse_context : private ErrorHandler {
551 private:
552 basic_string_view<Char> format_str_;
553 int next_arg_id_;
554
555 public:
556 using char_type = Char;
557 using iterator = typename basic_string_view<Char>::iterator;
558
559 explicit constexpr basic_format_parse_context(
560 basic_string_view<Char> format_str, ErrorHandler eh = {})
561 : ErrorHandler(eh), format_str_(format_str), next_arg_id_(0) {}
562
563 /**
564 Returns an iterator to the beginning of the format string range being
565 parsed.
566 */
567 constexpr iterator begin() const FMT_NOEXCEPT { return format_str_.begin(); }
568
569 /**
570 Returns an iterator past the end of the format string range being parsed.
571 */
572 constexpr iterator end() const FMT_NOEXCEPT { return format_str_.end(); }
573
574 /** Advances the begin iterator to ``it``. */
575 FMT_CONSTEXPR void advance_to(iterator it) {
576 format_str_.remove_prefix(detail::to_unsigned(it - begin()));
577 }
578
579 /**
580 Reports an error if using the manual argument indexing; otherwise returns
581 the next argument index and switches to the automatic indexing.
582 */
583 FMT_CONSTEXPR int next_arg_id() {
584 // Don't check if the argument id is valid to avoid overhead and because it
585 // will be checked during formatting anyway.
586 if (next_arg_id_ >= 0) return next_arg_id_++;
587 on_error("cannot switch from manual to automatic argument indexing");
588 return 0;
589 }
590
591 /**
592 Reports an error if using the automatic argument indexing; otherwise
593 switches to the manual indexing.
594 */
595 FMT_CONSTEXPR void check_arg_id(int) {
596 if (next_arg_id_ > 0)
597 on_error("cannot switch from automatic to manual argument indexing");
598 else
599 next_arg_id_ = -1;
600 }
601
602 FMT_CONSTEXPR void check_arg_id(basic_string_view<Char>) {}
603
604 FMT_CONSTEXPR void on_error(const char* message) {
605 ErrorHandler::on_error(message);
606 }
607
608 constexpr ErrorHandler error_handler() const { return *this; }
609};
610
611using format_parse_context = basic_format_parse_context<char>;
612using wformat_parse_context = basic_format_parse_context<wchar_t>;
613
614template <typename Context> class basic_format_arg;
615template <typename Context> class basic_format_args;
616template <typename Context> class dynamic_format_arg_store;
617
618// A formatter for objects of type T.
619template <typename T, typename Char = char, typename Enable = void>
620struct formatter {
621 // A deleted default constructor indicates a disabled formatter.
622 formatter() = delete;
623};
624
625// Specifies if T has an enabled formatter specialization. A type can be
626// formattable even if it doesn't have a formatter e.g. via a conversion.
627template <typename T, typename Context>
628using has_formatter =
629 std::is_constructible<typename Context::template formatter_type<T>>;
630
631// Checks whether T is a container with contiguous storage.
632template <typename T> struct is_contiguous : std::false_type {};
633template <typename Char>
634struct is_contiguous<std::basic_string<Char>> : std::true_type {};
635
636namespace detail {
637
638// Extracts a reference to the container from back_insert_iterator.
639template <typename Container>
640inline Container& get_container(std::back_insert_iterator<Container> it) {
641 using bi_iterator = std::back_insert_iterator<Container>;
642 struct accessor : bi_iterator {
643 accessor(bi_iterator iter) : bi_iterator(iter) {}
644 using bi_iterator::container;
645 };
646 return *accessor(it).container;
647}
648
649/**
650 \rst
651 A contiguous memory buffer with an optional growing ability. It is an internal
652 class and shouldn't be used directly, only via `~fmt::basic_memory_buffer`.
653 \endrst
654 */
655template <typename T> class buffer {
656 private:
657 T* ptr_;
658 size_t size_;
659 size_t capacity_;
660
661 protected:
662 // Don't initialize ptr_ since it is not accessed to save a few cycles.
663 FMT_SUPPRESS_MSC_WARNING(26495)
664 buffer(size_t sz) FMT_NOEXCEPT : size_(sz), capacity_(sz) {}
665
666 buffer(T* p = nullptr, size_t sz = 0, size_t cap = 0) FMT_NOEXCEPT
667 : ptr_(p),
668 size_(sz),
669 capacity_(cap) {}
670
Jan Eilersba3ef182020-09-25 08:36:44 +0100671 virtual ~buffer() = default;
Jim Flynn05c342a2020-07-23 11:20:59 +0100672
673 /** Sets the buffer data and capacity. */
674 void set(T* buf_data, size_t buf_capacity) FMT_NOEXCEPT {
675 ptr_ = buf_data;
676 capacity_ = buf_capacity;
677 }
678
679 /** Increases the buffer capacity to hold at least *capacity* elements. */
680 virtual void grow(size_t capacity) = 0;
681
682 public:
683 using value_type = T;
684 using const_reference = const T&;
685
686 buffer(const buffer&) = delete;
687 void operator=(const buffer&) = delete;
688
689 T* begin() FMT_NOEXCEPT { return ptr_; }
690 T* end() FMT_NOEXCEPT { return ptr_ + size_; }
691
692 const T* begin() const FMT_NOEXCEPT { return ptr_; }
693 const T* end() const FMT_NOEXCEPT { return ptr_ + size_; }
694
695 /** Returns the size of this buffer. */
696 size_t size() const FMT_NOEXCEPT { return size_; }
697
698 /** Returns the capacity of this buffer. */
699 size_t capacity() const FMT_NOEXCEPT { return capacity_; }
700
701 /** Returns a pointer to the buffer data. */
702 T* data() FMT_NOEXCEPT { return ptr_; }
703
704 /** Returns a pointer to the buffer data. */
705 const T* data() const FMT_NOEXCEPT { return ptr_; }
706
707 /** Clears this buffer. */
708 void clear() { size_ = 0; }
709
710 // Tries resizing the buffer to contain *count* elements. If T is a POD type
711 // the new elements may not be initialized.
712 void try_resize(size_t count) {
713 try_reserve(count);
714 size_ = count <= capacity_ ? count : capacity_;
715 }
716
717 // Tries increasing the buffer capacity to *new_capacity*. It can increase the
718 // capacity by a smaller amount than requested but guarantees there is space
719 // for at least one additional element either by increasing the capacity or by
720 // flushing the buffer if it is full.
721 void try_reserve(size_t new_capacity) {
722 if (new_capacity > capacity_) grow(new_capacity);
723 }
724
725 void push_back(const T& value) {
726 try_reserve(size_ + 1);
727 ptr_[size_++] = value;
728 }
729
730 /** Appends data to the end of the buffer. */
731 template <typename U> void append(const U* begin, const U* end);
732
733 template <typename I> T& operator[](I index) { return ptr_[index]; }
734 template <typename I> const T& operator[](I index) const {
735 return ptr_[index];
736 }
737};
738
739// A buffer that writes to an output iterator when flushed.
740template <typename OutputIt, typename T>
741class iterator_buffer : public buffer<T> {
742 private:
743 enum { buffer_size = 256 };
744
745 OutputIt out_;
746 T data_[buffer_size];
747
748 protected:
749 void grow(size_t) final {
750 if (this->size() == buffer_size) flush();
751 }
752 void flush();
753
754 public:
755 explicit iterator_buffer(OutputIt out)
756 : buffer<T>(data_, 0, buffer_size), out_(out) {}
757 ~iterator_buffer() { flush(); }
758
759 OutputIt out() {
760 flush();
761 return out_;
762 }
763};
764
765template <typename T> class iterator_buffer<T*, T> : public buffer<T> {
766 protected:
767 void grow(size_t) final {}
768
769 public:
770 explicit iterator_buffer(T* out) : buffer<T>(out, 0, ~size_t()) {}
771
772 T* out() { return &*this->end(); }
773};
774
775// A buffer that writes to a container with the contiguous storage.
776template <typename Container>
777class iterator_buffer<std::back_insert_iterator<Container>,
778 enable_if_t<is_contiguous<Container>::value,
779 typename Container::value_type>>
780 : public buffer<typename Container::value_type> {
781 private:
782 Container& container_;
783
784 protected:
785 void grow(size_t capacity) FMT_OVERRIDE {
786 container_.resize(capacity);
787 this->set(&container_[0], capacity);
788 }
789
790 public:
791 explicit iterator_buffer(Container& c)
792 : buffer<typename Container::value_type>(c.size()), container_(c) {}
793 explicit iterator_buffer(std::back_insert_iterator<Container> out)
794 : iterator_buffer(get_container(out)) {}
795 std::back_insert_iterator<Container> out() {
796 return std::back_inserter(container_);
797 }
798};
799
800template <typename Container>
801using container_buffer = iterator_buffer<std::back_insert_iterator<Container>,
802 typename Container::value_type>;
803
804// An output iterator that appends to the buffer.
805// It is used to reduce symbol sizes for the common case.
806template <typename T>
807class buffer_appender : public std::back_insert_iterator<buffer<T>> {
808 public:
809 explicit buffer_appender(buffer<T>& buf)
810 : std::back_insert_iterator<buffer<T>>(buf) {}
811 buffer_appender(std::back_insert_iterator<buffer<T>> it)
812 : std::back_insert_iterator<buffer<T>>(it) {}
813};
814
815// Maps an output iterator into a buffer.
816template <typename T, typename OutputIt>
817iterator_buffer<OutputIt, T> get_buffer(OutputIt);
818template <typename T> buffer<T>& get_buffer(buffer_appender<T>);
819
820template <typename OutputIt> OutputIt get_buffer_init(OutputIt out) {
821 return out;
822}
823template <typename T> buffer<T>& get_buffer_init(buffer_appender<T> out) {
824 return get_container(out);
825}
826
827template <typename Buffer>
828auto get_iterator(Buffer& buf) -> decltype(buf.out()) {
829 return buf.out();
830}
831template <typename T> buffer_appender<T> get_iterator(buffer<T>& buf) {
832 return buffer_appender<T>(buf);
833}
834
835template <typename T, typename Char = char, typename Enable = void>
836struct fallback_formatter {
837 fallback_formatter() = delete;
838};
839
840// Specifies if T has an enabled fallback_formatter specialization.
841template <typename T, typename Context>
842using has_fallback_formatter =
843 std::is_constructible<fallback_formatter<T, typename Context::char_type>>;
844
845struct view {};
846
847template <typename Char, typename T> struct named_arg : view {
848 const Char* name;
849 const T& value;
850 named_arg(const Char* n, const T& v) : name(n), value(v) {}
851};
852
853template <typename Char> struct named_arg_info {
854 const Char* name;
855 int id;
856};
857
858template <typename T, typename Char, size_t NUM_ARGS, size_t NUM_NAMED_ARGS>
859struct arg_data {
860 // args_[0].named_args points to named_args_ to avoid bloating format_args.
861 T args_[1 + (NUM_ARGS != 0 ? NUM_ARGS : 1)];
862 named_arg_info<Char> named_args_[NUM_NAMED_ARGS];
863
864 template <typename... U>
865 arg_data(const U&... init) : args_{T(named_args_, NUM_NAMED_ARGS), init...} {}
866 arg_data(const arg_data& other) = delete;
867 const T* args() const { return args_ + 1; }
868 named_arg_info<Char>* named_args() { return named_args_; }
869};
870
871template <typename T, typename Char, size_t NUM_ARGS>
872struct arg_data<T, Char, NUM_ARGS, 0> {
873 T args_[NUM_ARGS != 0 ? NUM_ARGS : 1];
874
875 template <typename... U>
876 FMT_INLINE arg_data(const U&... init) : args_{init...} {}
877 FMT_INLINE const T* args() const { return args_; }
878 FMT_INLINE std::nullptr_t named_args() { return nullptr; }
879};
880
881template <typename Char>
882inline void init_named_args(named_arg_info<Char>*, int, int) {}
883
884template <typename Char, typename T, typename... Tail>
885void init_named_args(named_arg_info<Char>* named_args, int arg_count,
886 int named_arg_count, const T&, const Tail&... args) {
887 init_named_args(named_args, arg_count + 1, named_arg_count, args...);
888}
889
890template <typename Char, typename T, typename... Tail>
891void init_named_args(named_arg_info<Char>* named_args, int arg_count,
892 int named_arg_count, const named_arg<Char, T>& arg,
893 const Tail&... args) {
894 named_args[named_arg_count++] = {arg.name, arg_count};
895 init_named_args(named_args, arg_count + 1, named_arg_count, args...);
896}
897
898template <typename... Args>
899FMT_INLINE void init_named_args(std::nullptr_t, int, int, const Args&...) {}
900
901template <typename T> struct is_named_arg : std::false_type {};
902
903template <typename T, typename Char>
904struct is_named_arg<named_arg<Char, T>> : std::true_type {};
905
906template <bool B = false> constexpr size_t count() { return B ? 1 : 0; }
907template <bool B1, bool B2, bool... Tail> constexpr size_t count() {
908 return (B1 ? 1 : 0) + count<B2, Tail...>();
909}
910
911template <typename... Args> constexpr size_t count_named_args() {
912 return count<is_named_arg<Args>::value...>();
913}
914
915enum class type {
916 none_type,
917 // Integer types should go first,
918 int_type,
919 uint_type,
920 long_long_type,
921 ulong_long_type,
922 int128_type,
923 uint128_type,
924 bool_type,
925 char_type,
926 last_integer_type = char_type,
927 // followed by floating-point types.
928 float_type,
929 double_type,
930 long_double_type,
931 last_numeric_type = long_double_type,
932 cstring_type,
933 string_type,
934 pointer_type,
935 custom_type
936};
937
938// Maps core type T to the corresponding type enum constant.
939template <typename T, typename Char>
940struct type_constant : std::integral_constant<type, type::custom_type> {};
941
942#define FMT_TYPE_CONSTANT(Type, constant) \
943 template <typename Char> \
944 struct type_constant<Type, Char> \
945 : std::integral_constant<type, type::constant> {}
946
947FMT_TYPE_CONSTANT(int, int_type);
948FMT_TYPE_CONSTANT(unsigned, uint_type);
949FMT_TYPE_CONSTANT(long long, long_long_type);
950FMT_TYPE_CONSTANT(unsigned long long, ulong_long_type);
951FMT_TYPE_CONSTANT(int128_t, int128_type);
952FMT_TYPE_CONSTANT(uint128_t, uint128_type);
953FMT_TYPE_CONSTANT(bool, bool_type);
954FMT_TYPE_CONSTANT(Char, char_type);
955FMT_TYPE_CONSTANT(float, float_type);
956FMT_TYPE_CONSTANT(double, double_type);
957FMT_TYPE_CONSTANT(long double, long_double_type);
958FMT_TYPE_CONSTANT(const Char*, cstring_type);
959FMT_TYPE_CONSTANT(basic_string_view<Char>, string_type);
960FMT_TYPE_CONSTANT(const void*, pointer_type);
961
962constexpr bool is_integral_type(type t) {
963 return t > type::none_type && t <= type::last_integer_type;
964}
965
966constexpr bool is_arithmetic_type(type t) {
967 return t > type::none_type && t <= type::last_numeric_type;
968}
969
970template <typename Char> struct string_value {
971 const Char* data;
972 size_t size;
973};
974
975template <typename Char> struct named_arg_value {
976 const named_arg_info<Char>* data;
977 size_t size;
978};
979
980template <typename Context> struct custom_value {
981 using parse_context = typename Context::parse_context_type;
982 const void* value;
983 void (*format)(const void* arg, parse_context& parse_ctx, Context& ctx);
984};
985
986// A formatting argument value.
987template <typename Context> class value {
988 public:
989 using char_type = typename Context::char_type;
990
991 union {
992 int int_value;
993 unsigned uint_value;
994 long long long_long_value;
995 unsigned long long ulong_long_value;
996 int128_t int128_value;
997 uint128_t uint128_value;
998 bool bool_value;
999 char_type char_value;
1000 float float_value;
1001 double double_value;
1002 long double long_double_value;
1003 const void* pointer;
1004 string_value<char_type> string;
1005 custom_value<Context> custom;
1006 named_arg_value<char_type> named_args;
1007 };
1008
1009 constexpr FMT_INLINE value(int val = 0) : int_value(val) {}
1010 constexpr FMT_INLINE value(unsigned val) : uint_value(val) {}
1011 FMT_INLINE value(long long val) : long_long_value(val) {}
1012 FMT_INLINE value(unsigned long long val) : ulong_long_value(val) {}
1013 FMT_INLINE value(int128_t val) : int128_value(val) {}
1014 FMT_INLINE value(uint128_t val) : uint128_value(val) {}
1015 FMT_INLINE value(float val) : float_value(val) {}
1016 FMT_INLINE value(double val) : double_value(val) {}
1017 FMT_INLINE value(long double val) : long_double_value(val) {}
1018 FMT_INLINE value(bool val) : bool_value(val) {}
1019 FMT_INLINE value(char_type val) : char_value(val) {}
1020 FMT_INLINE value(const char_type* val) { string.data = val; }
1021 FMT_INLINE value(basic_string_view<char_type> val) {
1022 string.data = val.data();
1023 string.size = val.size();
1024 }
1025 FMT_INLINE value(const void* val) : pointer(val) {}
1026 FMT_INLINE value(const named_arg_info<char_type>* args, size_t size)
1027 : named_args{args, size} {}
1028
1029 template <typename T> FMT_INLINE value(const T& val) {
1030 custom.value = &val;
1031 // Get the formatter type through the context to allow different contexts
1032 // have different extension points, e.g. `formatter<T>` for `format` and
1033 // `printf_formatter<T>` for `printf`.
1034 custom.format = format_custom_arg<
1035 T, conditional_t<has_formatter<T, Context>::value,
1036 typename Context::template formatter_type<T>,
1037 fallback_formatter<T, char_type>>>;
1038 }
1039
1040 private:
1041 // Formats an argument of a custom type, such as a user-defined class.
1042 template <typename T, typename Formatter>
1043 static void format_custom_arg(const void* arg,
1044 typename Context::parse_context_type& parse_ctx,
1045 Context& ctx) {
1046 Formatter f;
1047 parse_ctx.advance_to(f.parse(parse_ctx));
1048 ctx.advance_to(f.format(*static_cast<const T*>(arg), ctx));
1049 }
1050};
1051
1052template <typename Context, typename T>
1053FMT_CONSTEXPR basic_format_arg<Context> make_arg(const T& value);
1054
1055// To minimize the number of types we need to deal with, long is translated
1056// either to int or to long long depending on its size.
1057enum { long_short = sizeof(long) == sizeof(int) };
1058using long_type = conditional_t<long_short, int, long long>;
1059using ulong_type = conditional_t<long_short, unsigned, unsigned long long>;
1060
1061struct unformattable {};
1062
1063// Maps formatting arguments to core types.
1064template <typename Context> struct arg_mapper {
1065 using char_type = typename Context::char_type;
1066
1067 FMT_CONSTEXPR int map(signed char val) { return val; }
1068 FMT_CONSTEXPR unsigned map(unsigned char val) { return val; }
1069 FMT_CONSTEXPR int map(short val) { return val; }
1070 FMT_CONSTEXPR unsigned map(unsigned short val) { return val; }
1071 FMT_CONSTEXPR int map(int val) { return val; }
1072 FMT_CONSTEXPR unsigned map(unsigned val) { return val; }
1073 FMT_CONSTEXPR long_type map(long val) { return val; }
1074 FMT_CONSTEXPR ulong_type map(unsigned long val) { return val; }
1075 FMT_CONSTEXPR long long map(long long val) { return val; }
1076 FMT_CONSTEXPR unsigned long long map(unsigned long long val) { return val; }
1077 FMT_CONSTEXPR int128_t map(int128_t val) { return val; }
1078 FMT_CONSTEXPR uint128_t map(uint128_t val) { return val; }
1079 FMT_CONSTEXPR bool map(bool val) { return val; }
1080
1081 template <typename T, FMT_ENABLE_IF(is_char<T>::value)>
1082 FMT_CONSTEXPR char_type map(T val) {
1083 static_assert(
1084 std::is_same<T, char>::value || std::is_same<T, char_type>::value,
1085 "mixing character types is disallowed");
1086 return val;
1087 }
1088
1089 FMT_CONSTEXPR float map(float val) { return val; }
1090 FMT_CONSTEXPR double map(double val) { return val; }
1091 FMT_CONSTEXPR long double map(long double val) { return val; }
1092
1093 FMT_CONSTEXPR const char_type* map(char_type* val) { return val; }
1094 FMT_CONSTEXPR const char_type* map(const char_type* val) { return val; }
1095 template <typename T, FMT_ENABLE_IF(is_string<T>::value)>
1096 FMT_CONSTEXPR basic_string_view<char_type> map(const T& val) {
1097 static_assert(std::is_same<char_type, char_t<T>>::value,
1098 "mixing character types is disallowed");
1099 return to_string_view(val);
1100 }
1101 template <typename T,
1102 FMT_ENABLE_IF(
1103 std::is_constructible<basic_string_view<char_type>, T>::value &&
1104 !is_string<T>::value && !has_formatter<T, Context>::value &&
1105 !has_fallback_formatter<T, Context>::value)>
1106 FMT_CONSTEXPR basic_string_view<char_type> map(const T& val) {
1107 return basic_string_view<char_type>(val);
1108 }
1109 template <
1110 typename T,
1111 FMT_ENABLE_IF(
1112 std::is_constructible<std_string_view<char_type>, T>::value &&
1113 !std::is_constructible<basic_string_view<char_type>, T>::value &&
1114 !is_string<T>::value && !has_formatter<T, Context>::value &&
1115 !has_fallback_formatter<T, Context>::value)>
1116 FMT_CONSTEXPR basic_string_view<char_type> map(const T& val) {
1117 return std_string_view<char_type>(val);
1118 }
1119 FMT_CONSTEXPR const char* map(const signed char* val) {
1120 static_assert(std::is_same<char_type, char>::value, "invalid string type");
1121 return reinterpret_cast<const char*>(val);
1122 }
1123 FMT_CONSTEXPR const char* map(const unsigned char* val) {
1124 static_assert(std::is_same<char_type, char>::value, "invalid string type");
1125 return reinterpret_cast<const char*>(val);
1126 }
1127 FMT_CONSTEXPR const char* map(signed char* val) {
1128 const auto* const_val = val;
1129 return map(const_val);
1130 }
1131 FMT_CONSTEXPR const char* map(unsigned char* val) {
1132 const auto* const_val = val;
1133 return map(const_val);
1134 }
1135
1136 FMT_CONSTEXPR const void* map(void* val) { return val; }
1137 FMT_CONSTEXPR const void* map(const void* val) { return val; }
1138 FMT_CONSTEXPR const void* map(std::nullptr_t val) { return val; }
1139 template <typename T> FMT_CONSTEXPR int map(const T*) {
1140 // Formatting of arbitrary pointers is disallowed. If you want to output
1141 // a pointer cast it to "void *" or "const void *". In particular, this
1142 // forbids formatting of "[const] volatile char *" which is printed as bool
1143 // by iostreams.
1144 static_assert(!sizeof(T), "formatting of non-void pointers is disallowed");
1145 return 0;
1146 }
1147
1148 template <typename T,
1149 FMT_ENABLE_IF(std::is_enum<T>::value &&
1150 !has_formatter<T, Context>::value &&
1151 !has_fallback_formatter<T, Context>::value)>
1152 FMT_CONSTEXPR auto map(const T& val)
1153 -> decltype(std::declval<arg_mapper>().map(
1154 static_cast<typename std::underlying_type<T>::type>(val))) {
1155 return map(static_cast<typename std::underlying_type<T>::type>(val));
1156 }
1157 template <typename T,
1158 FMT_ENABLE_IF(!is_string<T>::value && !is_char<T>::value &&
1159 (has_formatter<T, Context>::value ||
1160 has_fallback_formatter<T, Context>::value))>
1161 FMT_CONSTEXPR const T& map(const T& val) {
1162 return val;
1163 }
1164
1165 template <typename T>
1166 FMT_CONSTEXPR auto map(const named_arg<char_type, T>& val)
1167 -> decltype(std::declval<arg_mapper>().map(val.value)) {
1168 return map(val.value);
1169 }
1170
1171 unformattable map(...) { return {}; }
1172};
1173
1174// A type constant after applying arg_mapper<Context>.
1175template <typename T, typename Context>
1176using mapped_type_constant =
1177 type_constant<decltype(arg_mapper<Context>().map(std::declval<const T&>())),
1178 typename Context::char_type>;
1179
1180enum { packed_arg_bits = 4 };
1181// Maximum number of arguments with packed types.
1182enum { max_packed_args = 62 / packed_arg_bits };
1183enum : unsigned long long { is_unpacked_bit = 1ULL << 63 };
1184enum : unsigned long long { has_named_args_bit = 1ULL << 62 };
1185} // namespace detail
1186
1187// A formatting argument. It is a trivially copyable/constructible type to
1188// allow storage in basic_memory_buffer.
1189template <typename Context> class basic_format_arg {
1190 private:
1191 detail::value<Context> value_;
1192 detail::type type_;
1193
1194 template <typename ContextType, typename T>
1195 friend FMT_CONSTEXPR basic_format_arg<ContextType> detail::make_arg(
1196 const T& value);
1197
1198 template <typename Visitor, typename Ctx>
1199 friend FMT_CONSTEXPR auto visit_format_arg(Visitor&& vis,
1200 const basic_format_arg<Ctx>& arg)
1201 -> decltype(vis(0));
1202
1203 friend class basic_format_args<Context>;
1204 friend class dynamic_format_arg_store<Context>;
1205
1206 using char_type = typename Context::char_type;
1207
1208 template <typename T, typename Char, size_t NUM_ARGS, size_t NUM_NAMED_ARGS>
1209 friend struct detail::arg_data;
1210
1211 basic_format_arg(const detail::named_arg_info<char_type>* args, size_t size)
1212 : value_(args, size) {}
1213
1214 public:
1215 class handle {
1216 public:
1217 explicit handle(detail::custom_value<Context> custom) : custom_(custom) {}
1218
1219 void format(typename Context::parse_context_type& parse_ctx,
1220 Context& ctx) const {
1221 custom_.format(custom_.value, parse_ctx, ctx);
1222 }
1223
1224 private:
1225 detail::custom_value<Context> custom_;
1226 };
1227
1228 constexpr basic_format_arg() : type_(detail::type::none_type) {}
1229
1230 constexpr explicit operator bool() const FMT_NOEXCEPT {
1231 return type_ != detail::type::none_type;
1232 }
1233
1234 detail::type type() const { return type_; }
1235
1236 bool is_integral() const { return detail::is_integral_type(type_); }
1237 bool is_arithmetic() const { return detail::is_arithmetic_type(type_); }
1238};
1239
1240/**
1241 \rst
1242 Visits an argument dispatching to the appropriate visit method based on
1243 the argument type. For example, if the argument type is ``double`` then
1244 ``vis(value)`` will be called with the value of type ``double``.
1245 \endrst
1246 */
1247template <typename Visitor, typename Context>
1248FMT_CONSTEXPR_DECL FMT_INLINE auto visit_format_arg(
1249 Visitor&& vis, const basic_format_arg<Context>& arg) -> decltype(vis(0)) {
1250 using char_type = typename Context::char_type;
1251 switch (arg.type_) {
1252 case detail::type::none_type:
1253 break;
1254 case detail::type::int_type:
1255 return vis(arg.value_.int_value);
1256 case detail::type::uint_type:
1257 return vis(arg.value_.uint_value);
1258 case detail::type::long_long_type:
1259 return vis(arg.value_.long_long_value);
1260 case detail::type::ulong_long_type:
1261 return vis(arg.value_.ulong_long_value);
1262#if FMT_USE_INT128
1263 case detail::type::int128_type:
1264 return vis(arg.value_.int128_value);
1265 case detail::type::uint128_type:
1266 return vis(arg.value_.uint128_value);
1267#else
1268 case detail::type::int128_type:
1269 case detail::type::uint128_type:
1270 break;
1271#endif
1272 case detail::type::bool_type:
1273 return vis(arg.value_.bool_value);
1274 case detail::type::char_type:
1275 return vis(arg.value_.char_value);
1276 case detail::type::float_type:
1277 return vis(arg.value_.float_value);
1278 case detail::type::double_type:
1279 return vis(arg.value_.double_value);
1280 case detail::type::long_double_type:
1281 return vis(arg.value_.long_double_value);
1282 case detail::type::cstring_type:
1283 return vis(arg.value_.string.data);
1284 case detail::type::string_type:
1285 return vis(basic_string_view<char_type>(arg.value_.string.data,
1286 arg.value_.string.size));
1287 case detail::type::pointer_type:
1288 return vis(arg.value_.pointer);
1289 case detail::type::custom_type:
1290 return vis(typename basic_format_arg<Context>::handle(arg.value_.custom));
1291 }
1292 return vis(monostate());
1293}
1294
1295template <typename T> struct formattable : std::false_type {};
1296
1297namespace detail {
1298
1299// A workaround for gcc 4.8 to make void_t work in a SFINAE context.
1300template <typename... Ts> struct void_t_impl { using type = void; };
1301
1302template <typename... Ts>
1303using void_t = typename detail::void_t_impl<Ts...>::type;
1304
1305// Detect the iterator category of *any* given type in a SFINAE-friendly way.
1306// Unfortunately, older implementations of std::iterator_traits are not safe
1307// for use in a SFINAE-context.
1308template <typename It, typename Enable = void>
1309struct iterator_category : std::false_type {};
1310
1311template <typename T> struct iterator_category<T*> {
1312 using type = std::random_access_iterator_tag;
1313};
1314
1315template <typename It>
1316struct iterator_category<It, void_t<typename It::iterator_category>> {
1317 using type = typename It::iterator_category;
1318};
1319
1320// Detect if *any* given type models the OutputIterator concept.
1321template <typename It> class is_output_iterator {
1322 // Check for mutability because all iterator categories derived from
1323 // std::input_iterator_tag *may* also meet the requirements of an
1324 // OutputIterator, thereby falling into the category of 'mutable iterators'
1325 // [iterator.requirements.general] clause 4. The compiler reveals this
1326 // property only at the point of *actually dereferencing* the iterator!
1327 template <typename U>
1328 static decltype(*(std::declval<U>())) test(std::input_iterator_tag);
1329 template <typename U> static char& test(std::output_iterator_tag);
1330 template <typename U> static const char& test(...);
1331
1332 using type = decltype(test<It>(typename iterator_category<It>::type{}));
1333
1334 public:
1335 enum { value = !std::is_const<remove_reference_t<type>>::value };
1336};
1337
1338template <typename OutputIt>
1339struct is_back_insert_iterator : std::false_type {};
1340template <typename Container>
1341struct is_back_insert_iterator<std::back_insert_iterator<Container>>
1342 : std::true_type {};
1343
1344template <typename OutputIt>
1345struct is_contiguous_back_insert_iterator : std::false_type {};
1346template <typename Container>
1347struct is_contiguous_back_insert_iterator<std::back_insert_iterator<Container>>
1348 : is_contiguous<Container> {};
1349template <typename Char>
1350struct is_contiguous_back_insert_iterator<buffer_appender<Char>>
1351 : std::true_type {};
1352
1353// A type-erased reference to an std::locale to avoid heavy <locale> include.
1354class locale_ref {
1355 private:
1356 const void* locale_; // A type-erased pointer to std::locale.
1357
1358 public:
1359 locale_ref() : locale_(nullptr) {}
1360 template <typename Locale> explicit locale_ref(const Locale& loc);
1361
1362 explicit operator bool() const FMT_NOEXCEPT { return locale_ != nullptr; }
1363
1364 template <typename Locale> Locale get() const;
1365};
1366
1367template <typename> constexpr unsigned long long encode_types() { return 0; }
1368
1369template <typename Context, typename Arg, typename... Args>
1370constexpr unsigned long long encode_types() {
1371 return static_cast<unsigned>(mapped_type_constant<Arg, Context>::value) |
1372 (encode_types<Context, Args...>() << packed_arg_bits);
1373}
1374
1375template <typename Context, typename T>
1376FMT_CONSTEXPR basic_format_arg<Context> make_arg(const T& value) {
1377 basic_format_arg<Context> arg;
1378 arg.type_ = mapped_type_constant<T, Context>::value;
1379 arg.value_ = arg_mapper<Context>().map(value);
1380 return arg;
1381}
1382
1383template <typename T> int check(unformattable) {
1384 static_assert(
1385 formattable<T>(),
1386 "Cannot format an argument. To make type T formattable provide a "
1387 "formatter<T> specialization: https://fmt.dev/dev/api.html#udt");
1388 return 0;
1389}
1390template <typename T, typename U> inline const U& check(const U& val) {
1391 return val;
1392}
1393
1394// The type template parameter is there to avoid an ODR violation when using
1395// a fallback formatter in one translation unit and an implicit conversion in
1396// another (not recommended).
1397template <bool IS_PACKED, typename Context, type, typename T,
1398 FMT_ENABLE_IF(IS_PACKED)>
1399inline value<Context> make_arg(const T& val) {
1400 return check<T>(arg_mapper<Context>().map(val));
1401}
1402
1403template <bool IS_PACKED, typename Context, type, typename T,
1404 FMT_ENABLE_IF(!IS_PACKED)>
1405inline basic_format_arg<Context> make_arg(const T& value) {
1406 return make_arg<Context>(value);
1407}
1408
1409template <typename T> struct is_reference_wrapper : std::false_type {};
1410template <typename T>
1411struct is_reference_wrapper<std::reference_wrapper<T>> : std::true_type {};
1412
1413template <typename T> const T& unwrap(const T& v) { return v; }
1414template <typename T> const T& unwrap(const std::reference_wrapper<T>& v) {
1415 return static_cast<const T&>(v);
1416}
1417
1418class dynamic_arg_list {
1419 // Workaround for clang's -Wweak-vtables. Unlike for regular classes, for
1420 // templates it doesn't complain about inability to deduce single translation
1421 // unit for placing vtable. So storage_node_base is made a fake template.
1422 template <typename = void> struct node {
1423 virtual ~node() = default;
1424 std::unique_ptr<node<>> next;
1425 };
1426
1427 template <typename T> struct typed_node : node<> {
1428 T value;
1429
1430 template <typename Arg>
1431 FMT_CONSTEXPR typed_node(const Arg& arg) : value(arg) {}
1432
1433 template <typename Char>
1434 FMT_CONSTEXPR typed_node(const basic_string_view<Char>& arg)
1435 : value(arg.data(), arg.size()) {}
1436 };
1437
1438 std::unique_ptr<node<>> head_;
1439
1440 public:
1441 template <typename T, typename Arg> const T& push(const Arg& arg) {
1442 auto new_node = std::unique_ptr<typed_node<T>>(new typed_node<T>(arg));
1443 auto& value = new_node->value;
1444 new_node->next = std::move(head_);
1445 head_ = std::move(new_node);
1446 return value;
1447 }
1448};
1449} // namespace detail
1450
1451// Formatting context.
1452template <typename OutputIt, typename Char> class basic_format_context {
1453 public:
1454 /** The character type for the output. */
1455 using char_type = Char;
1456
1457 private:
1458 OutputIt out_;
1459 basic_format_args<basic_format_context> args_;
1460 detail::locale_ref loc_;
1461
1462 public:
1463 using iterator = OutputIt;
1464 using format_arg = basic_format_arg<basic_format_context>;
1465 using parse_context_type = basic_format_parse_context<Char>;
1466 template <typename T> using formatter_type = formatter<T, char_type>;
1467
1468 basic_format_context(const basic_format_context&) = delete;
1469 void operator=(const basic_format_context&) = delete;
1470 /**
1471 Constructs a ``basic_format_context`` object. References to the arguments are
1472 stored in the object so make sure they have appropriate lifetimes.
1473 */
1474 basic_format_context(OutputIt out,
1475 basic_format_args<basic_format_context> ctx_args,
1476 detail::locale_ref loc = detail::locale_ref())
1477 : out_(out), args_(ctx_args), loc_(loc) {}
1478
1479 format_arg arg(int id) const { return args_.get(id); }
1480 format_arg arg(basic_string_view<char_type> name) { return args_.get(name); }
1481 int arg_id(basic_string_view<char_type> name) { return args_.get_id(name); }
1482 const basic_format_args<basic_format_context>& args() const { return args_; }
1483
1484 detail::error_handler error_handler() { return {}; }
1485 void on_error(const char* message) { error_handler().on_error(message); }
1486
1487 // Returns an iterator to the beginning of the output range.
1488 iterator out() { return out_; }
1489
1490 // Advances the begin iterator to ``it``.
1491 void advance_to(iterator it) {
1492 if (!detail::is_back_insert_iterator<iterator>()) out_ = it;
1493 }
1494
1495 detail::locale_ref locale() { return loc_; }
1496};
1497
1498template <typename Char>
1499using buffer_context =
1500 basic_format_context<detail::buffer_appender<Char>, Char>;
1501using format_context = buffer_context<char>;
1502using wformat_context = buffer_context<wchar_t>;
1503
1504// Workaround an alias issue: https://stackoverflow.com/q/62767544/471164.
1505#define FMT_BUFFER_CONTEXT(Char) \
1506 basic_format_context<detail::buffer_appender<Char>, Char>
1507
1508/**
1509 \rst
1510 An array of references to arguments. It can be implicitly converted into
1511 `~fmt::basic_format_args` for passing into type-erased formatting functions
1512 such as `~fmt::vformat`.
1513 \endrst
1514 */
1515template <typename Context, typename... Args>
1516class format_arg_store
1517#if FMT_GCC_VERSION && FMT_GCC_VERSION < 409
1518 // Workaround a GCC template argument substitution bug.
1519 : public basic_format_args<Context>
1520#endif
1521{
1522 private:
1523 static const size_t num_args = sizeof...(Args);
1524 static const size_t num_named_args = detail::count_named_args<Args...>();
1525 static const bool is_packed = num_args <= detail::max_packed_args;
1526
1527 using value_type = conditional_t<is_packed, detail::value<Context>,
1528 basic_format_arg<Context>>;
1529
1530 detail::arg_data<value_type, typename Context::char_type, num_args,
1531 num_named_args>
1532 data_;
1533
1534 friend class basic_format_args<Context>;
1535
1536 static constexpr unsigned long long desc =
1537 (is_packed ? detail::encode_types<Context, Args...>()
1538 : detail::is_unpacked_bit | num_args) |
1539 (num_named_args != 0
1540 ? static_cast<unsigned long long>(detail::has_named_args_bit)
1541 : 0);
1542
1543 public:
1544 format_arg_store(const Args&... args)
1545 :
1546#if FMT_GCC_VERSION && FMT_GCC_VERSION < 409
1547 basic_format_args<Context>(*this),
1548#endif
1549 data_{detail::make_arg<
1550 is_packed, Context,
1551 detail::mapped_type_constant<Args, Context>::value>(args)...} {
1552 detail::init_named_args(data_.named_args(), 0, 0, args...);
1553 }
1554};
1555
1556/**
1557 \rst
1558 Constructs a `~fmt::format_arg_store` object that contains references to
1559 arguments and can be implicitly converted to `~fmt::format_args`. `Context`
1560 can be omitted in which case it defaults to `~fmt::context`.
1561 See `~fmt::arg` for lifetime considerations.
1562 \endrst
1563 */
1564template <typename Context = format_context, typename... Args>
1565inline format_arg_store<Context, Args...> make_format_args(
1566 const Args&... args) {
1567 return {args...};
1568}
1569
1570/**
1571 \rst
1572 Constructs a `~fmt::format_arg_store` object that contains references
1573 to arguments and can be implicitly converted to `~fmt::format_args`.
1574 If ``format_str`` is a compile-time string then `make_args_checked` checks
1575 its validity at compile time.
1576 \endrst
1577 */
1578template <typename... Args, typename S, typename Char = char_t<S>>
1579inline auto make_args_checked(const S& format_str,
1580 const remove_reference_t<Args>&... args)
1581 -> format_arg_store<buffer_context<Char>, remove_reference_t<Args>...> {
1582 static_assert(
1583 detail::count<(
1584 std::is_base_of<detail::view, remove_reference_t<Args>>::value &&
1585 std::is_reference<Args>::value)...>() == 0,
1586 "passing views as lvalues is disallowed");
1587 detail::check_format_string<Args...>(format_str);
1588 return {args...};
1589}
1590
1591/**
1592 \rst
1593 Returns a named argument to be used in a formatting function. It should only
1594 be used in a call to a formatting function.
1595
1596 **Example**::
1597
1598 fmt::print("Elapsed time: {s:.2f} seconds", fmt::arg("s", 1.23));
1599 \endrst
1600 */
1601template <typename Char, typename T>
1602inline detail::named_arg<Char, T> arg(const Char* name, const T& arg) {
1603 static_assert(!detail::is_named_arg<T>(), "nested named arguments");
1604 return {name, arg};
1605}
1606
1607/**
1608 \rst
1609 A dynamic version of `fmt::format_arg_store`.
1610 It's equipped with a storage to potentially temporary objects which lifetimes
1611 could be shorter than the format arguments object.
1612
1613 It can be implicitly converted into `~fmt::basic_format_args` for passing
1614 into type-erased formatting functions such as `~fmt::vformat`.
1615 \endrst
1616 */
1617template <typename Context>
1618class dynamic_format_arg_store
1619#if FMT_GCC_VERSION && FMT_GCC_VERSION < 409
1620 // Workaround a GCC template argument substitution bug.
1621 : public basic_format_args<Context>
1622#endif
1623{
1624 private:
1625 using char_type = typename Context::char_type;
1626
1627 template <typename T> struct need_copy {
1628 static constexpr detail::type mapped_type =
1629 detail::mapped_type_constant<T, Context>::value;
1630
1631 enum {
1632 value = !(detail::is_reference_wrapper<T>::value ||
1633 std::is_same<T, basic_string_view<char_type>>::value ||
1634 std::is_same<T, detail::std_string_view<char_type>>::value ||
1635 (mapped_type != detail::type::cstring_type &&
1636 mapped_type != detail::type::string_type &&
1637 mapped_type != detail::type::custom_type))
1638 };
1639 };
1640
1641 template <typename T>
1642 using stored_type = conditional_t<detail::is_string<T>::value,
1643 std::basic_string<char_type>, T>;
1644
1645 // Storage of basic_format_arg must be contiguous.
1646 std::vector<basic_format_arg<Context>> data_;
1647 std::vector<detail::named_arg_info<char_type>> named_info_;
1648
1649 // Storage of arguments not fitting into basic_format_arg must grow
1650 // without relocation because items in data_ refer to it.
1651 detail::dynamic_arg_list dynamic_args_;
1652
1653 friend class basic_format_args<Context>;
1654
1655 unsigned long long get_types() const {
1656 return detail::is_unpacked_bit | data_.size() |
1657 (named_info_.empty()
1658 ? 0ULL
1659 : static_cast<unsigned long long>(detail::has_named_args_bit));
1660 }
1661
1662 const basic_format_arg<Context>* data() const {
1663 return named_info_.empty() ? data_.data() : data_.data() + 1;
1664 }
1665
1666 template <typename T> void emplace_arg(const T& arg) {
1667 data_.emplace_back(detail::make_arg<Context>(arg));
1668 }
1669
1670 template <typename T>
1671 void emplace_arg(const detail::named_arg<char_type, T>& arg) {
1672 if (named_info_.empty()) {
1673 constexpr const detail::named_arg_info<char_type>* zero_ptr{nullptr};
1674 data_.insert(data_.begin(), {zero_ptr, 0});
1675 }
1676 data_.emplace_back(detail::make_arg<Context>(detail::unwrap(arg.value)));
1677 auto pop_one = [](std::vector<basic_format_arg<Context>>* data) {
1678 data->pop_back();
1679 };
1680 std::unique_ptr<std::vector<basic_format_arg<Context>>, decltype(pop_one)>
1681 guard{&data_, pop_one};
1682 named_info_.push_back({arg.name, static_cast<int>(data_.size() - 2u)});
1683 data_[0].value_.named_args = {named_info_.data(), named_info_.size()};
1684 guard.release();
1685 }
1686
1687 public:
1688 /**
1689 \rst
1690 Adds an argument into the dynamic store for later passing to a formatting
1691 function.
1692
1693 Note that custom types and string types (but not string views) are copied
1694 into the store dynamically allocating memory if necessary.
1695
1696 **Example**::
1697
1698 fmt::dynamic_format_arg_store<fmt::format_context> store;
1699 store.push_back(42);
1700 store.push_back("abc");
1701 store.push_back(1.5f);
1702 std::string result = fmt::vformat("{} and {} and {}", store);
1703 \endrst
1704 */
1705 template <typename T> void push_back(const T& arg) {
1706 if (detail::const_check(need_copy<T>::value))
1707 emplace_arg(dynamic_args_.push<stored_type<T>>(arg));
1708 else
1709 emplace_arg(detail::unwrap(arg));
1710 }
1711
1712 /**
1713 \rst
1714 Adds a reference to the argument into the dynamic store for later passing to
1715 a formatting function. Supports named arguments wrapped in
1716 ``std::reference_wrapper`` via ``std::ref()``/``std::cref()``.
1717
1718 **Example**::
1719
1720 fmt::dynamic_format_arg_store<fmt::format_context> store;
1721 char str[] = "1234567890";
1722 store.push_back(std::cref(str));
1723 int a1_val{42};
1724 auto a1 = fmt::arg("a1_", a1_val);
1725 store.push_back(std::cref(a1));
1726
1727 // Changing str affects the output but only for string and custom types.
1728 str[0] = 'X';
1729
1730 std::string result = fmt::vformat("{} and {a1_}");
1731 assert(result == "X234567890 and 42");
1732 \endrst
1733 */
1734 template <typename T> void push_back(std::reference_wrapper<T> arg) {
1735 static_assert(
1736 detail::is_named_arg<typename std::remove_cv<T>::type>::value ||
1737 need_copy<T>::value,
1738 "objects of built-in types and string views are always copied");
1739 emplace_arg(arg.get());
1740 }
1741
1742 /**
1743 Adds named argument into the dynamic store for later passing to a formatting
1744 function. ``std::reference_wrapper`` is supported to avoid copying of the
1745 argument.
1746 */
1747 template <typename T>
1748 void push_back(const detail::named_arg<char_type, T>& arg) {
1749 const char_type* arg_name =
1750 dynamic_args_.push<std::basic_string<char_type>>(arg.name).c_str();
1751 if (detail::const_check(need_copy<T>::value)) {
1752 emplace_arg(
1753 fmt::arg(arg_name, dynamic_args_.push<stored_type<T>>(arg.value)));
1754 } else {
1755 emplace_arg(fmt::arg(arg_name, arg.value));
1756 }
1757 }
1758
1759 /** Erase all elements from the store */
1760 void clear() {
1761 data_.clear();
1762 named_info_.clear();
1763 dynamic_args_ = detail::dynamic_arg_list();
1764 }
1765
1766 /**
1767 \rst
1768 Reserves space to store at least *new_cap* arguments including
1769 *new_cap_named* named arguments.
1770 \endrst
1771 */
1772 void reserve(size_t new_cap, size_t new_cap_named) {
1773 FMT_ASSERT(new_cap >= new_cap_named,
1774 "Set of arguments includes set of named arguments");
1775 data_.reserve(new_cap);
1776 named_info_.reserve(new_cap_named);
1777 }
1778};
1779
1780/**
1781 \rst
1782 A view of a collection of formatting arguments. To avoid lifetime issues it
1783 should only be used as a parameter type in type-erased functions such as
1784 ``vformat``::
1785
1786 void vlog(string_view format_str, format_args args); // OK
1787 format_args args = make_format_args(42); // Error: dangling reference
1788 \endrst
1789 */
1790template <typename Context> class basic_format_args {
1791 public:
1792 using size_type = int;
1793 using format_arg = basic_format_arg<Context>;
1794
1795 private:
1796 // A descriptor that contains information about formatting arguments.
1797 // If the number of arguments is less or equal to max_packed_args then
1798 // argument types are passed in the descriptor. This reduces binary code size
1799 // per formatting function call.
1800 unsigned long long desc_;
1801 union {
1802 // If is_packed() returns true then argument values are stored in values_;
1803 // otherwise they are stored in args_. This is done to improve cache
1804 // locality and reduce compiled code size since storing larger objects
1805 // may require more code (at least on x86-64) even if the same amount of
1806 // data is actually copied to stack. It saves ~10% on the bloat test.
1807 const detail::value<Context>* values_;
1808 const format_arg* args_;
1809 };
1810
1811 bool is_packed() const { return (desc_ & detail::is_unpacked_bit) == 0; }
1812 bool has_named_args() const {
1813 return (desc_ & detail::has_named_args_bit) != 0;
1814 }
1815
1816 detail::type type(int index) const {
1817 int shift = index * detail::packed_arg_bits;
1818 unsigned int mask = (1 << detail::packed_arg_bits) - 1;
1819 return static_cast<detail::type>((desc_ >> shift) & mask);
1820 }
1821
1822 basic_format_args(unsigned long long desc,
1823 const detail::value<Context>* values)
1824 : desc_(desc), values_(values) {}
1825 basic_format_args(unsigned long long desc, const format_arg* args)
1826 : desc_(desc), args_(args) {}
1827
1828 public:
1829 basic_format_args() : desc_(0) {}
1830
1831 /**
1832 \rst
1833 Constructs a `basic_format_args` object from `~fmt::format_arg_store`.
1834 \endrst
1835 */
1836 template <typename... Args>
1837 FMT_INLINE basic_format_args(const format_arg_store<Context, Args...>& store)
1838 : basic_format_args(store.desc, store.data_.args()) {}
1839
1840 /**
1841 \rst
1842 Constructs a `basic_format_args` object from
1843 `~fmt::dynamic_format_arg_store`.
1844 \endrst
1845 */
1846 FMT_INLINE basic_format_args(const dynamic_format_arg_store<Context>& store)
1847 : basic_format_args(store.get_types(), store.data()) {}
1848
1849 /**
1850 \rst
1851 Constructs a `basic_format_args` object from a dynamic set of arguments.
1852 \endrst
1853 */
1854 basic_format_args(const format_arg* args, int count)
1855 : basic_format_args(detail::is_unpacked_bit | detail::to_unsigned(count),
1856 args) {}
1857
1858 /** Returns the argument with the specified id. */
1859 format_arg get(int id) const {
1860 format_arg arg;
1861 if (!is_packed()) {
1862 if (id < max_size()) arg = args_[id];
1863 return arg;
1864 }
1865 if (id >= detail::max_packed_args) return arg;
1866 arg.type_ = type(id);
1867 if (arg.type_ == detail::type::none_type) return arg;
1868 arg.value_ = values_[id];
1869 return arg;
1870 }
1871
1872 template <typename Char> format_arg get(basic_string_view<Char> name) const {
1873 int id = get_id(name);
1874 return id >= 0 ? get(id) : format_arg();
1875 }
1876
1877 template <typename Char> int get_id(basic_string_view<Char> name) const {
1878 if (!has_named_args()) return {};
1879 const auto& named_args =
1880 (is_packed() ? values_[-1] : args_[-1].value_).named_args;
1881 for (size_t i = 0; i < named_args.size; ++i) {
1882 if (named_args.data[i].name == name) return named_args.data[i].id;
1883 }
1884 return -1;
1885 }
1886
1887 int max_size() const {
1888 unsigned long long max_packed = detail::max_packed_args;
1889 return static_cast<int>(is_packed() ? max_packed
1890 : desc_ & ~detail::is_unpacked_bit);
1891 }
1892};
1893
1894/** An alias to ``basic_format_args<context>``. */
1895// It is a separate type rather than an alias to make symbols readable.
1896struct format_args : basic_format_args<format_context> {
1897 template <typename... Args>
1898 FMT_INLINE format_args(const Args&... args) : basic_format_args(args...) {}
1899};
1900struct wformat_args : basic_format_args<wformat_context> {
1901 using basic_format_args::basic_format_args;
1902};
1903
1904namespace detail {
1905
1906template <typename Char, FMT_ENABLE_IF(!std::is_same<Char, char>::value)>
1907std::basic_string<Char> vformat(
1908 basic_string_view<Char> format_str,
1909 basic_format_args<buffer_context<type_identity_t<Char>>> args);
1910
1911FMT_API std::string vformat(string_view format_str, format_args args);
1912
1913template <typename Char>
1914buffer_appender<Char> vformat_to(
1915 buffer<Char>& buf, basic_string_view<Char> format_str,
1916 basic_format_args<FMT_BUFFER_CONTEXT(type_identity_t<Char>)> args);
1917
1918template <typename Char, typename Args,
1919 FMT_ENABLE_IF(!std::is_same<Char, char>::value)>
1920inline void vprint_mojibake(std::FILE*, basic_string_view<Char>, const Args&) {}
1921
1922FMT_API void vprint_mojibake(std::FILE*, string_view, format_args);
1923#ifndef _WIN32
1924inline void vprint_mojibake(std::FILE*, string_view, format_args) {}
1925#endif
1926} // namespace detail
1927
1928/** Formats a string and writes the output to ``out``. */
1929// GCC 8 and earlier cannot handle std::back_insert_iterator<Container> with
1930// vformat_to<ArgFormatter>(...) overload, so SFINAE on iterator type instead.
1931template <typename OutputIt, typename S, typename Char = char_t<S>,
1932 FMT_ENABLE_IF(detail::is_output_iterator<OutputIt>::value)>
1933OutputIt vformat_to(
1934 OutputIt out, const S& format_str,
1935 basic_format_args<buffer_context<type_identity_t<Char>>> args) {
1936 decltype(detail::get_buffer<Char>(out)) buf(detail::get_buffer_init(out));
1937 detail::vformat_to(buf, to_string_view(format_str), args);
1938 return detail::get_iterator(buf);
1939}
1940
1941/**
1942 \rst
1943 Formats arguments, writes the result to the output iterator ``out`` and returns
1944 the iterator past the end of the output range.
1945
1946 **Example**::
1947
1948 std::vector<char> out;
1949 fmt::format_to(std::back_inserter(out), "{}", 42);
1950 \endrst
1951 */
1952template <typename OutputIt, typename S, typename... Args,
1953 FMT_ENABLE_IF(detail::is_output_iterator<OutputIt>::value&&
1954 detail::is_string<S>::value)>
1955inline OutputIt format_to(OutputIt out, const S& format_str, Args&&... args) {
1956 const auto& vargs = fmt::make_args_checked<Args...>(format_str, args...);
1957 return vformat_to(out, to_string_view(format_str), vargs);
1958}
1959
1960template <typename S, typename Char = char_t<S>>
1961FMT_INLINE std::basic_string<Char> vformat(
1962 const S& format_str,
1963 basic_format_args<buffer_context<type_identity_t<Char>>> args) {
1964 return detail::vformat(to_string_view(format_str), args);
1965}
1966
1967/**
1968 \rst
1969 Formats arguments and returns the result as a string.
1970
1971 **Example**::
1972
1973 #include <fmt/core.h>
1974 std::string message = fmt::format("The answer is {}", 42);
1975 \endrst
1976*/
1977// Pass char_t as a default template parameter instead of using
1978// std::basic_string<char_t<S>> to reduce the symbol size.
1979template <typename S, typename... Args, typename Char = char_t<S>>
1980FMT_INLINE std::basic_string<Char> format(const S& format_str, Args&&... args) {
1981 const auto& vargs = fmt::make_args_checked<Args...>(format_str, args...);
1982 return detail::vformat(to_string_view(format_str), vargs);
1983}
1984
1985FMT_API void vprint(string_view, format_args);
1986FMT_API void vprint(std::FILE*, string_view, format_args);
1987
1988/**
1989 \rst
1990 Formats ``args`` according to specifications in ``format_str`` and writes the
1991 output to the file ``f``. Strings are assumed to be Unicode-encoded unless the
1992 ``FMT_UNICODE`` macro is set to 0.
1993
1994 **Example**::
1995
1996 fmt::print(stderr, "Don't {}!", "panic");
1997 \endrst
1998 */
1999template <typename S, typename... Args, typename Char = char_t<S>>
2000inline void print(std::FILE* f, const S& format_str, Args&&... args) {
2001 const auto& vargs = fmt::make_args_checked<Args...>(format_str, args...);
2002 return detail::is_unicode<Char>()
2003 ? vprint(f, to_string_view(format_str), vargs)
2004 : detail::vprint_mojibake(f, to_string_view(format_str), vargs);
2005}
2006
2007/**
2008 \rst
2009 Formats ``args`` according to specifications in ``format_str`` and writes
2010 the output to ``stdout``. Strings are assumed to be Unicode-encoded unless
2011 the ``FMT_UNICODE`` macro is set to 0.
2012
2013 **Example**::
2014
2015 fmt::print("Elapsed time: {0:.2f} seconds", 1.23);
2016 \endrst
2017 */
2018template <typename S, typename... Args, typename Char = char_t<S>>
2019inline void print(const S& format_str, Args&&... args) {
2020 const auto& vargs = fmt::make_args_checked<Args...>(format_str, args...);
2021 return detail::is_unicode<Char>()
2022 ? vprint(to_string_view(format_str), vargs)
2023 : detail::vprint_mojibake(stdout, to_string_view(format_str),
2024 vargs);
2025}
2026FMT_END_NAMESPACE
2027
2028#endif // FMT_CORE_H_